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Éva Tardos EVA.TARDOS@CORNELL.EDU

107 Hoy Rd, Ithaca, NY, 14850
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Abstract
We consider the problem of adversarial (non-stochastic) online learning with partial information
feedback, where at each round, a decision maker selects an action from a finite set of alternatives.
We develop a black-box approach for such problems where the learner observes as feedback only
losses of a subset of the actions that includes the selected action. When losses of actions are
non-negative, under the graph-based feedback model introduced by Mannor and Shamir, we offer
algorithms that attain the so called “small-loss” o(αL?) regret bounds with high probability, where
α is the independence number of the graph, and L? is the loss of the best action. Prior to our
work, there was no data-dependent guarantee for general feedback graphs even for pseudo-regret
(without dependence on the number of actions, i.e. utilizing the increased information feedback).
Taking advantage of the black-box nature of our technique, we extend our results to many other
applications such as semi-bandits (including routing in networks), contextual bandits (even with an
infinite comparator class), as well as learning with slowly changing (shifting) comparators.

In the special case of classical bandit and semi-bandit problems, we provide optimal small-
loss, high-probability guarantees of Õ(

√
dL?) for actual regret, where d is the number of actions,

answering open questions of Neu. Previous bounds for bandits and semi-bandits were known only
for pseudo-regret and only in expectation. We also offer an optimal Õ(

√
κL?) regret guarantee for

fixed feedback graphs with clique-partition number at most κ.
Keywords: Online Learning, Bandits, Feedback Graphs, Regret, High probability

1. Introduction

The online learning paradigm (Littlestone and Warmuth, 1994; Cesa-Bianchi and Lugosi, 2006)
has become a key tool for solving a wide spectrum of problems such as developing strategies for
players in large multiplayer games (Blum et al., 2006, 2008; Roughgarden, 2015; Lykouris et al.,
2016; Foster et al., 2016), designing online marketplaces and auctions (Blum and Hartline, 2005;
Cesa-Bianchi et al., 2013; Roughgarden and Wang, 2016), portfolio investment (Cover, 1991; Freund
and Schapire, 1997; Hazan et al., 2007), online routing (Awerbuch and Kleinberg, 2004; Kalai and
Vempala, 2005). In each of these applications, the learner has to repeatedly select an action on every
round. Different actions have different costs or losses associated with them on every round. The goal
of the learner is to minimize her cumulative loss and the performance of the learner is evaluated by
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the notion of “regret”, defined as the difference between the cumulative loss of the learner, and the
cumulative loss L? of the benchmark.

The term “small-loss regret bound” is often used to refer to bounds on regret that depend (or
mostly depend) on L?, rather than the total number of rounds played T often referred to as the time
horizon. For instance, for many classical online learning problems, one can in fact show that regret
can be bounded by Õ(

√
L?) rather than Õ(

√
T ). However, these algorithms use the full information

model: assume that on every round, the learner receives as feedback the losses of all possible actions
(not only the selected actions). In such full information settings, it is well understood when small-loss
bounds are achievable and how to design learning algorithms that attain them. However, in most
applications, full information about losses of all actions is not available. Unlike the full information
case, the problem of obtaining small-loss regret bounds for partial information settings is poorly
understood. Even in the classical multi-armed bandit problem, small-loss bounds are only known in
expectation against the so called oblivious adversaries or comparing against the lowest expected cost
of an arm (and not the actual lowest cost), referred to as pseudo-regret.

