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Abstract
We consider the problem of minimizing a convex objective function F when one can only evaluate
its noisy approximation F̂ . Unless one assumes some structure on the noise, F̂ may be an arbitrary
nonconvex function, making the task of minimizing F intractable. To overcome this, prior work has
often focused on the case when F (x)−F̂ (x) is uniformly-bounded. In this paper we study the more
general case when the noise has magnitude αF (x)+β for some α, β > 0, and present a polynomial
time algorithm that finds an approximate minimizer of F for this noise model. Previously, Markov
chains, such as the stochastic gradient Langevin dynamics, have been used to arrive at approximate
solutions to these optimization problems. However, for the noise model considered in this paper,
no single temperature allows such a Markov chain to both mix quickly and concentrate near the
global minimizer. We bypass this by combining “simulated annealing” with the stochastic gradient
Langevin dynamics, and gradually decreasing the temperature of the chain in order to approach
the global minimizer. As a corollary one can approximately minimize a nonconvex function that
is close to a convex function; however, the closeness can deteriorate as one moves away from the
optimum.
Keywords: Nonconvex optimization, Stochastic gradient Langevin dynamics, Simnulated anneal-
ing

1. Introduction
A general problem that arises in machine learning, computational mathematics and optimization is
that of minimizing a convex objective function F : K → R, where K ⊆ Rd is convex, and one can
only evaluate F approximately. Let F̂ denote this “noisy” approximation to F . In this setting, even
though the function F is convex, we can no longer assume that F̂ is convex. However, if one does
not make any assumption on the noise function, the problem of minimizing F can be shown to be
arbitrarily hard. Thus, having some restrictions on the noise function is necessary.

A well studied setting is that of “additively” bounded noise (Applegate and Kannan, 1991;
Singer and Vondrák, 2015; Risteski and Li, 2016; Zhang et al., 2017). Here, the noise N(x) :=
F (x) − F̂ (x) is assumed to have a uniform bound on K: supx∈K |N(x)| ≤ β for some β ≥ 0. In
practice, however, the strongest bound we might have for the noise may not be uniform on K. One
such noise model is that of “multiplicative” noise where one assumes that |F̂ (x)−F (x)| ≤ αF (x),
for all x ∈ K and some α ≥ 0. In other words, |N(x)| = |F̂ (x) − F (x)| = |F (x)| × α, which
motivates the name. One situation where multiplicative noise arises is when F decomposes into a
sum of functions that are easier to compute, but these component functions are computed via Monte
Carlo integration and the stopping criteria of these integration methods depend on the computed
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value of the component function (Chen, 2015). For other natural settings where multiplicative noise
arises see (Chen et al., 2015; Jebalia and Auger, 2008; Jebalia et al., 2011).

More generally, one can model the noisy function F̂ by decomposing it into additive and multi-
plicative components, in the following sense:

Definition 1 We say that F̂ has additive and multiplicative noise levels (β, α) if

|F̂ (x)− F (x)| ≤ α(F (x)− F (x∗)) + β (1)

Note that this noise model has the natural property that the noise level does not change if we replace
F (x) and F̂ (x) with a new objective function F (x) + C and a new oracle F̂ (x) + C for the same
number C > 0. To motivate this definition, we consider a situation where the error in computing
the objective function depends on the amount of time spent on the computation. For instance,
to compute the objective function one may be required to solve a complicated system of partial
differential equations, where a finer discretization leads to a greater accuracy but also to a longer
computation time (Conrad et al., 2018; Cliffe et al., 2011). In this case, one can start by using
a short computation time for each evaluation and gradually increase the computation time as one
approaches the minimum value. Whereas a purely additive noise model would require one to have
a uniform computational cost at each step, the multiplicative noise model allows one to analyze
methods where one has the flexibility to use a different cost at each step.

As another application, we consider the problem of solving a system of noisy linear or non-
linear black-box equations where one wishes to find a value of x such that hi(x) = 0 for each
component function hi (Chen et al., 2015). Since each equation hi(x) = 0 must be satisfied si-
multaneously for a single value of x, it is not enough to solve each equation individually. One
way in which we may solve this system of equations is by minimizing an objective function of the
form F (x) = 1

n

∑n
i=1(hi(x))2 since any value of x that minimizes F (x) also solves the system of

equations hi(x) = 0 for every i, provided that such a solution exists. While it is true that one may
instead minimize the objective function 1

n

∑n
i=1 |hi(x)| to solve the same system of equations, it

is oftentimes preferable to use the quadratic objective function F (x) = 1
n

∑n
i=1(hi(x))2 since it is

much smoother and can lead to faster convergence in practice (Chen et al., 2015). Rather than hav-
ing access to an exact computation oracle for hi(x) one may instead only have access to a perturbed
function ĥi(x) = hi(x)+Ni(x).HereNi(x) is a noise term that may have additive or multiplicative
noise (or both), that is, |Ni(x)| ≤ b+ahi(x) for some a, b ≥ 0. Hence, instead of minimizing the ob-
jective function F , one must try to minimize a noisy function of the form F̂ (x) = 1

n

∑n
i=1(ĥi(x))2.

A straightforward calculation shows that the fact that |Ni(x)| ≤ b+ ahi(x) for all i implies that

|F̂ (x)− F (x)| ≤ (2a+ a2 + 2b+ 2ab)(F (x)− F (x∗)) +
1

2
(b+ ab) + b2,

where F (x∗) = 0. Thus, F̂ can be modeled as having additive noise level β = 1
2(b + ab) + b2

together with multiplicative noise level α = 2a+a2+2b+2ab. In particular, even if each component
function only has additive noise (that is, if a = 0), F̂ will still have nonzero multiplicative noise
α = 2b. Thus we arrive at the following general problem.

Problem 1 Let K ⊆ Rd be a convex body and F : K → R be a convex function, where F (x∗) = 0
and x? is a minimizer of F in K. Given access to a noisy oracle F̂ for F that has additive and
multiplicative noise levels (β, α). The problem is to find an approximate minimizer x̂ for F such
that F (x̂) ≤ ε̂ for a given ε̂ > 0.
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One of the first papers to study this problem was by Applegate and Kannan (1991) in the special case
of additive noise (where α = 0). Specifically, they studied the related problem of sampling from
the canonical distribution 1∫

K e
−ξF̂ (y)dy

e−ξF̂ (x) when F̂ is an additively noisy version of a convex

function. Roughly, their algorithm discretized K with a grid and ran a simple random walk on this
grid. Using their Markov chain one can solve Problem 1 in the special case of α = 0 for some error
ε̂ = Õ(dβ) with running time that is polynomial in d and various other parameters as well.

In Belloni et al. (2015), Problem 1 was studied in a special case where the noise decreases to
zero near the global minimum1 and F is m-strongly convex. Specifically, they study the situation
where the noise is bounded by |N(x)| ≤ c‖x − x?‖p, for some 0 < p < 2 and some c > 0.
Roughly speaking, in this regime they show that one can obtain an approximate minimizer x̂ such
that F (x̂) − F (x?) ≤ O(( dm)

1
2−p ) in polynomial time. To find an approximate minimizer x̂, they

repeatedly run a simulated annealing Markov chain based on the “hit-and-run” algorithm. They state
that they are “not aware of optimization methods for such a problem” outside of their work, and that
“it is rather surprising that one may obtain provable guarantees through simulated annealing” under
noise with non-uniform bounds even in the special case of strong convexity.

Problem 1 was also studied by Zhang et al. (2017) in the special case of additive noise (where
α = 0 but β ≥ 0). The main component of their algorithm is the stochastic gradient Langevin
dynamics (SGLD) Markov chain that runs at a fixed “temperature” parameter to find an approximate
minimizer x̂. In particular, they show that one can solve Problem 1 in the special case of α = 0
for some error ε̂ = Õ(dβ) with running time that is polynomial in d and β and various smoothness
parameters. Other related works that have studied various aspects of optimization under additive
noise include (Singer and Vondrák, 2015; Hazan et al., 2016; Risteski and Li, 2016).

The difficulty of extending these results to the general case when both α, β > 0, and F is not
necessarily strongly convex arises from the fact that, in this setting, the noise can become unbounded
and the prior Markov chain approaches do not seem to work. Roughly, the Markov chains of
(Applegate and Kannan, 1991; Zhang et al., 2017) run at a fixed temperature and, due to the fact that
the noise can be very different at different levels of F , would either get stuck in a local minimum
or never come close to the minimzer; see Figure 2 for an illustration. The Markov chain of Belloni
et al. (2015) on the other hand varies the temperature but the strong convexity of F makes the task
of estimating progress significantly simpler.

1.1. Our contributions

The main result of this paper is the first polynomial time algorithm that solves Problem 1 when
α, β > 0 without assuming that F is strongly convex. Our algorithm combines simulated annealing
(as in Belloni et al. (2015)) with the stochastic gradient Langevin dynamics (as in Zhang et al.
(2017)). We assume that ‖∇F‖ ≤ λ and that K is contained in a bounding ball of radius R > 0,
and that K = K′ + B(0, r′) for some r′ > 0, where “+” denotes the Minkowski sum. Note that,
given bounds λ and R, one can deduce an upper bound of λR on the value of F in K. Also note
that while the Lipschitz gradient assumption helps us prove running time bounds for our algorithm,
it is likely not needed to solve the problem.

1. Belloni et al. (2015) also study separately the special case of purely additive noise, but not simultaneously in the
presence of a non-uniformly bounded noise component.
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Theorem 2 [Informal; see Section B.2 for a formal description] For any desired accuracy level
ε̂, additive noise level β = O(ε̂), and a multiplicative noise level α that is a sufficiently small
constant, there exists an algorithm that solves Problem 1 and outputs x̂ with high probability such
that F (x̂) − F (x?) ≤ ε̂. The running time of the algorithm is polynomial in d, R, 1/r′, and λ,
whenever α ≤ Õ(1

d) and β ≤ Õ( ε̂d).

When the multiplicative noise coefficient satisfies α ≤ Õ(1
d), Theorem 2 guarantees that one can

obtain an approximate minimizer x̂ such that F (x̂)−F (x?) ≤ ε̂ for arbitrarily small ε̂ in polynomial
time. Also note that related work (Applegate and Kannan, 1991) for additive noise does not require
a Lipschitz gradient or a bound on the diameter of K, although they still require a bound on the
range of the objective function.

The requirement that β ≤ Õ( ε̂d) in order to get a polynomial running time can be shown to
be necessary using results from the work of Blum and Rivest (1989) (as done by Zhang et al.
(2017)). If the additive noise β was required to be any lower than Ω( ε̂d), the algorithm would take
an exponentially long time to escape the local minima (Figure 1). We believe that the requirement
that α ≤ Õ(1

d) in order to get a polynomial running time is also tight for a similar reason. This is
because a sub-level set U of F of height ε̂, i.e., U = {x ∈ K : F (x) ≤ ε̂}, will have a uniform
bound on the noise of size supx∈U αF (x) ≤ αε̂ in the presence of multiplicative noise level α.
This is equivalent to having additive noise level Õ( ε̂d), which is required for the Markov chain to
quickly escape the local minima of that sub-level set. Establishing this formally is an interesting
open problem. While our algorithm’s running time is polynomial in various parameters, we believe
that it is not tight and can be improved with a more thorough analysis of the underlying Markov
chain. The results of Zhang et al. (2017) for the additive noise is more general; their algorithm
works for a class of nonconvex functions F with a certain saddle-point property. It would therefore
be interesting to see if we can solve Problem 1 for this class of nonconvex functions F but under
the more general noise model where we have both additive and multiplicative noise. We note the
following obvious but important corollary of our main result for nonconvex functions: Suppose we
are given oracle access to a nonconvex function F̂ with a guarantee that there is a convex function
F such that |F̂ (x)−F (x)| ≤ α(F (x)−F (x?)) + β (as in Definition 1), then there is an algorithm
to minimize F̂ .

