
Proceedings of Machine Learning Research vol 75:1–17, 2018 31st Annual Conference on Learning Theory

A Data Prism:
Semi-Verified Learning in the Small-α Regime

Michela Meister MMEISTER@STANFORD.EDU and Gregory Valiant VALIANT@STANFORD.EDU

Stanford University

Editors: Sebastien Bubeck, Vianney Perchet and Philippe Rigollet

Abstract
We consider a simple model of unreliable or crowdsourced data where there is an underlying set of n

binary variables, each “evaluator” contributes a (possibly unreliable or adversarial) estimate of the values of
some subset of r of the variables, and the learner is given the true value of a constant number of variables.
We show that, provided an α-fraction of the evaluators are “good” (either correct, or with independent
noise rate p<1/2), then the true values of a (1−ε) fraction of the n underlying variables can be deduced
as long as r> log2−2p(1/α). For example, if the fraction of “good” evaluators is larger than 1/16 and
there is no noise in their responses, then accurate recovery is possible provided each worker evaluates
a random set of 4 items. This result is optimal in that if r≤ log2−2p(1/α) the large dataset can contain
no information. This setting can be viewed as an instance of the semi-verified learning model introduced
in (Charikar et al., 2017), which explores the tradeoff between the number of items evaluated by each
worker and the fraction of “good” evaluators. In the standard adversarial setting, our algorithm requires
Õ
(
nlog2−2p(1/α)

)
evaluators. However, the algorithm runs in near linear time, Õr,ε(n), and hence would

require only a near-linear number of evaluations in the weaker model in which the adversary’s responses
to each r-tuple of items are independent of the set of evaluations collected. These settings and results can
also be viewed as examining a general class of semi-adversarial CSPs with a planted assignment.

This extreme parameter regime, where the fraction of reliable data is small (inverse exponential in the
amount of data provided by each source), is relevant to a number of practical settings. For example, the
setting where you collect a dataset on customer preferences, with each customer specifying preferences for
a small (constant) number of items, and the goal is to ascertain the preferences of a specific demographic of
interest. Our results show that this large dataset (which lacks demographic information) can be leveraged
together with the preferences of the demographic of interest for a constant (polynomial in 1/α but
independent of n), number of randomly selected items, to recover an accurate estimate of the entire set of
preferences, even if the fraction of the original dataset contributed by the demographic of interest is inverse
exponential in the number of preferences supplied by each customer. In this sense, our results can be viewed
as a “data prism” allowing one to extract the behavior of specific cohorts from a large, mixed, dataset.
Keywords: Semi-Verified Learning, Robust Statistics, Cohort Analysis, Crowdsourcing

1. Introduction

Imagine that you collect a large dataset of market research. Specifically, the dataset consists of customer
evaluations of products. While the total set of products is large, of size n, each customer is only asked
to evaluate a small (perhaps randomly selected) subset of r=2,3, etc. of those products. Now suppose
you wish to identify the preferences of some special demographic of customers—perhaps the customers
who are full-time students. Let α denote a lower bound on the fraction of the surveyed customers that
were full-time students, but assume that we do not have this demographic information in our dataset–all

c© 2018 M. Meister & G. Valiant.

A DATA PRISM

we have is the set of evaluations of each customer. How can we leverage this dataset to learn anything
about the student-demographic?

If α� 1/2, this problem seems hopeless because the amount of data contributed by non-students
might swamp the portion of the dataset contributed by students (the demographic of interest). Nevertheless,
the main result of this paper shows that one could hire some students to evaluate a constant, k, number
of (random) products in the set of size n, and then leverage that constant amount of information together
with the large dataset to return accurate evaluations of the student-demographic preferences on all n items.
This claim will hold provided the number of items evaluated by each of the customers in the dataset,
r> log2(1/α). The guarantees of the algorithm will ensure that, with high probability, at most an ε-fraction
of the returned evaluations are incorrect (where k—the number of products evaluated by the hired students,
is polynomial in 1/ε and 1/α, but is independent of the total number of items, n). In particular, this
strong success guarantee holds irrespective of the behavior of the non-student demographics in the original
dataset–in particular, they could even be adversarial, provided by a single malicious entity who is trying
to disguise the feedback provided by the student-demographic.

The above setting, where one has a large dataset reflecting a number of demographics, and wishes
to leverage the large dataset in conjunction with a very small set of “verified” datapoints from one demo-
graphic of interest, seems relevant beyond the market research domain. Indeed, there are many biological
or health-related datasets where the “demographic of interest” might be a trait that is expensive to evaluate
such as genetic factors.