The goal of this paper is to develop robust techniques for extending the small-loss guarantees to
a broad range of partial feedback settings where learner only observes losses of selected actions and
some neighboring actions. In the basic online learning model, at each round t, the decision maker or
learner chooses one action from a set of d actions, typically referred to as arms. Simultaneously an
adversary picks a loss vector `t ∈ [0, 1]d indicating the losses for the d arms. The learner suffers the
loss of her chosen arm and observes some feedback. The variants of online learning differ by the
nature of feedback received. The two most prominent such variants are the full information setting,
where the feedback is the whole loss vector, and the bandit setting where only the loss of the selected
arm is observed. Bandits and full information represent two extremes. In most realistic applications,
a learner choosing an action i, learns not only the loss `ti associated with her chosen action i, but
also some partial information about losses of some other actions. A simple and elegant model of
this partial information is the graph-based feedback model (Mannor and Shamir, 2011; Alon et al.,
2017), where at every round, there is a (possibly time-varying) undirected graph Gt representing the
information structure, where the possible actions are the nodes. If the learner selects an action i and
incurs the loss `ti, she observes the losses of all the nodes connected to node i by an edge in Gt. Our
main result is a general technique that allows us to use any full information learning algorithm as a
black-box, and design a learning algorithm whose regret can be bounded with high probability as
o(αL?), where α is the maximum independence number of the feedback graphs. This graph-based
information feedback model is a very general setting that can encode all of full information, bandit,
as well as a number of other applications.

1.1. Our contribution

Our results We develop a unified, black-box technique to achieve small-loss regret guarantees
with high probability in various partial information feedback models. We obtain the following results.

• We first provide a generic black box reduction from any small-loss full information algorithm.
When used with known algorithms it achieves actual regret guarantees of Õ

(
(L?)2/3

)
that hold

with high probability for any of pure bandits, semi-bandits, contextual bandits, or feedback
graphs (with dependence on the information structure in the Õ as d1/3 for the first three,
and α1/3 for feedback graphs). There are three novel features of this result. First, unlike
most previous work in partial information that is heavily algorithm-specific, our technique is
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black-box in the sense that it takes as input a small-loss full information algorithm and, via a
small modification, makes it work under partial information. Second, prior to our work, there
was no data-dependent guarantee for general feedback graphs even for pseudo-regret (without
dependence on the number of actions, i.e., taking advantage of the increased information
feedback), while we provide a high probability small-loss guarantee. Last, our guarantees are
not for pseudo-regret but actual regret guarantees that hold with high probability.

• We then show various applications. The black-box nature of our reduction allows us to use
the full information learning algorithms best suited for each application. We obtain small-loss
guarantees for semi-bandits (Kalai and Vempala, 2005) (including routing in networks), for
contextual bandits (Langford and Zhang, 2007) (even with an infinite comparator class), as
well as learning with slowly changing (shifting) comparators (Herbster and Warmuth, 1998) as
needed in games with dynamic population (Lykouris et al., 2016; Foster et al., 2016).

• Finally, we focus on the special case of bandits, semi-bandits, graph feedback from fixed
graphs, and shifting comparators. In each setting we take advantage of properties of a
learning algorithm best suited in the application to alleviate the inefficiencies resulting from
the black-box nature of our general reduction. For bandits and semi-bandits, we provide
optimal small-loss actual regret high-probability guarantees of Õ(

√
dL?). Previous work

for bandits and semi-bandits offered analogous bounds only for pseudo-regret and only in
expectation. This answers an open question of Neu (2015a,b). In the case of fixed feedback
graphs, we achieve optimal

√
L∗ dependence on loss, at the expense of the bound depending

on clique-partition number of the graph, rather than the independence number.

Our techniques Our main technique is a dual-thresholding scheme that temporarily freezes low-
performing actions, i.e. does not play them at the current round. Traditional partial information
guarantees are based on creating an unbiased estimator for the loss of each arm and then running
a full information algorithm on the estimated loses. The most prominent such unbiased estimator,
called importance sampling, is equal to the actual loss divided by the probability with which the
action is played. This division can make the estimated losses unbounded in the absence of a lower
bound on the probability of being played. Algorithms like EXP3 (Auer et al., 2003) for the bandit
setting or Exp3-DOM (Alon et al., 2017) for the graph-based feedback setting mix in a 1/

√
T amount

of noise which ensures that the range of losses is bounded. Adding such uniform noise works well
for learners maximizing utility, but can be very damaging when minimizing losses. In the case of
utilities, playing low performing arms with a small ε probability, can only lose at most an ε fraction
of the utility. In contrast, when the best arm has small loss, the losses incurred due to the noise can
dominate. This approach can only return uniform bounds with O(

√
T ) regret since, even in the case

that there is a perfect arm that has 0 loss, the algorithm keeps playing low-performing arms. Some
specialized algorithms do achieve small-loss bounds for bandits, but these techniques extend neither
to graph feedback nor to high probability guarantees (see also discussion below about related work).