1.2. On the assumption that F (x?) = 0.

Suppose that we are given a function F with noisy oracle F̂ with additive and multiplicative noise
level α, β, but F(x∗) 6= 0. Then, if we know the value of m = F(x∗), we can put this function
in the form of Problem 1 by defining a “shifted” objective function F (x) := F(x) − F(x∗) and
“shifted” oracle F̂ (x) := F̂(x) − m. In practice, we do not know the minimizing value m, but we
can still obtain a noisy oracle F̂ for F by guessing a value for m′ and setting F̂ ′(x) = F̂(x) − m′,
although F̂ ′ will have a larger additive noise level |m′ − F(x∗)| + β depending on the accuracy
|m′ − F(x∗)| of our guess. In practice, if we know β, then we can get around this problem by
performing a binary search, by repeatedly running our algorithm using a sequence of noisy oracles
F̂1, F̂2, . . . obtained with different guesses m′1,m

′
2, . . .. If we make a guess m′j and our algorithm

returns a value F̂(x̂) ≤ m′j + β, then our next guess m′j+1 should be lower; otherwise it should be
higher. The number of times we must run our algorithm is therefore only logarithmic in the desired
accuracy ε̂−1. If we do not know β, then the number of times we must run our algorithm will instead
be polynomial in ε̂−1, λ and R.
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Since our framework (Problem 1) assumes F (x?) = 0, the value of F̂ (x) gives us a good
estimate for the amount of (multiplicative) noise near a point x. Therefore, F̂ can help us choose
the temperature parameter at each step in our algorithm: a larger value of F̂ means that there may
be more noise present and we require a higher temperature, while a lower value of F̂ means that we
can lower temperature. (See Section 1.2 for how our framework can be generalized to F (x∗) 6= 0).

1.3. Short summary of techniques

To find an approximate global minimum of the objective function F , we must try to find an ap-
proximate global minimum of the noisy approximation F̂ . One method of optimizing a nonconvex
or approximately convex function F̂ is to generate a Markov chain with stationary distribution ap-
proximating the canonical distribution π̂(ξ)(x) := 1∫

K e
−ξF̂ (y)dy

e−ξF̂ (x), where ξ is thought of as an

“inverse temperature” parameter. If the “temperature” ξ−1 is small, then π̂(ξ) concentrates near the
global minima of F̂ . On the other hand, to escape local minima of “depth” β > 0 in polynomial
time, one requires the temperature ξ−1 to be at least Ω(β) (see Figure 1). Now consider the random
variable Z ∼ N(0, ξ−1Id) with π(ξ)(x) := 1∫

Rd e
−ξ 12 ‖y‖

2
dy
e−ξ

1
2
‖x‖2 . Then F (Z) concentrates near

dξ−1 with high probability. This suggests that for a noisy function F̂ where we are given a bound
on the additive noise level β > 0, the best we can hope to achieve in polynomial time is to find a
point x̂ such that |F (x̂) − F (x?)| ≤ Õ(dβ), since there may be sub-optimal local minima in the
vicinity of x? that have depth O(β), requiring the temperature ξ−1 to be at least Ω(β) (Figure 1).

As mentioned earlier, optimization of a noisy function under additive noise is studied by Zhang
et al. (2017), who analyze the stochastic gradient Langevin dynamics (SGLD) Markov chain. The
SGLD chain approximates the Langevin diffusion, which has stationary distribution π̂(ξ). They
show that by running SGLD at a single fixed temperature ξ one can obtain an approximate global
minimizer x̂ of F such that |F (x̂) − F (x?)| < Õ(ε̂) with high probability with running time that
is polynomial in d, edβ/ε̂, and various smoothness bounds on F . In particular, for the algorithm to
get a polynomial running time in d and β one must choose ε̂ = Ω(dβ). Thus, the SGLD algorithm
returns an approximate minimizer such that |F (x̂) − F (x?)| ≤ Õ(dβ) in polynomial time in the
additive case.

More generally, if multiplicative noise is present one may have many local minima of very
different sizes, so our bound on the “depth” of the local minima is not uniform over K. In this
case the approach by Zhang et al. (2017) of using a single fixed temperature will lead to either a
very long running time or a very large error ε̂: If the temperature is hot enough to escape even the
deepest the local minima, then the Markov chain will not concentrate near the global minimum and
the error ε̂ will be large (Figure 2(b)). If the temperature is chosen to be too cold, then the algorithm
will take a very long time to escape the deeper local minima (Figure 2(c)). Instead of using a fixed
temperature, we search for the global minimum by starting the Markov chain at a high temperature
and then slowly lowering the temperature at each successive step of the chain (Figure 2(d)). This
approach is referred to as “simulated annealing” in the literature (Kirkpatrick et al., 1983).

The only non-asymptotic analysis we are aware of where the bound on the noise is not uniform
involves a simulated annealing technique based on the hit-and-run algorithm (Belloni et al., 2015).
Specifically, Belloni et al. (2015) show that if F is m-strongly convex, then one can compute an
approximate global minimizer x̂ such that |F (x̂) − F (x?)| < ( dm)

1
2−p with running time Õ(d4.5),

as long as N(x) ≤ c‖x‖p for some 0 < p < 2 and some c > 0. The algorithm used by Belloni
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et al. (2015) runs a sequence of subroutine Markov chains. Each of these subroutine Markov chains
is restricted to a ball B(yk, rk) centered at the point yk returned by the subroutine chain from the
last epoch. Crucially, for this algorithm to work, rk must be chosen such that B(yk, rk) contains
the minimizer x? at each epoch k. Towards this end, Belloni et al. (2015) show that since the
temperature is decreased at each epoch, F (yk) is much smaller than F (yk−1) at each epoch k.
Since F is assumed to be strongly convex, Belloni et al. (2015) show that this decrease in F implies
a contraction in the distance ‖yk − x?‖ at each epoch k, allowing one to choose a sequence of radii
rk that contract as well at each step but still have the property that x? ∈ B(yk, rk).

One obstacle in generalizing the results by Belloni et al. (2015) to the non-strongly convex case
is that we do not have an oracle for the sub-level sets of F , but only for F̂ , whose sub-level sets
may not even be connected. Instead, we show that the SGLD Markov chain concentrates inside
increasingly smaller sub-level sets of F as the temperature parameter is decreased. To analyze
the behavior of the SGLD Markov chain at each temperature, we build several new tools and use
some from the past work. Our results make important contributions to the growing body of work on
non-asymptotic analysis of simulated annealing, Langevin dynamics and their various combinations
(Raginsky et al., 2017; Bubeck et al., 2015; Welling and Teh, 2011; Lee and Vempala, 2017).

1.4. Organization of the rest of the paper

In the main body of the paper we present a detailed but informal primer of the algorithm followed
by the key steps and ideas involved in the proof of Theorem 2 in Section 2. The precise description
of the algorithm and the full proofs are quite technical and have been moved to the appendix due to
space constraints. In the Appendix, we present the notation and other preliminaries in Section A.
This is followed by a formal presentation of the algorithm and the statement of the main results in
Sections B.1 and B.2. Section C contains the detailed mathematical proof of our main theorem.

2. Overview of Our Contributions

The model and the problem. Let K ⊆ Rd be the given convex body contained in a ball of radius
R > 0 and F : K → R the given convex function. We assume that F has gradient bounded by some
number λ > 0, and that K = K′ + B(0, r′) for some r′ > 0, where “+” denotes the Minkowski
sum and K′ is a convex body. Let x? be a minimizer of F over K. Recall that our goal is to find an
approximate minimizer x̂ of F on K, such that F (x̂)− F (x?) ≤ ε̂ for a given ε̂ > 0.

We assume that we have access to a membership oracle forK and a noisy oracle F̂ for F . Recall
that in our model of noise, since F (x∗) = 0, we may assume that there exist functions ϕ : K → R
and ψ : K → R and numbers α, β ≥ 0, with |ϕ(x)| ≤ β and |ψ(x)| ≤ α for all x ∈ K, such that

F̂ (x) = F (x)(1 + ψ(x)) + ϕ(x) ∀x ∈ K. (2)

We say that F̂ has “additive noise” ϕ of level β and “multiplicative noise” ψ of level α. To simplify
our analysis, we assume that F ≥ 0 and that F has minimizer x? ∈ K such that F (x?) = 0 (if not,
we can always shift F and F̂ down by the constant F (x?) to satisfy this assumption). That way, the
multiplicative noise ψ has the convenient property that it goes to zero as we approach x?.

We first describe our algorithm and the proof assuming that F̂ is smooth and we have access to
its gradient ∇F̂ . Specifically, we assume that ‖∇F̂‖ is bounded above by some number λ̃ > 0 and
that the Hessian of F̂ has singular values bounded above by L > 0. This simplifies the presentation
considerably and we explain how to deal with the non-smooth case at the end of this section.
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Our algorithm. To find an approximate minimizer of F , we would like to design a Markov chain
whose stationary distribution concentrates in a subset of K where the values of F are small. The
optimal choice of parameters for this Markov chain will depend on the amount of noise present.
Since the bounds on the noise are not uniform, the choice of these parameters will depend on the
current state of the chain. To deal with this fact, we will run a sequence of Markov chains in different
epochs, where the parameters of the chain are fixed throughout each epoch. Our algorithm runs for
kmax epochs, with each epoch indexed by k.

In epoch k, we run a separate Markov chain {X(k)
i }

imax
i=1 overK for the same number of iterations

imax. Each such Markov chain has parameters ξk and ηk that depend on k. We think of ξ−1
k as the

“temperature” of the Markov chain and ηk as the step size. At the beginning of each epoch, we
decrease the temperature and step size, and keep them fixed throughout the epoch. We explain
quantitatively how we set the temperature a bit later. Each Markov chain also has an initial point
X

(k)
0 ∈ K. This initial point is chosen from the uniform distribution on a small ball centered at the

point in the Markov chain of the previous epoch (k − 1) with the smallest value of F̂ . In the final
epoch, the algorithm outputs a solution x̂, where x̂ is chosen to be the point in the Markov chain of
the final epoch with the smallest value of F̂ .

Description of the Markov chain in a single epoch. We now describe how the Markov chain,
at the point X(k)

i in the k-th epoch, chooses the next point X(k)
i+1. First, we compute the gradient

∇F̂ (X
(k)
i ). Then we compute a “proposal” X ′i+1 for the next point as follows

X ′i+1 = X
(k)
i − ηk∇F̂ (X

(k)
i ) +

√
2ηk
ξk
Pi, (3)

where Pi is sampled from N(0, Id). If X ′i+1 is inside the domain K, then we accept the proposal

and set X(k)
i+1 = X ′i+1; otherwise we reject the proposal and we set X(k)

i+1 = X
(k)
i – which is the old

point. The update rule in Equation (3) is called the Langevin dynamics. This is a version of gradient
descent injected with a random term. The amount of randomness is controlled by the temperature
ξ−1
k and the step size ηk. This randomness allows the Markov chain to escape local minima when
F̂ is not convex. Although the stationary distribution of this Markov chain is not known exactly,
roughly speaking it is approximately proportional2 to e−ξkF̂ . This completes the description of
our algorithm in the smooth case and we now turn to explaining the steps involved in bounding its
running time for a given bound on the error ε̂.

Steps in bounding the running time. In every epoch, the algorithm makes multiplicative progress
so that the smallest value of F achieved by the Markov chain decreases by a factor of 1/10. To
achieve an error ε̂, our algorithm therefore requires kmax = O(log M

ε̂ ) epochs, where M is the
maximum value of F̂ on K (M ≤ λR). The running time of our algorithm is given by the number
of epochs kmax multiplied by the number of steps imax taken by the Markov chain within each
epoch. For simplicity, we will run the Markov chain at each epoch for the same number of steps
imax. For the value of F to decrease by a factor of 1/10 in each epoch, we must set the number

2. By this we actually mean that the Markov chain is ε′-close to another Markov chain Z with stationary distribution
∝ e−ξkF̂ (see Definition 5 and Theorem 12). Specifically, a Markov chain X on a space S with transition kernel
QX is said to be ε′-close to a Markov chain Z w.r.t. a set U if QZ(x,A) ≤ QX(x,A) ≤ (1 + ε)QZ(x,A) for all
x ∈ K\U and A ⊆ K\{x} (Zhang et al., 2017)
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of steps imax taken by the Markov chain during each epoch to be no less than the hitting time of
the Markov chain for epoch k to a sub-level set Uk ⊆ K of F , where the “height” of Uk is one-
tenth the value of F at the initial point in this Markov chain. By the height of a sub-level set, we
mean the largest value of F achieved at any point on that sub-level set, that is the sub-level set
{y ∈ K : F (y) ≤ h} has height h. Thus, bounding the hitting time will allow us to bound the
number of steps imax for which we must run each Markov chain. Specifically, we should choose
imax to be no less than the greatest hitting time in any of the epochs with high probability.