While the parameter regime explored in this work are inspired by these real-world settings, there are
also close connections to several classes of constraint-satisfaction-problems (CSPs). The connections we
present between our crowdsourcing setting and CSPs may offer a new perspective on problems in these
areas. Indeed, the purely combinatorial approach of our algorithm is in contrast to the geometric or spectral
methods employed by previous approaches to robust statistics and crowdsourcing, and seems essential to
obtaining a super-polynomial tradeoff between the fraction of “good” data and the number of evaluations
requested per evaluator.

1.1. Formal Model

We formally model this problem as an instance of the semi-verified learning model proposed by Charikar,
Steinhardt, and Valiant (Charikar et al., 2017). Suppose there is a set ofnBoolean variables,V ={v1,...,vn},
and m “workers” who each provide an evaluation of the values of a randomly selected subset of r of
the variables. Suppose that an α-fraction of the workers are “reliable” and submit evaluations with the
property that each of their r reported values is incorrect independently with probability ≤p. We make
no assumptions on the evaluations submitted by the (1−α)m unreliable workers—these evaluations could
be biased, arbitrary, or even adversarially chosen with the goal of confounding the learning algorithm. In
addition to this large dataset, we also receive k�n,m “verified” data points that consist of the values of k
randomly selected variables. The goal of the learner will be to return assignments to the n variables, such
that with probability at least 1−δ, at most εn of these returned assignments differ from their true values.

In the first model we consider, we have a dataset containing evaluations for each of the
(

n
1+blog2−2p(1/α)c

)
sets of 1 + blog2−2p(1/α)c items/variables. This corresponds to soliciting responses from at least

m= Õ
(
n1+blog2−2p(1/α)c

)
workers. We assume that an adversary selects the responses given by the

(1−α)-fraction of “bad” workers, and that we have query access to the dataset, so that, for any set t of≤r
products, we can query the evaluations from all workers who reviewed the set of products, t, in constant
time. In this setting, we show that, provided r≥1+blog2−2p(1/α)c, given the k=Oα,ε,δ(1) “verified”

2

A DATA PRISM

evaluations [e.g. from the hired students], we can recover the correct labels [the true preferences of the
student demographic] on a (1−ε)n fraction of the items/variables after making Õα,ε,δ(n) queries to the
dataset and in linear time, Õα,ε,δ(n), with probability at least 1−δ over the randomness in the algorithm
and in the noise in the “good” workers’ responses.

The requirement that we have evaluations for all subsets of 1+blog2−2p(1/α)c variables may be
unrealistic in practice. However, as our algorithm only queries a linear number of such subsets (and does
so non-adaptively), the results continue to hold in the setting where only Õr,ε,δ(n) workers are required,
provided that the responses of the adversaries do not adaptively depend on the choice of tuples evaluated.
This is equivalent to the adversary first determining the responses to all

(
n
r

)
possible sets of r items, before

we select which Õr,ε,δ(n) tuples to have evaluated by the workers. This model, while weaker than the fully
adversarial setting, corresponds to the “data prism” setting where the “adversarial” data may be arbitrarily
biased, but does not correspond to an adaptive adversary.

1.2. Summary of Results and Connections to Random CSPs

Our main result is the following:

Theorem 1 Fix a failure probability δ > 0 and accuracy parameter ε> 0. Consider a set of n items
that each have a Boolean value, andm reviewers who each evaluate a uniformly random subset of r out
of the n items. Suppose that αm of the reviewers are “good” in that each of their r reviews is correct
(independently) with probability at least 1−p≥1/2. Given sufficiently many reviewers, accurate reviews
of at least (1−ε)n items can be inferred given the true values of a constant (independent of n) sized
random subset of the variables, provided the fraction of good reviewers satisfies α> 1

(2−2p)r .
Specifically, given the values of a random, constant-sized subset of the items of size

k = Õ
(
1
ε ·(1/α)log2−2p4log(1/δ)

)
, with probability at least 1− δ one can recover accurate evalua-

tions of at least (1 − ε)n of the items, provided α > 1
(2−2p)r and the number of reviewers m =

Θ̃α,δ,ε

(
n1+blog2−2p(1/α)c

)
.

Additionally, the algorithm runs in time linear in the number of items, n, given the ability to query
the dataset for reviewers who have evaluated a given set of items in constant time. Specifically, the runtime
of the algorithm isOδ,ε,r(n), where the hidden constant hides a polynomial dependence on 1/α,1/ε and
log(1/δ).