Instead of mixing in noise, we take advantage of the freezing idea, originally introduced by
Allenberg et al. (2006) with a single threshold γ offering a new way to adapt the multiplicative
weights algorithm to the bandit setting. The resulting estimator is negatively biased for the arms that
are frozen but is always unbiased for the selected arm. Using these expectations, the regret bound of
the full information algorithm can be used to bound the expected regret compared to the expected
loss of any fixed arm, achieving low pseudo-regret in expectation. To achieve good bounds, we need
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to guarantee that the total probability frozen is limited. By freezing arms with probability less than γ,
the total probability that is frozen at each round is at most dγ and therefore contributes to a regret
term of dγ times the loss of the algorithm which gives a dependence on d on the regret bound. This
was analyzed in the context of multiplicative weights by Allenberg et al. (2006).

Our main technical contribution is to greatly expand the power of this freezing technique. We
show how to apply it in a black-box manner with any full information learning algorithm and extend
it to graph-based feedback. To deal with the graph-based feedback setting, we suggest a novel and
technically more challenging dual-threshold freezing scheme. The natural way to apply importance
sampling in the graph-based feedback is by dividing the actual loss with the probability of being
observed, i.e. the sum of the probabilities that the action and its neighbors are played. An initial
approach is to freeze an action if its probability of being observed is below some threshold γ. We
show that the total probability frozen by this step is bounded by αγ, where α is the size of the
maximum independent number of the feedback graph. To see why, consider a maximal independent
set S of the frozen actions and note that all frozen actions are observed by some node in S. This
observation seems to imply that we can replace the dependence on d by a dependence on α. However
there are externalities among actions as freezing one action may affect the probability of another
being observed. As a result, the latter may need to be frozen as well to ensure that all active arms are
observed with probability at least γ (and therefore obtain our desired upper bound on the range of
the estimated losses). This causes a cascade of freezing, with possibly freezing a large amount of
additional probability.

To limit this cascade effect, we develop a dual-threshold freezing technique: we initially freeze
arms that are observed with probability less than γ, and subsequently use a lower threshold γ′ = γ/3
and only freeze arms that are observed with probability less than γ′. This technique allows us to
bound the total probability of arms that are frozen subsequently by the total probability of arms that
are frozen initially. We prove this via an elegant combinatorial charging argument.

Last, to go beyond pseudo-regret and guarantee actual regret bounds with high probability, it
does not suffice to have the estimator be negatively biased but we need to also obtain a handle
on the variance. We prove that freezing also provides such a lever leading to a high-probability
Õ(α1/3(L?)

2/3) regret guarantee that holds in a black-box manner. Interestingly, this freezing
technique via a small modification enables the same guarantee for semi-bandits where the independent
set is replaced by the number of elements (edges).

In order to obtain the optimal high-probability guarantee for bandits and semi-bandits, we need
to combine our black box analysis with features of concrete full information learning algorithms.
The black-box nature of the previous analysis is extremely useful in demonstrating where additional
features are needed. Combining our analysis with the implicit exploration technique of Kocák et al.
(2014) similarly as in the analysis of Neu (2015b), we develop an algorithm based on multiplicative
weights, which we term GREEN-IX, which achieves the optimal high-probability small-loss bound
Õ(
√
dL?) for the pure bandit setting. Using an alternative technique of Neu (2015a): truncation in

the follow the perturbed leader algorithm, we also obtain the corresponding result for semi-bandits.