This approach was used in the simpler setting of additive noise and a non-iterative way by Zhang
et al. (2017). Thus, the running time is roughly the product of the number of epochs and the hitting
time to the sub-level set Uk, and having determined the number of epochs required for a given
accuracy, we proceed to bounding the hitting time.

Bounding the hitting time and the Cheeger constant. To bound the hitting time of the Markov
chain in a single epoch, we use the strategy of Zhang et al. (2017), who bound the hitting time of
the Langevin dynamics Markov chain in terms of the Cheeger constant. Since the Markov chain has
approximate stationary measure induced by e−ξkF̂ , we consider the Cheeger constant with respect
to this measure, defined as follows:

Given a probability measure µ on some domain, we consider the ratio of the measure of the
boundary of an arbitrary subset A of the domain to the measure of A itself. The Cheeger constant
of a set V is the infimum of these ratios over all subsets A ⊆ V (see Definition 4 in Section C.2
for a formal definition). We use some of the results of Zhang et al. (2017) to show a bound on the
hitting time to the sub-level set Uk contained in a larger sub-level set U ′k in terms of the Cheeger
constant Ĉk, with respect to the measure induced by e−ξkF̂ (x) on U ′k. Specifically, we set U ′k to be
the sub-level set of height F̂ (X

(k)
0 ) + ξ−1

k d and Uk to be the sub-level set of height 1
10F (X

(k)
0 ) and

show that for a step size

ηk =
(Ĉk)2

d3((ξkλ̃)2 + ξkL)2
,

the hitting time to Uk is bounded by Rλ̃ξk+d√
ηk
d
Ĉk

; see Section C.5. Thus, to complete our bound on the

hitting time we need to bound the corresponding Cheeger constants.

Bounding the Cheeger constant. We would like to bound the Cheeger constant of the measure
induced by e−ξkF̂ (x). However, F̂ is not convex, so we cannot directly apply the usual approach of
Lovász and Simonovits (1993) for convex functions. Instead, we first apply their result to bound the
Cheeger constant of the convex function F . We then bound the Cheeger constant of the nonconvex
function F̂ in terms of the Cheeger constant of the convex function F , using a very useful stability
property satisfied by the Cheeger constant.

Roughly speaking, we show that the Cheeger constant ofU ′k\Uk is bounded below by 1/R (where
R is the radius of the bounding ball for K) as long as the inverse temperature satisfies

ξk ≥
d

1/10F (X
(k)
0 )

(see Lemma 6). However, the difficulty is that since U ′k may have sharp corners, the volume of Uk
might be so small that Uk would have much smaller measure than U ′k\Uk, leading to a very small
Cheeger constant. To get around this problem, we instead consider a slightly “rounded” version of
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K, where we take K to be the Minkowski sum of another convex body with a ball of very small
radius r′. The roundness allows us to show that Uk contains a ball of even smaller radius r̂ such that
the measure is much larger on this ball than at any point in U ′k\Uk. This in turn allows us to apply
the results of Lovász and Simonovits (1993) to show that the Cheeger constant is bounded below
by 1/R (see Lemma 6). Note our Cheeger bound is more general (for convex functions) than that
obtained by Zhang et al. (2017), where the constraint set is assumed to be a ball.

The Cheeger constant has the following useful stability property that allows us to bound the
Cheeger constant of the nonconvex F̂ with respect to the convex F : if |F̂ (x)− F (x)| ≤ Nk for all
x ∈ U ′k, then the Cheeger constant for the measures proportional to e−ξkF and e−ξkF̂ differ by a
factor of at most e−2ξkNk . For our choice of U ′k, we have

Nk ≈ α[F (X
(k)
0 ) + ξ−1

k d] + β.

We can then use the stability property to show that the Cheeger constants of F̂ and F differ by a
factor of at most e−2ξkNk , allowing us to get a large bound for the Cheeger constant of F̂ in terms
of our bound for the Cheeger constant of F as long as the bound on the noise Nk on U ′k is not too
large, namely we get that the Cheeger constant is bounded below by

1

R
e−2ξkNk ≈ 1

R
exp

(
−αd− d

F (X
(k)
0 )

β

)
if we choose ξk = d

1
10
F (X

(k)
0 )

.

At this point we mention the key difference between the approach of Zhang et al. (2017) and
ours in bounding the hitting time. As Zhang et al. (2017) assume a uniform bound on the noise they
only consider the Cheeger constant of K\Uk, where K is the entire constraint set and is assumed to
be a ball. Since the noise in our model depends on the “height” of the level sets, we instead need to
bound the Cheeger constant of U ′k\Uk, where U ′k is the level set of height F̂ (X

(k)
0 ) + ξ−1

k d and Uk
is the level set of height 1

10F (X
(k)
0 ).

In order to complete our bound for the Cheeger constant of F̂ , we still need to verify that we
can choose a temperature such that the Cheeger constant of F is large and the Cheeger constants of
F and F̂ are close at this same temperature.

Requirements on the temperature to bound the Cheeger constant. To get a large bound for
the Cheeger constant of F̂ , we need to use a temperature ξ−1

k such that the following competing
requirements are satisfied:

1. We want the Cheeger constant of the convex objective function F on U ′k\Uk to be bounded
below by 1/R. We can show such a bound on the Cheeger constant if the temperature is low

enough, in particular a temperature of ξ−1
k ≈

1
10
F (X

(k)
0 )

d suffices.

2. We need the Markov chain to stay inside a level set on which the upper boundNk on the noise
is at most α[F (X

(k)
0 ) + ξ−1

k d] + β, to show that the Cheeger constants of F and F̂ are close.
That is, we need to show that the ratio e−2ξkNk of the Cheeger constants of F and F̂ is not

too small, roughly e−2ξkNk ≥ exp

(
−αd− d

F (X
(k)
0 )

β

)
. This again requires the temperature

to be low enough, with ξ−1
k ≈

1
10
F (X

(k)
0 )

d sufficing.

9
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3. To show that the ratio of the Cheeger constants roughly satisfies e−2ξkNk ≥ exp

(
−αd− d

F (X
(k)
0 )

β

)
,

we also need the temperature to be high enough. Specifically, a temperature of ξ−1
k ≈

1
10
F (X

(k)
0 )

d suffices for this requirement as well.

At some epoch k, the value of F becomes too low for all three of these requirements on the tem-
perature to be satisfied simultaneously. At this point the Cheeger constant and hitting time to Uk
become very large no matter what temperature we use, so that the minimum value of F obtained by
the Markov chain no longer decreases by a large factor in imax steps.
Quantitative error and running time bounds. We now give a more quantitative analysis to
determine at what point F stops decreasing. The value of F at this point determines the error ε̂
of the solution returned by our algorithm. Towards this end, we set the inverse temperature to be
ξk = d

1
10
F (X

(k)
0 )

and check to what extent all 3 requirements above are satisfied.

1. We start by showing that if the temperature roughly satisfies ξ−1
k ≤

1
10
F (X

(k)
0 )

d then the
Cheeger constant for F on U ′k\Uk is bounded below by 1/R (see Lemma 6).

2. We then show that at each epoch the Markov chain remains with high probability in the level
set U ′k of height F̂ (X

(k)
0 ) + ξ−1

k d (Lemma 10). The fact that the noise satisfies |F̂ (x) −
F (x)| ≤ αF (x) + β (note that we assume F ≥ 0), implies that the noise is roughly bounded
above by Nk = α[F (X

(k)
0 ) + ξ−1

k d] + β on this level set.

3. Since we chose the temperature to be ξ−1
k =

1
10
F (X

(k)
0 )

d , we have that

ξkNk ≈ αd+
d

F (X
(k)
0 )

β.

Combing these three facts we get that the Cheeger constant is bounded below by 1
Re
−2ξkNk ≈

1
R exp

(
−αd− d

F (X
(k)
0 )

β

)
. If we run the algorithm for enough epochs to reach F (X

(k)
0 ) ≤ ε̂ for

any desired error ε̂ > 0, the Cheeger constant will be roughly bounded below by 1
R exp(−αd− d

ε̂β).

Recall that the hitting time is bounded by Rλ̃ξk+d√
ηk
d
Ĉk

, for stepsize ηk ≈ (Ĉk)2

Rd3((ξkλ̃)2+ξkL)2
. Choosing

imax to be equal to our bound on the hitting time, and recalling that kmax = Õ(1), we get a running
time of roughly

Õ

(
R

3
2

[
d5 λ̃

3

ε̂3
+ d

5
2
L

ε̂

]
exp(c[αd+

d

ε̂
β])

)
,

for some c = Õ(1).
Therefore, for our choice of inverse temperature ξk = d

1
10
F (X

(k)
0 )

, the running time is polynomial

in d,R, λ and λ̃ whenever the multiplicative noise level satisfies α ≤ Õ(1
d) and the additive noise

level satisfies β ≤ Õ( ε̂d). As discussed in the introduction, the requirements that α ≤ Õ(1
d) and

β ≤ Õ( ε̂d) are not an artefact of the analysis or algorithm and are in fact tight.
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Drift bounds and initialization. So far we have been implicitly assuming that the Markov chain
does not leave U ′k, so that we could analyze the Markov chain using the Cheeger constant on U ′k.
We now show that this assumption is indeed true with high probability. This is important to verify,
since there are examples of Markov chains where the Markov chain may have a high probability of
escaping a level set U ′k, even if this level set contains most of the stationary measure, provided that
the Markov chain is started far from the stationary distribution.

To get around this problem, at each epoch we choose the initial point X(k)
0 from the uniform

distribution on a ball of radius r centered at the point in the Markov chain of the previous epoch
k−1 with the smallest value of F̂ . We then show that if the Markov chain is initialized in this small
ball, it has a low probability of leaving the level set U ′k (see Propositions 8, 10 and Lemma 10).

Our method of initialization is another crucial difference between our algorithm and the algo-
rithm by Zhang et al. (2017) and Belloni et al. (2015), since it allows us to effectively restrict the
Markov chain to a sub-level set of the objective function F , which we do not have direct oracle
access to, rather than restricting the Markov chain to a large ball as by Belloni et al. (2015) or the
entire constraint set K as by Zhang et al. (2017) for which we have a membership oracle. This in
turn allows us to get a tighter bound on the multiplicative noise than would otherwise be possible,
since the amount of multiplicative noise depends, by definition, on the sub-level set.

We still need to show that the chain X(k) does not leave the set U ′k with high probability. To
bound the probability that X(k) leaves U ′k, we would like to use the fact that most of its stationary
distribution is concentrated in U ′k. However, the problem is that we do not know the stationary
distribution of X(k). To get around this, we consider a related Markov chain Y (k) with known
stationary distribution. The chain Y (k) evolves according to the same update rules as X(k), using
the same sequence of Gaussian random vectors P1, P2, . . . and the same starting point, except that it
performs a Metropolis “accept-reject” step that causes its stationary distribution to be proportional
to e−ξkF̂ . The fact that we know the stationary distribution of Y (k) is key to showing that Y (k) stays
in the subset U ′k with high probability (see Proposition 9). We then argue that Y (k) = X(k) with
high probability, implying that X(k) also stays inside U ′k with high probability (see Lemma 10).