As a consequence of the structure of the algorithm to which the above theorem applies, the following
theorem captures the sense in which a linear number of reviewers are necessary if 1) reviewers can be
assigned items to review (rather than reviewing uniformly random subsets) and 2) the strategy of the
adversary is independent of the set of reviews requested.

Theorem 2 Given the ability to request evaluations of sets of r≥1+blog2−2p(1/α)c items from each
worker, and assuming that the responses of the “bad” fraction of workers on a given set of items is
independent of the set of other queries asked, accurate estimates of a (1−ε)n fraction of items can be
obtained withm=Õα,ε,δ(n) workers and k=poly(1/α,1/ε,log(1/δ)) verified evaluations.

In the case where them workers can be queried after receiving the k verified evaluations, the hidden
dependence of m on α,ε,δ is polynomial. If the m workers are queried before receiving the k verified
evaluations, then this dependence is exponential but still independent of n, the number of items. This

3

A DATA PRISM

exponential dependency corresponds to collecting queries that would correspond to each of the 2k possible
outcomes of the k verified evaluations.

The following straightforward observation demonstrates that the above theorems are optimal in the re-
lationship between the fraction of good reviewers, α, and the number of items reviewed by each individual,
r, and the error rate of each good reviewer, p:

Observation 1 If each good reviewer incorrectly reviews each item independently with probability p, and
the fraction of good reviewers satisfies α= 1

(2−2p)r where r denotes the number of items evaluated by each
reviewer, then the remaining (1−α) fraction of reviewers can behave such that for every set of r items,
for a randomly selected reviewer, the distribution of reviews for those items will be uniform over the 2r

possible review vectors. Hence the dataset contains no useful information.

One reason why Theorem 1 is surprising is that this inverse exponential dependence between the
number of reviews per reviewers, r, and the fraction of “good” reviewers, can not be attained via the
usual approach of low-rank matrix approximation that is often applied to this problem of recommendation
systems (e.g. (Candes and Plan, 2010; Keshavan et al., 2010)). To see why these approaches cannot be
applied, note that for any matrix in which all rows have at most r entries, there is a rank r matrix that
exactly agrees with all entries. Intuitively, each of these r factors is capable of representing a different
subset of the reviewers. Still, at best this would result in an algorithm that is capable of capturing r different
groups of reviewers; in other words, it seems extremely unlikely that such approaches could yield positive
results in the setting where the fraction of “good” reviewers was less than 1/r, in contrast to our results
that allow this fraction to be 1/exp(r).

The setting of Theorem 1 can be easily mapped into the language of a constraint satisfaction problem.
Given the evaluations of the reviewers, we build a constraint satisfaction problem by associating a Boolean
variable to each of the n items, and for every set of r variables, we define the set of allowable assignments
to those variables to include any of the 2r review vectors that constitutes more than a 1/2r fraction of the
review vectors for the associated items. (In other words, if at most a 1/2r fraction of the reviewers who
evaluated a given set of r items submitted a vector of reviews σ=(σ1,...,σr), then σ is not an allowable
assignment for those variables.) The requirement that α> 1

(2−2p)r guarantees that, for every set of r items,
irrespective of the behaviors of the (1−α) fraction of bad reviewers, for a randomly selected reviewer, the
probability that the r reviews are all correct is strictly larger than 1/2r. Additionally, our requirement on
the number of reviewers,m, ensures that with probability>1−δ, (by elementary concentration bounds)
for every set of r items, there are sufficiently many reviewers assigned to that set of r items, so as to ensure
that the number of accurate ratings (provided by the good reviewers) exceeds a 1/2r fraction of the overall
reviews for that set of r items. Hence, with high probability, we obtain a constraint satisfaction problem
such that for every set of r variables 1) the correct assignment is in the set of allowable assignments, and
2) at least one of the 2r possible assignments is disallowed.

Given this mapping from the review/evaluation setting to constraint satisfaction problems, Theorem 1
will follow immediately from the following result concerning a class of adversarial constraint satisfaction
problems:

Theorem 3 Consider a set of n Boolean variables, and a planted assignment σ∈{0,1}n. Suppose that
for each subset of r variables, t= {v1,...,vr}, there is a subset Ct ⊂{0,1}r of assignments such that
|Ct|≤2r−1 and the planted assignment σ (restricted to the variables in t) is in set Ct. Given the ability
to query the planted assignment values for a constant number of variables chosen uniformly at random,
the planted assignment can be recovered with up to εn errors, for any constant ε>0.