1.2. Related work

Online learning with partial information dates back to the seminal work of Lai and Robbins (1985).
They consider a stochastic version, where losses come from fixed distributions. We focus on the
case where the losses are selected adversarially, i.e. they do not come from a distribution and may
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be adaptive to the algorithm’s choices. This was first studied by Auer et al. (2003) who provided
the EXP3 algorithm for pure bandits and the EXP4 algorithm for learning with expert advice (a
generalization of the contextual bandits of Langford and Zhang (2007)). They focus on uniform
regret bounds, i.e. that grow as a function of time o(T ), and bound mostly the expected performance,
but such guarantees can also be derived with high probability (Auer et al., 2003; Audibert and
Bubeck, 2010; Beygelzimer et al., 2011). Data-dependent guarantees are easily derived from the
above algorithms for the case of maximizing some reward as even getting reward 0 with probability
of ε only causes an ε fraction of loss in utility. In contrast, incurring high cost with a small probability
ε can dominate the loss of the algorithm, if the best arm has small loss. In this paper we develop
data-dependent guarantees for partial information algorithm for the cases of losses. There are a few
specialized algorithms that achieve such small-loss guarantees for the case of bandits for pseudo-
regret, e.g. by ensuring that the estimated losses of all arms remain close (Allenberg et al., 2006;
Neu, 2015a) or using a stronger regularizer (Rakhlin and Sridharan, 2013; Foster et al., 2016), but all
of these methods neither offer high probability small-loss guarantees even for the bandit setting, nor
extend to graph-based feedback. Our technique allows us to develop small-loss bounds on actual
regret with high probability.

The graph-based partial information that we examine in this paper was introduced by Mannor
and Shamir (2011) who provided ELP, a linear programming based algorithm achieving Õ(

√
αT )

regret for undirected graphs. Alon et al. (2013, 2017) provided variants of Exp3 (Exp3-SET) that
recovered the previous bound via what they call explicit exploration. Following this work, there
have been multiple results on this setting, e.g.(Alon et al., 2015; Cohen et al., 2016; Kocák et al.,
2016; Tossou et al., 2017), but prior to our work, there was no small-loss guarantee for the feedback
graph setting that could exploit the graph structure. To obtain a regret bound depending on the graph
structure, the above techniques upper bound the losses of the arms by the maximum loss which
results in a dependence on the time horizon T instead of L?. Addressing this, we achieve regret that
scales with an appropriate problem dimension, the size of the maximum independent set α, instead
of ignoring the extra information and only depending on the number of arms as all small-loss results
of prior work.

Biased estimators have been used prior to our work for achieving better regret guarantees. The
freezing technique of Allenberg et al. (2006) can be thought of as the first use of biased estimators.
Their GREEN algorithm uses freezing in the context of the multiplicative weights algorithm for the
case of pure bandits. Freezing keeps the range of estimated losses bounded and when used with
the multiplicative weights algorithm, also keeps the cumulative estimated losses very close, which
ensures that one does not lose much in the application of the full information algorithm. Using
these facts, Allenberg et al. (2006) achieved small-loss guarantees for pseudo-regret in the classical
multi-armed bandit setting. An approach very close to freezing is the implicit exploration of Kocák
et al. (2014) that adds a term in the denominator of the estimator making the estimator biased, even
for the selected arms. The FPL-TrIX algorithm of Neu (2015a) is based on the Follow the Perturbed
Leader algorithm using implicit exploration together with truncating the perturbations to guarantee
that the estimated losses of all actions are close to each other and the geometric resampling technique
of Neu and Bartók (2013) to obtain these estimated losses. His analysis provides small-loss regret
bounds for pseudo-regret, but does not extend to high-probability guarantees. The EXP3-IX algorithm
of Kocák et al. (2014)combines implicit exploration with multiplicative weights to obtain, via the
analysis of Neu (2015b), high-probability uniform bounds. Focusing on uniform regret bounds,
exploration and truncation were presented as strictly superior to freezing. In this paper, we show an
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important benefit of the freezing technique: it can be extended to handle feedback graphs (via our
dual-thresholding). We also combine freezing with multiplicative weights to develop an algorithm we
term GREEN-IX which achieves optimal high-probability small-loss Õ(

√
dL?) for the pure bandit

setting. Finally, combining freezing with the truncation idea, we obtain the corresponding result
for semi-bandits; in contrast, the geometric resampling analysis does not seem to extend to high
probability since it does not provide a handle on the variance of the estimated loss.

Full version

We refer the reader to the full version of the paper that can be found here https://arxiv.org/
abs/1711.03639.
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