Another coupled toy chain. So far we have shown that the Markov chain X(k) stays inside the
set U ′k with high probability. However, to use the stability property to bound the hitting time of the
Markov chain X(k) to the set Uk, we actually want X(k) to be restricted to the set U ′k where the
noise is not too large. In reality, however, the domain of X(k) is all of K, so we cannot directly
bound the hitting time of X(k) with the Cheeger constant of U ′k\Uk. Instead, we consider a Markov
chain X̂(k) that evolves according to the same rules as X(k), except that it rejects any proposal
outside of U ′k. Since X̂(k) has domain U ′k, we can use our bound on the Cheeger constant of U ′k\Uk
to obtain a bound on the hitting time of X̂(k). Then, we argue that since X(k) stays in U ′k with high
probability, and X̂(k) and X(k) evolve according to the same update rules as long as X(k) stays
inside U ′k, X̂(k) = X(k) with high probability as well, implying a hitting time bound for X(k).

Rounding the sub-level sets. We must also show a bound on the roundness of the sets U ′k, to
avoid the possibillty of the Markov chain getting stuck in “corners”. Zhang et al. (2017) take this as
an assumption about the constraint set. However, since we must consider the Cheeger constant on
sub-level sets U ′k rather than just on the entire constraint set, we must make sure that these sub-level
sets are “round enough”. Towards this end we consider “rounded” sub-level sets where we take the
Minkowski sum of U ′k with a ball of a small radius r′. We then apply the Hanson-Wright inequality
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to show that any Gaussian random variable with center inside this rounded sub-level set and small
enough covariance remains inside the rounded sub-level set with high probability (see Lemma 17).
Smoothing a non-differentiable noisy oracle. Finally, so far we have considered the special
case where F̂ is smooth. However, F̂ may not be smooth or may not even be differentiable, so we
may not have access to a well-behaved gradient which we need to compute the Langevin dynamics
Markov chain (Equation 3). To get around this problem, we follow the approach of Duchi et al.
(2015) and Zhang et al. (2017). We define a smoothed function

f̃σ(x) := EZ [F̂ (x+ Z)]

where Z ∼ N(0, σId) and σ > 0 is a parameter we must fix. The smoothness of f̃σ comes from
the fact that f̃σ is a convolution of F̂ with a Gaussian distribution.

When choosing σ, we want σ to be small enough so that we get a good bound on the noise
|f̃σ(x)− F (x)|. Specifically, we need

σ = Õ

(
min

(
r√
d
,
β + ε̂α+ ε̂/d

λ
√
d

))
,

where λ is a bound on ‖∇F‖. On the other hand, we also want σ not to be too small so that we get
a good bound on the smoothness of f̃σ.

Further, so far we have also assumed that we have access to the full gradient of F̂ , but in general
F̂ may not even have a gradient. Instead, we would like to use the gradient of f̃σ to compute the
proposal for the Langevin dynamics Markov chain (Equation (3)). However, computing the full
gradient of f̃σ can be expensive, since we do not even have direct oracle access to f̃σ. Instead, we
compute a projection g(x) of ∇f̃σ, where

g(x) =
Z

σ2
(F̂ (x+ Z)− F̂ (x))

Since g has the property that E[g(x)] = ∇f̃σ, g is called a “stochastic gradient” of f̃σ. We use this
stochastic gradient g in place of the full gradient of F̂ when computing the proposal for the Langevin
dynamics Markov chain (Equation 3). This gives rise to the following Markov chain proposal, also
known as stochastic gradient Langevin dynamics (SGLD):

X ′i+1 = X
(k)
i − ηkg(X

(k)
i ) +

√
2ηk
ξk
Pi.

To bound the running time of SGLD, we will need a bound on the magnitude of the gradient of f̃σ
(see Lemma 13), bounds on the Hessian and tails of f̃σ, which we obtain from Zhang et al. (2017)
(see Lemma 15), and bounds on the noise of the smoothed function, |f̃σ − F (x)| (see Lemma 16).

Although in this technical overview we largely showed running time and error bounds assuming
access to a full gradient, in reality we prove Theorem 2 for the more general stochastic gradient
Langevin dynamics algorithm, where we only assume access to a stochastic gradient of a smooth
function. Therefore, the bounds on the noise and smoothness of f̃σ allow us to extend the error and
polynomial running time bounds shown in this overview to the more general case where F̂ may not
be differentiable.
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Appendix A. Preliminaries

In this section we go over notation and assumptions that we use to state our algorithm and prove our
main result. We start by giving assumptions we make about the convex objective function F . We
then explain how to obtain an oracle for the gradient of the smoothed function f̃σ if we only have
access to the non-smooth oracle F̂ .

A.1. Notation

In this section we define the notation we use to prove our main result. For any set S ⊆ Rd and t ≥ 0
define St := S + B(0, t) where “+” denotes the Minkowski sum. We denote the `2-norm by ‖ · ‖,
and the d× d identity matrix by Id. We denote by ‖ · ‖op the operator norm of a matrix, that is, its
largest singular value. We define B(a, t) to be the closed Euclidean ball with center a and radius
t. Denote the multivariate normal distribution with mean m and covariance matrix Σ by N(m,Σ).
Let x? denote a minimizer of F on K.

A.2. Assumptions on the convex objective function and the constraint set

We make the following assumptions about the convex objective function F and K:

• K is contained in a ball, with K ⊆ B(c,R) for some c ∈ Rd.

• F (x?) = 0.3

• There exists an r′ > 0 and a convex body K′ such that K = K′ + B(0, r′) for some convex
body. (This assumption is necessary to ensure that our convex body does not have “pointy”
edges, so that the Markov chain does not get stuck for a long time in a corner.)

• F is convex over Kr for some r > 0.

• ‖∇F (x)‖ ≤ λ for all x ∈ Kr, where λ > 0.

A.3. A smoothed oracle from a non-smooth one

In this section we show how to obtain a smooth noisy oracle for F if one only has access to a non-
smooth and possibly non-continuous noisy oracle F̂ . Our goal is to find an approximate minimum
for F on the constraint set K. (We consider the thickened set Kr only to help us compute a smooth
oracle for F on K). We assume that we have access to a noisy function F̂ of the form

F̂ (x) = F (x)(1 + ψ(x)) + ϕ(x), (4)

where |ψ(x)| < α, and |ϕ(x)| < β for every x ∈ Kr, for some α, β ≥ 0. We extend F̂ to values
outside Kr by setting F̂ (x) = 0 for all x /∈ Kr. Since F̂ need not be smooth, as in Duchi et al.
(2015) and Zhang et al. (2017) we will instead optimize the following smoothed function

f̃σ(x) := EZ [F̂ (x+ Z)] (5)

3. If F (x?) is nonzero, we can define a new objective function F ′(x) = F (x) − F (x?) and a new noisy function
f̃ ′(x) = f̃(x) − F (x?). The noise N ′(x) = f̃ ′(x) − F ′(x) can then be modeled as having additive noise of level
β′ = β + αF (x?) and multiplicative noise of level α′ = α, if N(x) = f̃(x) − F (x) has additive noise of level β
and multiplicative noise of level α.
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where Z ∼ N (0, σId), for some σ > 0. The parameter σ determines the smoothness of f̃σ; a larger
value of σ will mean that f̃σ will be smoother. The gradient of f̃σ(x) can be computed using a
stochastic gradient g(x), where

g(x) ≡ gZ(x) :=
1

σ2
Z
(
F̂ (x+ Z)− F̂ (x)

)
, ∇f̃σ(x) = EZ [g(x)].

Appendix B. Our Contribution

B.1. Our Algorithm

In this section we state our simulated annealing algorithm (Algorithm 2) that we use to obtain a
solution to Problem 1. At each epoch, our algorithm uses the SGLD Markov chain as a subroutine,
which we describe first in Algorithm 1. The SGLD Markov chain we describe here is the same
algorithm used in Zhang et al. (2017), except that we allow the user to specify the initial point.

Algorithm 1 Stochastic gradient Langevin dynamics (SGLD)

input: Convex constraint set K̂ ⊆ Rd, inverse temperature ξ > 0, step size η > 0, parameters
imax ∈ N and D > 0, and a stochastic gradient oracle g for some f̃ : K → R.
input: Initial point X0 ∈ K̂.
for i = 0 to imax do

1. Sample Pi ∼ N(0, Id).

2. Set X ′i+1 = Xi − ηg(Xi) +
√

2η
ξ Pi.

3. Set Xi+1 = X ′i+1 if X ′i+1 ∈ K̂ ∩B(Xi, D). Otherwise, set Xi+1 = Xi.
end
output: Xi? , where i? := argmini{F̂ (Xi)}

Using Algorithm 1 as a subroutine, we define the following simulated annealing algorithm:

Algorithm 2 Simulated annealing SGLD

input: Convex constraint set K̂ ⊆ Rd, initial point x0 ∈ K̂, inverse temperatures ξ0, ξ1, . . . , ξkmax ,
step sizes η0, η1, . . . , ηkmax , parameters kmax, imax ∈ N, D > 0 and r > 0, and a stochastic
gradient oracle g for some f̃ : K̂ → R.
1. Sample y0 from the uniform distribution on B(x0, r) ∩ K̂.
for k = 0 to kmax do

2. Run Algorithm 1 on K̂, inverse temperature ξ = ξk, and step size ηk, imax, the oracle g, and
the initial point X0 = yk. Let xk+1 be the output of Algorithm 1.
3. Sample yk+1 from the uniform distribution on B(xk+1, r) ∩ K̂.

end
output: xkmax
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B.2. Statement of Our Main Theorem

We now formally state our main result, where we bound the error and running time when Algorithm
2 is used to solve Problem 1, assuming access to an oracle F̂ that may be non-smooth or even
non-continuous.

Theorem 3 (Main Theorem: Error bounds and running time for Algorithm 2) Let F : K → R
be a convex function, andK ⊆ Rd be a convex set that satisfy the assumptions stated in Section A.1.
Let F̂ be a noisy oracle for F with multiplicative noise of level α ≤ O(1) and additive noise of level
β, as in Equation (4). Let ε̂ ≥ 75β and δ′ > 0. Then there exist parameters imax, kmax, (ξk, ηk)

kmax
k=0 ,

and σ, such that if we run Algorithm 2 with a smoothed version f̃σ of the oracle F̂ (as defined in
Section A.3), with probability at least 1− δ′, the algorithm outputs a point x̂ such that

F (x̂)− F (x?) ≤ ε̂,

with running time that is polynomial in d, e(dα+dβ
ε̂ )c, R, λ, 1

r′ , β, 1
ε̂ , and log 1

δ′ , where c =
O(log(R+ λ)).

We give a proof of Theorem 3 in Section C.8.
The precise values of the parameters in this theorem are quite involved and appear in the proofs at
the following places: ξk appears in (39), ηk in (41), imax in (40), and the expression for kmax can be
found in (38). Below we present their approximate magnitudes. The inverse temperature parameter
ξk, the smoothing parameter σ, and the number of epochs kmax satisfy:

Ω̃

(
d

λR

)
≤ ξk ∼ Õ

(
d ·max

{
1

ε̂
, F̂ (X

(0)
0 ) · 10k

})
≤ Õ

(
d

ε̂

)
,

σ =
1

2
min

 β

λ(1 + α)
√
d
,

r√
log( 1

α) + d

 ,

kmax ∼ log
R

ε̂
.

To make the expressions for ηk and imax understandable, assume that λR > 1, β, that r > β
λ , d > ε̂,

and that R > λ. Then

ηk ∼
ε̂4

d9R5λ8β4
e−d(α+β

ε̂ )c′10−k

1 ≤ imax ≤
[
d6.5

ε̂3
R

11
2 λ6βed(α+β

ε̂ )c′
]1+c′′α

,

where c′ ∼ log R2

rdδmin{ε̂/λ,r′} and c′′ is a constant factor. In particular, the running time is given by
imax × kmax.
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Appendix C. Proofs

C.1. Assumptions about the smooth oracle

We first show how to optimize F if one has access to a smooth noisy objective function f̃ : K →
R (Sections C.2, C.3, C.5). Then, in Section C.6, we show how one can obtain a smooth noisy
objective function from a non-smooth and possibly non-continuos noisy objective function F̂ . We
will make the following assumptions (we prove in Section C.6 that these assumptions hold for a
smoothed version f̃σ of a non-smooth noisy objective function F̂ ). We assume the following noise
model for f̃ :

f̃(x) = F (x)(1 + ψ(x)) + ϕ(x),

for all x ∈ K where |ψ(x)| ≤ α and |ϕ(x)| ≤ β. Note that, with a slight abuse of notation, in
Section A.3 we also used the letters α and β to denote the noise levels of the non-smooth oracle F̂ ,
even though typically F̂ will have lower noise levels than f̃ . In this section, as well as in Sections
C.2-C.5 where we assume direct access to a stochastic gradient for the smooth oracle f̃ , we will
instead refer to the noise levels of F̂ by “α̂” and “β̂”. In Section B.2, on the other hand, “α” and
“β” will be used exclusively to denote the noise levels of F̂ . We also assume that

α ≥ α̂ and β ≥ β̂. (6)

We make the following assumptions about f̃ :

• ψ(x) > −α† for some 0 ≤ α† < 1. This assumption is needed because if not we might have
ψ(x) = −1 for all x ∈ K, in which case f̃(x) would give no information about F .