4

A DATA PRISM

Specifically, for any ε,δ>0, after querying the values of

k=Õ

(
1

ε
·22rlog(1/δ)

)
variables, with probability at least 1−δ we can output an assignment σ′∈{0,1}n that differs from the
planted assignment, σ, in at most εn values. Additionally, the algorithm will run in timeOr,ε,δ(n).

There is a simple V C-dimension argument together with a sphere-packing result of Haussler (Haus-
sler, 1995) that yields a tighter information theoretic recovery result, yielding an analog of the above
theorem with polynomial dependence on r.1 Specifically, the number of verified assignments must be
k=O(1ε (rlog(1/ε)+log(1/δ)). This V C-dimension approach, however, seems to yield an algorithm with
runtime at leastnr, as opposed to the linear time algorithms of Theorems 1 and 3. For practical settings, hav-
ing a linear-time algorithm seems quite important; that said, exploring this problem from an information the-
oretic perspective is also worthwhile. One natural question is whether one can achieve a best-of-both-worlds:
a near-linear time algorithm with a polynomial dependence on r. We discuss this problem more in Section 3.

Proposition 4 As in Theorem 3, consider a set of n Boolean variables, and a planted assignment
σ∈{0,1}n. Suppose that for each subset of r variables, t={v1,...,vr}, there is a subset Ct⊂{0,1}r of
assignments such that |Ct|≤2r−1 and the planted assignment σ (restricted to the variables in t) is consis-
tent withCt. Given the ability to query the planted assignment values for k=O

(
1
ε (rlog(1/ε)+log(1/δ))

)
random entries, with probability at least 1−ε one can recover an assignment that disagrees with σ on
at most εn values.

Proof Let S⊂{0,1}n be the set of assignments that are consistent with all of the sets of partial assignments
to the r-tuples specified by the setsCt. The Vapnik-Chervonenkis (VC) dimension of the set S is at most r,
since, by assumption, for every r-tuple of variables, t={v1,...,vr}, there are at most |Ct|≤2r−1 possible
assignments to those variables. As was shown by Haussler (Theorem 1 in (Haussler, 1995)), for any subset
S of the Boolean hypercube with VC dimension at most r, for every ε>0 there exists a set T⊂{0,1}n
of size at most e(r+1)

(
2e
ε

)r such that for every point x∈S, there exists a point tx∈T that agrees with
x on at least (1−ε)n coordinates.

Let Tε/2 denote such a covering set corresponding to the set S, such that every x∈S is distance at
most nε/2 from an element of Tε/2. We can use our k=O

(
1
ε (rlog(1/ε)+log(1/δ))

)
random coordinates

of the vector σ∈S to find, with probability at least 1−δ, a point in Tε/2 of distance at most nε from σ
by simply choosing the element of Tε/2 that agrees with the largest fraction of the k random samples. This
follows from 1) leveraging a Chernoff bound to show that out of the k samples, at most a (2/3)ε fraction
will disagree with the element of Tε/2 that has distance εn/2, and 2) a union bound over |Tε/2| Chernoff
bounds to argue that none of the elements of Tε/2 that have distance at least εn will disagree in fewer than
a (2/3)ε fraction of indices. Together, this yields that the probability that the element of Tε/2 that agrees
with the largest fraction of the k random samples has distance greater than εn from the true assignment,
is at most |Tε/2|exp(O(−kε))= |Tε/2|(1/ε)O(r)δ, which is at most δ for a suitable choice of the constant
in the “O” term of k=O

(
1
ε (rlog(1/ε)+log(1/δ))

)
.

One implication of the above result is that for any Boolean constraint satisfaction problem for which 1)
there exists a satisfying assignment, and 2) for every subset of r variables the constraints forbid at least one of

1. We thank an anonymous reviewer of an early version of this paper for drawing our attention to this.

5

A DATA PRISM

the 2r possible assignments, it must be the case that there are only a constant number of “ε-similar solution
clusters,” where an ε-similar solution cluster is a set of assignments that differ from each other in at most εn
locations. Indeed, the number of such clusters will be at most 2k, where k=Õ(r/ε) is as specified in The-
orem 3 and Proposition 4, is a bound on the number of variables whose assigned value must be queried to
achieve a constant probability of failure δ<1. Note that this number of solution clusters is independent of n.

This structure of the satisfying assignments is slightly surprising given the following two simple exam-
ples: the first example illustrates that it is possible for such CSPs to have at least two extremely different sat-
isfying assignments, and the second illustrates that it is possible for such CSPs to have super-constant sized
solution clusters—clusters of size Ω(n)—although all the assignments in such a cluster are quite similar.

Example 1 Consider the setting where the underlying assignment to all n variables is T , and for every
pair of variables, the set of allowable assignments is {(F,F),(T,T)}. Based on these constraints, there
are two possible satisfying assignments—either all T or all F . A single “verified” data point is sufficient
to distinguish between these two sets of assignments.

The following example illustrates that, in general, it is impossible to guarantee that the learner will
correctly output the exact assignment, unless the number of verified datapoints k=Θ(n).

Example 2 Consider the setting where each set of r values has the constraint that precludes the (F,F,...,F)
r-tuple. In this case, there is a single solution cluster consisting of all assignments to the n variables such
that at most r−1 of the variables are F and the remaining n−r+1 are T . In this case, it is impossible
to distinguish between these assignments with any significant probability using fewer than Θ(n) verified
evaluations.

Despite the above examples, it is still unclear whether the information theoretic bound of Proposition 4
is tight; particularly for small constant ε, it is not clear the extent to which the number of ε-separated
solution clusters can grow as ε decreases. This seems like an intriguing and fundamental question related
to the “semi-adversarial” setting of Proposition 4 where the choice of forbidden assignments is chosen
adversarially subject to being consistent with a planted assignment.

1.3. Related Work

The general challenge of developing algorithms and estimators that are robust to corruptions in the input
data dates back to the early work of Tukey (Tukey, 1960), and has led to a significant body of work on
“Robust Statistics”, which explores a number of different models for the data corruptions, and largely
focuses on the regime in which a majority of the data is “good.” We refer the reader to the surveys
of (Huber, 2011) and (Hampel et al., 2011) for overviews of this literature.

Motivated by the increasing practical importance of robust estimation—and more generally, robust
learning and optimization—there has been recent interest in these problems from both an information
theoretic and computational perspective. Recent works from the TCS community tackled this general
problem in several basic settings, including robustly estimating the mean and covariance of natural classes
of distribution, including multivariate Gaussians (Diakonikolas et al., 2016; Lai et al., 2016). The focus of
these works was largely on establishing computationally efficiency algorithms for these tasks that approach
the information theoretic (minimax) guarantees achieved by more naive or brute-force algorithms. There has
been a flurry of very recent works both tightening these results and extending them to more general classes
of distribution and other optimization or learning problems (Steinhardt et al., 2018; Kothari and Steinhardt,
2017; Kothari and Steurer, 2017; Diakonikolas et al., 2017a). This work differs significantly from the long

6

A DATA PRISM

line of work on agnostic learning, in that here the adversary is allowed to corrupt both the data distribution,
and the labels, in contrast to the more limited agnostic learning setting where only the labels are corrupted.

The above works focus on the setting where a significant majority of data is “good”. The works (Stein-
hardt et al., 2016) and (Charikar et al., 2017) and the very recent work (Diakonikolas et al., 2017b) consider
the setting where a minority of the data is “good” (i.e. α< 1/2), with (Charikar et al., 2017) formally
proposing the “semi-verified” learning model where one may obtain a small amount of “verified” data
that has been drawn from the distribution/cohort in question. The work (Steinhardt et al., 2016) considers
a similar item evaluation setting to the setting we consider, but focuses on the regime where the number
of evaluators is on the same order as the number of items being evaluated and the r-tuples of items being
evaluated are selected uniformly at random. In this regime, they show that ε-accurate recovery is possible
provided that the number of items reviewed by each evaluator isO(1

ε4α3) .
In contrast, we consider the regime in which the number of evaluators might be significantly larger than

the number of items, or the items to evaluate are not chosen at random, but establish an optimal tradeoff
between the fraction of good reviewers and the number of items evaluated by each reviewer, demonstrating
the surprising ability to tolerate a fraction of good reviewers that is inverse exponential in the number of
items evaluated by each reviewer. For the context of leveraging these techniques as a “prism” to extract
information about specific demographics from a large, mixed dataset, this small-α regime seems especially
significant. The techniques of this paper, via local algorithms and the constraint-satisfaction perspective,
also differ significantly from the previous approaches to robust estimation which rely on more geometric
or spectral structure.