• ‖∇f̃(x)‖ ≤ λ̃ for all x ∈ K.

• We assume that we have access to a stochastic gradient g such that ∇f̃(x) = E[g(x)] for
every x ∈ K. However, we do not assume that we have oracle access to f̃ itself.

Assumption 1 (Based on assumption A in Zhang et al. (2017)) Let f̃ : K → Rd be differentiable,
and let g ≡ gw : K → Rd be such that∇f̃(x) = E[gW (x)] where W is a random variable. We will
assume that

1. There exists ζmax > 0 such that for every compact convex K̂ ⊆ Rd, every x ∈ K̂r′ , and every
0 ≤ ζ ≤ ζmax, the random variable Z ∼ N(x, 2ζId) satisfies P(Z ∈ K) ≥ 1

3 . We prove this
assumption in Lemma 17.

2. There exists L > 0 such that |f̃(y)− f̃(x)− 〈y − x,∇f̃(x)〉| ≤ L
2 ‖y − x‖

2 ∀x, y ∈ K.

3. There exists bmax > 0 and G > 0 such that for any u ∈ Rd with ‖u‖ ≤ bmax the stochastic
gradient g(x) satisfies E[e〈u,g(x)〉2 |x] ≤ eG2‖u‖2 .

C.2. Conductance and bounding the Cheeger constant

To help us bound the convergence rate, we define the Cheeger constant of a distribution, as well as
the conductance of a Markov chain. For any set K̂ and any function f : K̂ → R, define

µK̂f (x) :=
e−f(x)∫
K̂ e
−f(x)

∀x ∈ K̂.
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Definition 4 (Cheeger constant) For all V ⊆ K̂, define the Cheeger constant to be

CK̂f (V ) := lim inf
ε↓0

inf
A⊆V

µK̂f (Aε)− µK̂f (A)

εµK̂f (A)
.

recalling that Aε = A+B(0, ε).

For a Markov chain Z0, Z1, . . . on K̂ with stationary distribution µZ and transition kernel QZ , we
define the conductance on a subset V to be

Φ
K̂
Z(V ) := inf

A⊆V

∫
AQZ(x, K̂\A)µZ(x)dx

µZ(A)
∀V ⊆ K̂

and the hitting time

τZ(A) := inf{i : Zi ∈ A} ∀A ⊆ K̂.

Finally, we define the notion of two Markov chains being ε′-close:

Definition 5 If W0,W1, . . . and Z0, Z1, . . . are Markov chains on a set K̂ with transition kernels
QW and QZ , respectively, we say that W is ε′-close to Z with respect to a set U ⊆ K̂ if

QZ(x,A) ≤ QW (x,A) ≤ (1 + ε′)QZ(x,A)

for every x ∈ K̂\U and A ⊆ K̂\{x}.

We now give a generalization of Proposition 2 in Zhang et al. (2017):

Lemma 6 (Bounding the Cheeger constant) Assume that K̂ ⊆ K′ is convex, and that F is convex
and λ-Lipschitz on K̂r′ . Then for every ε > 0 and all ξ ≥ 4d log(R/min( ε

2λ
,r′))

ε we have

CK̂r′ξF (K̂r′\U ε) ≥
1

R
.

Proof Let x̂? be a minimizer of F on K̂r′ . Let r̂ = min( ε
2λ , r

′). Then since K̂r′ = K̂ + B(0, r′),
for some a ∈ K′ there is a closed ball B(a, r̂) ⊆ K̂r′ , with x? ∈ B(a, r̂). By the Lipschitz property,
we have

sup{F (x) : x ∈ B(a, r̂)} ≤ F (x?) + 2r̂λ ≤ F (x?) +
ε

2
.

Therefore,

inf

{
e−ξF (x)

e−ξF (y)
: x ∈ B(a, r̂), y ∈ K′\U ε)

}
≥ eξε/2. (7)

Then Equation (7) implies that

µ
K̂r′
ξF (K̂r′\Uε)

µ
K̂r′
ξF (Uε)

≤ e−ξε/2 Vol(B(c,R))

Vol(B(a, r̂))
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= e−ξε/2(
R

r̂
)d

= e−ξε/2+d log(R/r̂)

≤ 1

2
,

which implies that

µ
K̂r′
ξF (K̂r′\Uε) ≤

1

2
. (8)

Then by Theorem 2.6 of Lovász and Simonovits (1993) for all A ⊆ K̂r′\U ε for any 0 < δ < 2R
we have

µ
K̂r′
ξF (Aδ\A) ≥

2 δ
2R

1− δ
2R

min(µ
K̂r′
ξF (A), µ

K̂r′
ξF (K̂r′\Aδ))

=
2 δ

2R

1− δ
2R

min(µ
K̂r′
ξF (A), 1− µK̂r′ξF (Aδ))

=
2 δ

2R

1− δ
2R

min(µ
K̂r′
ξF (A), 1− µK̂r′ξF (Aδ\A)− µK̂r′ξF (A))

Eq. (8)
≥

2 δ
2R

1− 1
2R

min(µ
K̂r′
ξF (A), 1− µK̂r′ξF (Aδ\A)− 1

2
)

=
2 δ

2R

1− δ
2R

min(µ
K̂r′
ξF (A),

1

2
− µK̂r′ξF (Aδ\A))

=
2 δ

2R

1− δ
2R

µ
K̂r′
ξF (A),

provided that 0 < δ < ∆A for some small enough value ∆A > 0 that depends on A. Therefore for
every A ⊆ K̂r′\Uε there exists ∆A > 0 such that

µ
K̂r′
ξF (Aδ\A)

δµ
K̂r′
ξF (A)

≥
2 1

2R

1− δ
2R

∀0 < δ < ∆A.

Taking δ → 0, we get

CK̂r′ξF (K̂r′\U ε) ≥
1

R
.

C.3. Bounding the escape probability

We will use the Lemma proved in this section (Lemma 10) to show that the SGLD chain X defined
in Algorithm 1 does not drift too far from its initial objective function value with high probability.
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This will allow us to bound the noise, since the noise is proportional to the objective function F . The
organization of this section is as follows: we first define a “toy” algorithm and an associated Markov
chain Y that will allow us to prove Lemma 10 (and which we will later use to prove Theorem 2).
We then prove Propositions 8 and 9, and Lemma 10. Proposition 8 is used to prove Proposition 9,
which in turn is used to prove Lemma 10.

We begin by recalling the Metropolis-adjusted version of Algorithm 1 defined in Zhang et al.
(2017), which defines a Markov chain Y0, Y1, . . . with stationary distribution µK

ξf̃
. Note that this

is a“toy” algorithm which is not meant to be implemented; rather we state this algorithm only to
define the Markov chain Y0, Y1, . . ., which we will use as a tool to prove Lemma 10 and Theorem
2.

Algorithm 3 Lazy Metropolis-adjusted SGLD

input: Convex constraint set K̂ ⊆ Rd, inverse temperature ξ > 0, step size η > 0, parameters
imax ∈ N and D > 0, stochastic gradient oracle g for some f̃ : K → R,
input: Initial point Y0 ∈ Rd.
for i = 0 to imax do

1. Sample Pi ∼ N(0, Id).

2. Set Y ′i+1 = Yi − ηg(Yi) +
√

2η
ξ Pi.

3. Set Y ′′i+1 = Y ′i+1 if Y ′i+1 ∈ K̂ ∩B(Yi, D). Otherwise, set Y ′′i+1 = Yi.

4. Set Y ′′′i+1 = Y ′′i+1 with probability min

(
1, E[e

− 1
4η ‖Yi−Y

′′
i+1+ηg(Y

′′
i+1)‖]

E[e
− 1

4η ‖Y
′′
i+1
−Yi+ηg(Yi)‖]

ef̃(Yi)−f̃(Y ′′i+1)

)
.

Otherwise, set Y ′′′i+1 = Yi.
5. Set Vi = 1 with probability 1

2 and set Vi = 0 otherwise. Let Yi+1 = Y ′′′i+1 if Vi = 1;
otherwise, let Yi+1 = Yi.

end
output: xi? , where i? := argmini{f̃(xi)}.

We now define a coupling of three Markov chains. We will use this coupling to prove Lemma 10
and Theorem 2.

Definition 7 (Coupled Markov chains) Let X and X̂ be Markov chains generated by Algorithm 1
with constraint set K and K̂r′ , respectively, where K̂ ⊆ K and K̂r′ = K̂ + B(0, r′). Let Y be the
Markov chain generated by Algorithm 3. We define a coupling of the Markov chains X , X̂ and Y
in the following way: Define recursively, t(0) = 0,

t(i+ 1) = min{j ∈ N : j > i, Vj = 1}.

Let Q0, Q1, . . . ∼ N(0, Id) be i.i.d. Let X0 = Y0 = X̂0. Let Yi be the chain in Algorithm 3
generated by setting Pi = Qi for all i ≥ 0 with constraint set K. Let X be the chain in Algorithm 3
generated by setting Pi = Qt(i) for all i ≥ 0 with constraint set K. Let X̂ be the chain in Algorithm
3 generated by setting Pi = Qt(i) for all i ≥ 0 with constraint set K̂r′ .

We now bound the escape probability of the Markov chain Y from a sub-level set of a given height,
assuming that it is initialized from its stationary distribution conditioned on a small ball.
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Proposition 8 (Escape probability from stationary distribution on a small ball) Let r > 0 be
such that r′ ≥ r > 0 and let ξ > 0. Let Y0, Y1, . . . be the Markov chain defined in Algorithm 3
with stationary distribution π = µK

ξf̃
, and let Y0 be sampled from π0 := µ

B(y,r)∩K
ξf̃

, where π0 is the
distribution of π conditioned on B(y, r) ∩ K for some y ∈ K. Then for every i ≥ 0 we have

P(f̃(Yi) ≥ h) ≤ eξ[f̃(y)+λ̃r]−ξh+d log( 2R
r

) ∀h ≥ 0.

Proof Fix h ≥ 0. Define S1 := B(y, r) ∩ K and S2 := {x ∈ K : f̃(x) ≥ h}. Let cπ =∫
K e
−ξf̃(x)dx be the normalizing constant of π. Since π is the stationary distribution of Y ,

P(Yi ∈ S2) ≤ π(S2)

π(S1)
∀ i ∈ {0, . . . , imax} (9)

We can see why Inequality (9) is true by the following argument: Let Z be a copy of the Y chain
started at stationarity. Let E be the event that Z0 ∈ S1. Then Z0|E (Z0 conditioned on the event E)
has the same distribution as Y0 ∼ π0. Therefore, Zi|E has the same distribution as Yi (since the Z
and Y chains have the same transition kernel). Therefore, P(Zi ∈ S2|E) = P(Yi ∈ S2). Hence,

π(S2) = P(Zi ∈ S2) ≥ P({Zi ∈ S2} ∩ E) = P(Zi ∈ S2|E)P(E) = P(Yi ∈ S2)P(Z0 ∈ S1) = P(Yi ∈ S2)π(S1),

which implies Inequality (9).
But ‖∇ξf̃‖ = ‖ξ∇f̃‖ ≤ ξλ̃, implying that

π(S1) = π(B(y, r)) ≥ cπe
−[ξf̃(y)+ξλ̃r] ×Vol(B(y, r) ∩ K) (10)

≥ cπe−ξ[f̃(y)+λ̃r] ×Vol(B(0,
1

2
r)),

since B(y, r) ∩ K contains a ball of radius 1
2r because r ≤ r′. Also,

π(S2) = π({x : f̃(x) ≥ h}) ≤ cπe−ξhVol(K) ≤ cπe−ξhVol(B(0, R)). (11)

Therefore,

P(Yi ∈ S2)
Eq. (9)
≤ π(S2)

π(S1)

Eq. (10), (11)
≤ eξ[f̃(y)+λ̃r]−ξh ×

(
R
1
2r

)d
= eξ[f̃(y)+λ̃r]−ξh+d log( 2R

r
).

We now extend our bound for the escape probability of the Markov chain Y (Proposition 8) to the
case where Y is instead initialized from the uniform distribution on a small ball:

Proposition 9 (Escape probability from uniform distribution on a small ball) Let r > 0 be such
that r′ ≥ r > 0 and let ξ > 0. Let ν0 be the uniform distribution on B(y, r) ∩ K for some y ∈ K.
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Let Y0, Y1, . . . be the Markov chain defined in Algorithm 3 with stationary distribution π = µK
ξf̃

,
and let Y0 be sampled from ν0. Then for every i ≥ 0 we have

P(f̃(Yi) ≥ h) ≤ eξ[f̃(y)+λ̃r]−ξh+d log( 2R
r

) + 2rλ̃ξ ∀h ≥ 0. (12)

Moreover, for every A ⊆ K, we have

ν0(A) ≤ e2Rλ̃ξ+d log( 2R
r

)π(A). (13)

Proof Since ‖∇ξf̃(x)‖ ≤ ξλ̃,

sup
x∈B(y,r)∩K

ξf̃(x)− inf
x∈B(y,r)∩K

ξf̃(x) ≤ 2rλ̃ξ,

and hence

infx∈B(y,r)∩K π(x)

supx∈B(y,r)∩K π(x)
≥ e−2rλ̃ξ. (14)

Define π0 := µ
B(y,r)∩K
ξf̃

to be the distribution of π conditioned on B(y, r) ∩ K̂′. Let Z be sampled

from the distribution π0. Let Z ′ = Y0 with probability min(π0(Y0)
ν0(Y0) , 1); otherwise let Z ′ = Z.

Then Z ′ has distribution π0. Moreover, by Equation (14), Z ′ = Y0 with probability at least e−2rλ̃ξ.
Therefore, by Proposition 8

P(f̃(Yi) ≥ h) ≤ eξ[f̃(y)+λ̃r]−ξh+d log( 2R
r

) + 1− e−2rλ̃ξ

≤ eξ[f̃(y)+λ̃r]−ξh+d log( 2R
r

) + 2rλ̃ξ ∀h ≥ 0.

This proves Equation (12). Now, since ‖ξ∇f̃(x)‖ ≤ ξλ̃ and K ⊆ B(c,R),

sup
x∈K

ξf̃(x)− inf
x∈K

ξf̃(x) ≤ 2Rλ̃ξ,

implying that

infx∈K π(x)

supx∈K π(x)
≥ e−2Rλ̃ξ. (15)

Therefore, for every z ∈ K we have

π(z)

ν0(z)
= Vol(B(y, r) ∩ K)× π(z) (16)

≥ Vol(B(0,
1

2
r))× π(z)

≥ Vol(B(0,
1

2
r))× 1

Vol(B(0, 2R))

infx∈K π(x)

supx∈K π(x)

Eq. (15)
≥

(
2R

r

)−d
e−2Rλ̃ξ
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= e−2Rλ̃ξ−dlog( 2R
r

).

Where the second inequality holds since r ≤ r′. This proves Equation (13).

We are now ready to bound the escape probability of the SGLD Markov chain X defined in Algo-
rithm 1 when it is initialized from the uniform distribution on a small ball:

Lemma 10 (Escape probability for unadjusted SGLD chain) Let r > 0 be such that r′ ≥ r > 0
and let ξ > 0. Let ν0 be the uniform distribution on B(y, r) ∩ K for some y ∈ K, and let X0 be
sampled from ν0. Let X0, X1, . . . be the Markov chain generated by Algorithm 1 with constraint set
K. Let δ ≤ 1

4 and let 0 < η ≤ δ
imax×16d(G2+L)

then

P(f̃(Xi) ≥ h) ≤ eξ[f̃(y)+λ̃r]−ξh+d log( 2R
r

) + 2rλ̃ξ + δ ∀h ≥ 0.

Proof
Let Y0, Y1, . . . be the Markov chain generated by Algorithm 3, and letX0, X1, . . . be the Markov

chain defined in Algorithm 1, where both chains have constraint setK. Couple the Markov chainsX
and Y as in Definition 7. By Claim 2 in the proof of Lemma 13 of Zhang et al. (2017), for each i ≥ 0

the rejection probability P(Yi+1 = Yi) is bounded above by 1−e−16ηd(G2+L) ≤ 1−e−
δ

imax ≤ δ
imax

.
Hence, for all 0 ≤ i ≤ imax we have

P(Xj = Yj ∀0 ≤ j ≤ i) ≥ (1− δ

imax
)i ≥ 1− δ. (17)

Thus,

P(f̃(Xi) ≥ h) ≤ P(f̃(Yi) ≥ h) + P(Xj 6= Yj for some 0 ≤ j ≤ i)
Eq. (17)
≤ P(f̃(Yi) ≥ h) + δ ∀h ≥ 0

Proposition 9
≤ eξ[f̃(y)+λ̃r]−ξh+d log( 2R

r
) + 2rλ̃ξ + δ ∀h ≥ 0.

C.4. Comparing noisy functions

In this section we bound the ratio of F̂ to f̃ . We use this bound to prove Theorem 2 in Section C.5.

Lemma 11 (Bounding the ratio of two noisy objective functions) Fix x ∈ K and let t ≥ 5β.
Define Ĥ = max{f̃(x), t} and let Ĵ = max{F̂ (x), t}. Then,

1

5
Ĥ ≤ Ĵ ≤ 5Ĥ.

Proof By our assumption in Equation (6), we have that

|F (x)− F̂ (x)| ≤ α̂F (x) + β̂ ≤ αF (x) + β.
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Since α < 1
2 , we have,

F (x) ≤ 2F̂ (x) + 2β. (18)

We also have that,

|f̃(x)− F (x)| ≤ αF (x) + β

implying that

f̃(x) ≤ 4F (x) + β. (19)

Therefore, combining Equations (18) and (19), we have

f̃(x) ≤ 4F̂ (x) + 5β, (20)

implying that

max(f̃(x), 5β) ≤ max(4F̂ (x) + 5β, 20β).

Thus,

max(f̃(x), 5β) ≤ 5 max(F̂ (x), 5β).

Thus, we have Ĥ ≤ 5Ĵ . By a similar argument as above, we can also show that Ĵ ≤ 5Ĥ .

C.5. Bounding the error and running time: The smooth case

In this section we will show how to bound the error and running time of Algorithm 1, if we assume
that we have access to a stochastic gradient oracle g for a smooth noisy function f̃ , which approx-
imates the convex function F . In particular, we do not assume access to the smooth function f̃
itself, only to g. We also assume access to a non-smooth oracle F̂ , which we use to determine the
temperature parameter for our Markov chain based on the value of F̂ (X0

k) at the beginning of each
epoch. To prove the running time and error bounds, we will use the results of Sections C.2 and C.3.

Recall that in this section α and β refer exclusively to the multiplicative and additive noise levels
of f̃ . We must first define parameters that will be needed to formally state and prove our error and
running time bounds:

• Fix 0 ≤ ε < 1
25 and δ > 0.

• Set parameters of Algorithms 1 and 2 as follows:

– Let y0 ∈ K and let H0 := f̃(y0).

– Fix D ≥ 1
εβ. For every 0 ≤ k ≤ kmax, let Hk := f̃(xk) and define Ĥk :=

max(Hk,D).
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– Assume, without loss of generality, that r′ ≤ D
λ . 4

– For every 0 ≤ k ≤ kmax, let Jk := F̂ (xk). Define Ĵk := max(Jk,D).

– Set the number of epochs to be kmax = d log(5J0/D)

log( 1
25ε

)
e+ 1.

– At every k ≥ 0, set the temperature to be ξk =
4d log(R/min( ε

2λ
D,r′))

1
5
εĴk

. Define ξ̄ :=

4d log(R/min( ε
2λ

D,r′))
1
25
εD

.

– Set r = δ
ξ̄λ̃

.

– Define

η̄† := cmin

{
ζmax, d

ω2

λ2
,
b2max

d
,

1

Rd3((ξ̄G)2 + ξ̄L)2

}
and

B′ :=

(
d log(2Rr ) + δ + 1 + log(1

δ )
)
)

2d log(R/min( ε
2λD, r

′))
.

– Set the number of steps imax for which we run the the Markov chain X in each epoch
to be

imax =



 8Rλ̃ξk + 4d(1 + log(1 + ξ̄) + log(2Rλ̃
δ )) + 4 log(1

δ )(
1

1536R

√
η̄†/de

− 150d
ε

[
α

1−α† (3+εB′+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2


1

1− 150
ε α


+ 1.

– Define B :=
(d log(2R

r
)+δ+log(imax+1)+log( 1

δ
)))

2d log(R/min( ε
2λ

D,r′)) .

– For every ξ > 0 define

η(ξ) := cmin

ζmax, d
ω2

λ2
,
b2max

d
,
(e
− 100d

ε

[
α

1−α† (3+εB+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2

Rd3((ξG)2 + ξL)2

 ,

where ω = εD, and c is the universal constant in Lemma 15 of Zhang et al. (2017).
Set the step size at each epoch to be ηk = η(ξk). Also define η̄ = η(ξ̄).

– Set D =
√

2η̄d.

We now state the error and running time bounds:

Theorem 12 (Error and running time bounds when using a smooth noisy objective function)
Assume that α ≤ ε

32 . Then with probability at least 1 − 6δ(kmax + 1) Algorithm 2 returns a point
x̂ = xkmax such that

F (x̂)− F (x?) ≤ 1

1− α
(D + β),

4. This is without loss of generality since if there exists a convex body K′ such that K′ +B(0, r′) = K, then for every
0 < ρ ≤ r′ there must also exist a convex body K′′ such that K′′ +B(0, ρ) = K, namely K′′ = K′ +B(0, r′ − ρ).
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with running time that is polynomial in d, e
d

ε/150

[
α

1−α† (3+εB′+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′)), R, λ, λ̃, L,

G, ζmax, bmax, and log(1
δ ).

Proof Set notation as in Algorithms 1 and 2. Denote by X(k) the Markov chain generated by
Algorithm 1 as a subroutine in the k’th epoch of Algorithm 2 with constraint set K.

Set hk = Ĥk + ξ−1
k

(
d log(2R

r ) + δ + log(imax + 1) + log(1
δ )
)
. Then by Lemma 10

P( sup
0≤i≤imax

f̃(X
(k)
i ) ≥ hk) ≤ (imax + 1)× [eξk[Ĥk+λ̃r]−ξkhk+d log( 2R

r
) + 2rλ̃ξk + δ] (21)

≤ eξkĤk+δ−ξkhk+d log( 2R
r

)+log(imax+1) + 4δ]

= 5δ,

where the second inequality holds since r = δ
ξ̄λ̃

and ξk ≤ ξ̄ for all k.

But f̃(X
(k)
i ) ≥ hk if and only if

F (X
(k)
i )(1 + ψ(X

(k)
i )) + ϕ(X

(k)
i ) ≥ hk

if and only if

F (X
(k)
i ) ≥ 1

1 + ψ(X
(k)
i )

(hk − ϕ(X
(k)
i )),

since 1 + ψ(X
(k)
i ) ≥ 0. Also,

1

1 + ψ(X
(k)
i )

(hk − ϕ(X
(k)
i )) ≤ 1

1− α†
(hk + β),

since ψ(X
(k)
i ) ≥ −α† > −1 and |ϕ(X

(k)
i )| < β.

Hence,

5δ
Eq. (21)
≥ P

(
sup

0≤i≤imax

f̃(X
(k)
i ) ≥ hk

)
(22)

≥ P
(

sup
0≤i≤imax

F (X
(k)
i ) ≥ 1

1− α†
(hk + β)

)
.

Define K̂(k) := (K′ ∩ {x ∈ Rd : F (x) ≤ 1
1−α† (hk + β) + λr′}) +B(0, r′). Then{

x ∈ K : F (x) ≤ 1

1− α†
(hk + β)

}
⊆ K̂(k), (23)

since ‖∇F‖ ≤ λ. Thus, by Equations (22) and (23),

P
(
X

(k)
i ∈ K̂(k) ∀0 ≤ i ≤ imax

)
≥ 1− 5δ. (24)
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Also, for every x ∈ K̂(k), since r′ ≤ D
λ , we have

F (x) ≤ 1

1− α†
(hk + β) + 2λr′ (25)

≤ 1

1− α†
(hk + β) + 2D

=
1

1− α†

(
Ĥk + ξ−1

k

(
d log(4

R

r
) + δ + log(imax + 1) + log(

1

δ
)

)
+ β

)
+ 2D

=
1

1− α†

(
Ĥk +

1

5
εĴk

(
d log(4Rr ) + δ + log(imax + 1) + log(1

δ )
)
)

2d log(R/min( ε
2λD, r

′))
+ β

)
+ 2D

Lemma 11
≤ 1

1− α†
(
Ĥk + εĤkB + β

)
+ 2D.

Thus, for every x ∈ K̂(k),

|N(x)| ≤ αF (x) + β (26)
Eq. (25)
≤ α

1− α†
(
Ĥk(1 + εB) + β + 2D

)
+ β := Nk.

Define U ε
′′
k := {x ∈ K̂(k) : F (x) ≤ ε′′} for every ε′′ > 0. Then by Lemma 6, CK̂(k)

(ξF )(K̂
(k)\U εĤkk ) ≥

1
R for any ξ ≥ 4d log(R/min( ε

2λ
Ĥk,r

′)

εĤk
.

But by Lemma 11, ξk =
4d log(R/min( ε

2λ
D,r′))

1
5
εĴk

≥ 4d log(R/min( ε
2λ
Ĥk,r

′)

εĤk
, implying that

CK̂(k)

(ξk f̃)
(K̂(k)\U εĤkk )

Eq. (26)
≥ e−2ξkNkCK̂(k)

(ξkF )(K̂
(k)\U εĤkk ) (27)

Lemma 6
≥ 1

R
e−2ξkNk

=
1

R
e
− 4d
ε

Nk
1
5 Ĵk

log(R/min( ε
2λ

1
5
D,r′))

Lemma 11
≥ 1

R
e
− 4d
ε

Nk
1
25 Ĥk

log(R/min( ε
2λ

D,r′))

=
1

R
e
− 4d
ε

α
1−α†

(Ĥk(1+εB)+2D+β)+β

1
25 Ĥk

log(R/min( ε
2λ

D,r′))

≥ 1

R
e
− 100d

ε

[
α

1−α† (3+εB+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

,

where the first inequality holds by the stability property of the Cheeger constant, and the last in-
equality is true since Ĥk ≥ D by definition.
Recall that

ηk = cmin

ζmax, d
ω2

λ2
,
b2max

d
,
(e
− 100d

ε

[
α

1−α† (3+εB+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2

Rd3((ξkG)2 + ξkL)2

 (28)
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Eq. (27)
≤ cmin

ζmax, d
ω2

λ2
,
b2max

d
,
(CK̂(k)

(ξk f̃)
(K̂(k)\U εĤkk ))2

d3((ξkG)2 + ξkL)2

 ,

where ω = εD.
Recall that X(k) is the subroutine Markov chain described in Algorithm 1 with inputs specified

by Algorithm 2 and constraint set K. Let X̂(k) be the Markov chain generated by Algorithm 1
with constraint set K̂(k)

r′ and initial point X(k)
0 = X̂

(k)
0 . Let Y (k) be the Markov chain generated by

Algorithm 3 with constraint set K̂(k)
r′ . Couple the Markov chains as in definition 7.

Write

(U εĤkk )ω/λ := (U εĤkk +B(0, ω/λ)) ∩ K̂(k)

as shorthand. Then by Lemma 15 of Zhang et al. (2017) and by Equation (28), the Markov chain
X̂(k) is ε′-close to Y (k) with ε′ ≤ 1

4ΦY (K̂(k)\(U εĤkk )ω/λ) and

ΦY (K̂(k)\(U εĤkk )ω/λ)) ≥ 1

1536

√
ηk/dCK̂

(k)

(ξk f̃)
(K̂(k)\(U εĤkk )ω/λ) (29)

Eq. (27)
≥ 1

1536R

√
ηk/de

− 100d
ε

[
α

1−α† (3+εB+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

.

Recall that by Equation (13) of Proposition 9, for every A ⊆ K′, we have

ν0(A) ≤ e4Rλ̃ξk+dlog( 2R
r

)µK̂
(k)

ξk f̃
(A).

Therefore, since X̂(k) is ε′-close to Y (k), by Lemma 11 of Zhang et al. (2017), with probability at
least 1− δ we have

τX̂(k)((U
εĤk
k )ω/λ) ≤ 4 log(e2Rλ̃ξk+dlog( 2R

r
)/δ)

Φ2
Y (K̂(k)\(U εĤkk )ω/λ)

(30)

Eq. (29)
≤

8Rλ̃ξk + 4dlog(2R
r ) + 4 log(1

δ )(
1

1536R

√
ηk/de

− 100d
ε

[
α

1−α† (3+εB+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2

=
8Rλ̃ξk + 4d(log(ξ̄) + log(2Rλ̃

δ )) + 4 log(1
δ )(

1
1536R

√
ηk/de

− 100d
ε

[
α

1−α† (3+εB+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2

≤
8Rλ̃ξk + 4d(log(1 + ξ̄) + log(2Rλ̃

δ )) + 4 log(1
δ )(

1
1536R

√
ηk/de

− 100d
ε

[
α

1−α† (3+εB+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2

≤
8Rλ̃ξk + 4d(1 + log(1 + ξ̄) + log(2Rλ̃

δ )) + 4 log(1
δ )(

1
1536R

√
η̄/de

− 100d
ε

[
α

1−α† (3+εB+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2
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≤
8Rλ̃ξk + 4d(1 + log(1 + ξ̄) + log(2Rλ̃

δ )) + 4 log(1
δ )(

1
1536R

√
η̄†/de

− 150d
ε

[
α

1−α† (3+εB′+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))− 75

ε
α log(imax+1)

)2

≤
8Rλ̃ξk + 4d(1 + log(1 + ξ̄) + log(2Rλ̃

δ )) + 4 log(1
δ )(

1
1536R

√
η̄†/de

− 150d
ε

[
α

1−α† (3+εB′+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2 × (imax + 1)
150
ε
α

≤ imax,

where the first equality is true since r = δ
ξ̄λ̃

, the fourth inequality is true by the definition of η̄, the

fifth inequality is true by the definition of η̄†, and the last inequality is true by our choice of imax.
But by Equation (24), X(k)

i = X̂
(k)
i with probability at least 1− 5δ. Therefore, since Equation

(30) holds with probability at least 1− δ, we have that

τX(k)((U
εĤk
k )ω/λ) ≤ imax. (31)

with probability at least 1− 6δ.
Therefore, by Equation (31), with probability at least 1 − 6δ for some 0 ≤ i◦k ≤ imax we have

X
(k)
i◦k
∈ (U εĤkk )ω/λ̃ and hence that

F (X
(k)
i◦k

) ≤ εĤk + λ̃× ω

λ̃
= εĤk + εD ≤ 2εĤk

and therefore, since 0 ≤ α < 1,

1

5
f̃(xk+1)

Lemma 11
≤ F̂ (xk+1) = min

0≤i≤imax

F̂ (X
(k)
i ) ≤ F̂ (X

(k)
i◦k

) ≤ 2F (X
(k)
i◦k

) + β ≤ 4εĤk + β ≤ 5εĤk.

Hence, for every 0 ≤ k ≤ kmax we have

f̃(xk+1) = Hk+1 ≤ 25εĤk = 25εmax(Hk,D) (32)

with probability at least 1− 6δ.
Therefore, by induction on Equation (32), for every 0 ≤ k ≤ kmax, we have

Hk+1 ≤ 25ε×max
(

(25ε)kH0,D
)

(33)

with probability at least 1− 6δ(k + 1).
By Lemma 11, we have kmax = d log(5J0/D)

log( 1
25ε

)
e+ 1 ≥ d log(H0/D)

log( 1
25ε

)
e+ 1. Then, with probability at least

1− 6δ(kmax + 1),

f̃(xkmax)− F (x?) = f̃(xkmax) (34)

= Hkmax

Eq. (33)
≤ 25ε×max

(
(25ε)kmax−1H0,D

)
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≤ 25ε×D

≤ D,

since 0 ≤ ε < 1
25 implies that 0 ≤ 25ε < 1.

Hence,

F (xkmax)− F (x?) = F (xkmax)

≤ 1

1− α
(f̃(xkmax) + β)

≤ 1

1− α
(D + β),

where the first equality holds since F (x?) = 0.

C.6. The non-smooth case

In this section we bound the gradient, supremum, and smoothness of the smoothed function fσ
obtained from F (Propositions 13 and 14 and Lemma 15), where fσ is defined in Equation (5). We
also bound the noise |F (x) − fσ(x)| of fσ (Lemma 16). We use these bounds in Section C.8 to
Prove our main result (Theorem 3).

Proposition 13 (Gradient bound for smoothed oracle)
For every x ∈ K we have

‖∇f̃σ(x)‖ ≤
√

2d

σ
(2λR(1 + 2α) + 2β).

Proof

‖∇f̃σ(x)‖ ≤ EZ
[

1

σ2
‖Z‖

∣∣∣F̂ (x+ Z)− F̂ (x)
∣∣∣]

≤ EZ
[

1

σ2
‖Z‖ max

y1,y2∈K
|F̂ (y2)− F̂ (y1)|

]
≤ 1

σ
max
y1,y2∈K

|F̂ (y2)− F̂ (y1)|EZ
[

1

σ
‖Z‖

]
≤ 1

σ
max
y1,y2∈K

|F̂ (y2)− F̂ (y1)|EZ
[

1

σ
‖Z‖

]
=

1

σ
max
y1,y2∈K

|F̂ (y2)− F̂ (y1)|
√

2
Γ(d+1

2 )

Γ(d2)

≤
√

2d

σ
max
y1,y2∈K

|F̂ (y2)− F̂ (y1)|

≤
√

2d

σ
(2λR(1 + 2α) + 2β),

where the equality is true since 1
σ‖Z‖ has χ distribution with d degrees of freedom, and the second-

to-last inequality is true since Γ( d+1
2

)

Γ( d
2

)
≤
√
d. The last ineqaulty is true because F is λ-Lipschitz,

and because of our assumption on the noise (Equation (4)).
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Proposition 14 (maximum value of non-smooth noisy oracle) For every x ∈ Kr, we have

F̂ (x) ≤ (1 + α)2λ(R+ r) + β.

Proof Since F is λ-Lipschitz,

F (x) ≤ 2λ(R+ r) ∀x ∈ Kr. (35)

Thus,

F̂ (x) ≤ (1 + α)|F (x)|+ β ≤ (1 + α)2λ(R+ r) + β.

We recall the following Lemma from Zhang et al. (2017):

Lemma 15 (Lemma 17 in Zhang et al. (2017)) Suppose that M̂ > 0 is a number such that
0 ≤ F̂ (x) ≤ M̂ for all x ∈ Kr then

1.

EZ [gZ(x)] = ∇f̃σ(x) ∀x ∈ K.

2. For every u ∈ Rd,

EZ [e〈u,gZ(x)〉(2M̂/σ)2 ] ≤ e
4M̂2

σ2
‖u‖2 .

3.

‖∇2f̃σ(x)‖op ≤
2M̂

σ2
.

We show that the smoothed gradient is a good approximation of F for sufficiently small σ:

Lemma 16 (Noise of smoothed oracle) Let A ⊆ At ⊆ Kr for some A ⊆ Kr and some t > 0. Let
H ′ = supy∈A F (y). Then

|f̃σ(x)− F (x)| ≤ λσ(1 + α)
√
d+H ′ × e−

t2/σ2−d
8 + αH ′ + β

for every x ∈ A.

Proof Define N(x) := F̂ (x)− F (x). For any function h : Rd → R, define

h̃σ(x) := EZ [h(x+ Z)],

where Z ∼ N (0, σ2Id). Then for every x ∈ A we have,

|f̃σ(x)− F (x)| = |F̃σ(x) + Ñσ(x)− F (x)|
≤ |F̃σ(x)− F (x)|+ |Ñσ(x)|
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= EZ [|F (x+ Z)− F (x)|] + |EZ [N(x+ Z)]|
≤ EZ [|F (x+ Z)− F (x)|] + EZ [α(H ′ + λ‖Z‖) + β]

≤ EZ [λ‖Z‖] +H ′ × P(‖Z‖ ≥ t) + EZ [α(H ′ + λ‖Z‖) + β]

= λ(1 + α)EZ [‖Z‖] +H ′ × P(‖Z‖ ≥ t) + αH ′ + β

= λσ(1 + α)EZ [
1

σ
‖Z‖] +H ′ × P(

1

σ
‖Z‖ ≥ t

σ
) + αH ′ + β

≤ λσ(1 + α)
√
d+H ′ × P(

1

σ
‖Z‖ ≥ t

σ
) + αH ′ + β

≤ λσ(1 + α)
√
d+H ′ × e−

t2/σ2−d
8 + αH ′ + β,

where the second inequality holds because F is λ-Lipschitz on Kr and also since F is defined to
be zero outside Kr with x ∈ K ⊆ Kr. The third inequality holds by our assumption on the noise
(Equation (4)), and since F is defined to be zero outside Kr . The fourth inequality holds because
1
σ‖z‖ is χ-distributed with d degrees of freedom. The last inequality holds by the Hanson-Wright
inequality (see for instance Hanson and Wright (1971), Rudelson and Vershynin (2013)).

C.7. Rounding the domain of the Markov Chain

We now show that our constraint set K̂ is sufficiently “rounded”. This roundness property is used to
show that the Markov chain does not get stuck for a long time in corners of the constraint set.

Lemma 17 (Roundness of constraint set) Let ζmax = ( r′

10
√

2(d+20)
)2. Let K̂ ⊆ K′ be a convex set.

Then for any ζ ≤ ζmax and any x ∈ K̂r′ the random variable W ∼ N (0, Id) satisfies

P(
√

2ζW + x ∈ K̂r′) ≥
1

3
.

Proof Without loss of generality, we may assume that x is the origin and that K̂r′ contains the ball
B(a, r′) where a = (r′, 0, . . . , 0)> (since K̂r′ = K̂ +B(0, r′) implies that there is a ball contained
in K̂r′ that also contains x on its boundary. We can then translate and rotate K̂r′ to put x and a in
the desired position).

Since P( 1
10 ≤W1 ≤ 100) ≥ 0.45, with probability at least 0.45 we have that

1

10
≤W1 ≤ 100

but ζmax = ( r′

10
√

2(d+20)
)2, and hence, with probability at least 0.45,

√
2ζ

r′
(d+ 20) ≤W1 ≤

r′√
2ζ
.

But our choice of ζmax implies that
√

(r′)2

2ζ −
1√
(r′)2
2ζ

(d+ 20) > 0, implying that

r′√
2ζ
−

√(r′)2

2ζ
− 1√

(r′)2

2ζ

(d+ 20)

 ≤W1 ≤
r′√
2ζ

+

√(r′)2

2ζ
− 1√

(r′)2

2ζ

(d+ 20)

 .
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But for any a > 0, we have
√
a− t√

a
≤
√
a− t for every t ∈ [0, a), which implies

r′√
2ζ
−

√
(r′)2

2ζ
− (d+ 20) ≤W1 ≤

r′√
2ζ

+

√
(r′)2

2ζ
− (d+ 20).

Therefore

r′ −
√

(r′)2 − 2ζ(d+ 20) ≤
√

2ζW1 ≤ r′ +
√

(r′)2 − 2ζ(d+ 20).

Hence,

(
√

2ζW1 − r′)2 ≤ (r′)2 − 2ζ(d+ 20),

which implies that

(
√

2ζW1 − r′)2 + 2ζ(d+ 20) ≤ (r′)2. (36)

But by the Hanson-Wright inequality

P(
d∑
j=2

W 2
j ≥ d+ 20) ≤ e−

21
8 <

1

10
. (37)

Thus, Equations (37) and (36) imply that with probability at least 0.45− 1
10 ≥

1
3 we have

‖
√

2ζW − a‖ = ‖
√

2ζW − (r′, 0, . . . , 0)>‖2

= (
√

2ζW1 − r′)2 + 2ζ

d∑
j=2

W 2
j

≤ (
√

2ζW1 − r′)2 + 2ζ(d+ 20)
Eq. (36)
≤ (r′)2,

implying that W ∈ B(a, r′) ⊆ K̂r′ with probability at least 1
3 .

C.8. Proof of Main Result (Theorem 3)

In this section, we prove Theorem 3. We do so by applying the bounds on the smoothness of fσ of
Section C.6 to Theorem 12.

We note that in this section we will use “α” and “β” exclusively to denote the multiplicative
and additive noise levels of F . We will then set the smooth oracle f̃ to be f̃ = f̃σ, where f̃σ is the
smooth function obtained from F , defined in Equation (5). As an intermediate step in proving the
main result, we show that f̃σ has multiplicative noise level 2α and additive noise level 2β.
Proof We will assume that α < 1

800 . This assumption is consistent with the statment of Theorem
3, which assumes that α = O(1).

Define the following constants: M = 2λR+ 2β, M̂ = 6λR+ β, L = 4M̂
σ2 , G = 2M̂

σ , bmax = 1,

ζmax =
(

r′

10
√

2(d+20)

)2
, and λ̃ =

√
2d
σ (2λR(1 + 2α) + 2β).
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We set σ = 1
2 min

(
β

λ(1+α)
√
d
, r√

log( 1
α

)+d

)
. Recall from Section A.3 that σ determines the

amount of smoothness in f̃σ. A larger value of σ means that f̃σ will be smoother, decreasing the
running time of the algorithm. On the other hand, a smaller value of σ means that f̃σ will be a closer
approximation to F , and consequently lead to a lower error. We choose σ in such a way so that the
error ε̂ will be bounded by the desired value ε̂.

Set parameters of Algorithms 1 and 2 as follows:

• Fix ε = 1
50 .

• Let D = 2
3 ε̂.

• Define J0 := F̂ (x0) and set the number of epochs to be

kmax =

⌈
log(5J0/D)

log(2)

⌉
+ 1. (38)

• For every 0 ≤ k ≤ kmax, let Jk := F̂ (xk), and define Ĵk := max(Jk,D).

• Fix δ = δ′

6(kmax+1) .

• At every k ≥ 0, set the temperature to be

ξk =
4d log(R/min( ε

2λD, r
′))

1
5εĴk

. (39)

Define ξ̄ :=
4d log(R/min( ε

2λ
D,r′))

1
25
εD

.

• Set r = δ
ξ̄λ̃

.

• Define

η̄† := cmin

{
ζmax, d

ω2

λ2
,
b2max

d
,

1

Rd3((ξ̄G)2 + ξ̄L)2

}
and

B′ :=

(
d log(2Rr ) + δ + 1 + log(1

δ )
)
)

2d log(R/min( ε
2λD, r

′))
.

• Set the number of steps imax for which we run the the Markov chain X in each epoch to be

imax =



 8Rλ̃ξk + 4d(1 + log(1 + ξ̄) + log(2Rλ̃
δ )) + 4 log(1

δ )(
1

1536R

√
η̄†/de

− 150d
ε

[
α

1−α† (3+εB′+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2


1

1− 150
ε α


+ 1. (40)
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• Define B :=
(d log(2R

r
)+δ+log(imax+1)+log( 1

δ
)))

2d log(R/min( ε
2λ

D,r′)) .

• For every ξ > 0 define

η(ξ) := cmin

ζmax, d
ω2

λ2
,
b2max

d
,
(e
− 100d

ε

[
α

1−α† (3+εB+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′))

)2

Rd3((ξG)2 + ξL)2

 ,(41)

where ω = εD, and c is the universal constant in Lemma 15 of Zhang et al. (2017). We set
the step size at each epoch k to be ηk = η(ξk). We also define η̄ := η(ξ̄).

• Set D =
√

2η̄d.

We determine the constants for which f̃ = f̃σ satisfies the various assumptions of Theorem 12.

Since σ = 1
2 min

(
β

λ(1+α)
√
d
, r

8
√

log( 1
α

)+d

)
, by Lemma 16, we have that

|f̃σ(x)− F (x)| ≤ 2αF (x) + 2β ∀x ∈ K.

So, with a slight abuse of notation, we may state that f̃ = f̃σ has multiplicative noise of level 2α
and additive noise of level 2β, if we use “α” and “β” to denote the noise levels of F̂ .

Hence, M = 2λR + 2β ≥ supx∈K f̃σ(x). By Lemma 17, part 1 of Assumption 1 is satisfied
with constant ζmax. By Lemma 15 and Proposition 14, f̃σ satisfies parts 2 and 3 of Assumption 1
with constants L, G and bmax, (recall that we defined these constants at the beginning of this proof).
By Proposition 13, ‖∇f̃σ(x)‖ ≤ λ̃ for all x ∈ K. Therefore, applying Theorem 2 with the above
constants and the smoothed function fσ, we have,

F (x̂)− F (x?) ≤ 1

1− 2α
(D + 2β) ≤ ε̂,

with running time that is polynomial in d, e
8d
ε

[
α

1−α† (3+εB′+ β
D)+ β

D

]
log(R/min( ε

2λ
D,r′)), R, λ, λ̃, L, G,

ζmax, bmax, and log(1
δ ). This completes the proof of the Theorem.

36



CONVEX OPTIMIZATION WITH UNBOUNDED NONCONVEX ORACLES

Appendix D. Figures

x⇤
x�

U F̂ (x�)+d�

U F̂ (x�)+�

Figure 1: To quickly escape a local minimizer x◦ of “depth” β, a Markov chain must run at a
temperature β. At this temperature, the Markov chain will concentrate in a sub-level set of height
dβ. This sub-level set does not have a narrow bottleneck, so a Markov chain running at temperature
β will quickly escape the local minimum at x◦.
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Figure 2: (a) Optimization of a convex function F (green) with noisy oracle F̂ (black) under
bounded additive noise. Since the gap between the noise bounds (dashed lines) is constant, the
Markov chain (red) can be run at a single temperature that is both hot enough to quickly escape
any local minimum but also cold enough so that the Markov chain eventually concentrates near
the global minimum. (b) and (c) Optimization of a convex function F (green) with noisy oracle F̂
(black) when both additive and multiplicative noise are present, if we run the Markov chain at single
a fixed temperature. If the temperature is hot enough to escape even the deepest local minima (b),
then the Markov chain will not concentrate near the global minimum, leading to a large error. If
instead the Markov chain is run at a colder temperature (c), it will take a very long time to escape the
deeper local minima. (d) Optimization of a convex function F (green) with noisy oracle F̂ (black)
under both additive and multiplicative noise, when using a gradually decreasing temperature. If
multiplicative noise is present the local minima of F̂ are very deep for large values of F . To quickly
escape the deeper local minima, the Markov chain is started at a high temperature. As the Markov
chain concentrates in regions where F is smaller, the local minima become shallower, so the tem-
perature may be gradually decreased while still allowing the Markov chain to escape nearby local
minima. As the temperature is gradually decreased, the Markov chain concentrates in regions with
successively smaller values of F̂ .
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