2. The Algorithm Intuition

In this section we describe the intuition and high-level structure for the algorithm to which Theorems 1, 2
and 3 applies. Throughout, it will be convenient to assume that we have constraints on sets of r =
1+blog2−2p(1/α)c variables. This is without loss of generality, since provided r≥1+blog2−2p(1/α)c,
we could consider only the implied constraints on subsets of exactly 1+blog2−2p(1/α)c variables.

The overall structure of the algorithm is to iteratively reduce an instance of the problem with non-trivial
constraints on sets of r variables, to an instance of the problem that has non-trivial constraints on sets of r−1
variables. In general, the true assignment might not satisfy the constraints that we derive on the sets of r−1
variables, though we will be able to leverage any such derived constraints that are discovered to be false.

We describe the intuition for the algorithm in two parts. First, in Section 2.1 we describe an algorithm
with runtimeO(n2) for the case that r=2. We then sketch how to convert this algorithm into a linear-time
algorithm in Section 2.2. In Section 2.3 we sketch the intuition for the reduction from constraints on sets
of r variables to constraints on r−1-tuples. We formally describe the general linear-time algorithm and
provide its proof of correctness in Appendix A; this algorithm combines both the constraint reduction idea
of Section 2.3 with the machinery for making the algorithm run in linear time described in Section 2.2.

2.1. Intuition: Restricting to Pessimistic Constraints

Our algorithm will proceed iteratively, with the goal of each iteration being to inspect at most a constant
number of randomly sampled “verified” variable values, and return accurate guesses for at least a constant
fraction of the variables. The algorithm will then recursively iterate this procedure on the remaining
variables until all but ε2n variables have been assigned guesses; assignments to these last≤εn/2 variables
can be chosen arbitrarily.

7

A DATA PRISM

To begin, consider the setting where r= 2, and for every pair of variables (x,y) we have a set of
allowable assignments, C(x,y)⊂{T,F}2, with |C(x,y)|≤3. Each such set provides at least two implica-
tions, one of the form x=X =⇒ y = Y and one of the form y = Y ′→ x=X′ for some choice of
X,X′,Y,Y ′ ∈ {T,F}. For example, if the assignment (T,F) 6∈C(x,y), then we have the implications
x=T =⇒ Y =T and y=F =⇒ x=F . In other words, there is at least one value of variable x that
would imply the value of variable y, and similarly for y.

Hence, if we fix variable x, and consider the implications derived from the sets C(x,y) as y ranges
over all n−1 other variables, there must be an assignment to variable x that would imply the values of
at least n/2 variables. We will refer to this assignment as the “optimistic” value of x, as this assignment
to xwould immediately yield the values of at least half the remaining variables, and we would be done
with the current iteration of the algorithm, and would then recurse on the remaining<n/2 variables that
have not been assigned values.

The first key idea of our algorithm is that we will assume that all variables take their “pessimistic” values.
We will then “check” this assumption by revealing the true values of a random sample ofO(log(1/δ)/ε)
of these variables. If all of these values are consistent with the “pessimistic” values, we can conclude that
with probability at least 1−δ, at least (1−ε)n of the variables actually take their “pessimistic” values, and
hence we can simply output this assignment. If, however, any of ourO(log(1/δ)/ε) random checks fails,
that means that we have found a variable that takes its “optimistic” value, and hence that one variable, x,
together with the n−1 constraint sets C(x,·) that involve it, imply the values of at least n/2 variables. In
either case, our constant (dependent on ε,δ) number of checks has yielded an accurate assignment to at least
half the variables. This simple algorithm in the r=2 case is summarized in the following pseudo-code:

FindAssigments, r=2:
Input: Set of n variables, and for every pair (x,y), a set of allowable assignments to those variables
C(x,y)⊂{T,F}2, with |Ct|≤3. Error parameter ε>0 and failure parameter δ>0.
Output: Assignments to each of the n variables.

• While there exists≥εn/2 variables without assignments

– Let n′ denote the number of remaining variables, and for each of these, determine an
“optimistic” assignment that would imply the values of at least n′/2 other variables, and
define a variable’s “pessimistic” value to be the opposite assignment.

– Consider a set of 10 log(1/δ)
ε2

randomly chosen variables and their “verified” assignments. (If
fewer than log(1/δ)

ε of these variables lie in the set of n′>εn/2 variables in consideration,
output FAIL)

– If all the verified assignments for variables in the set of n′ agree with their pessimistic
assignments, then assign these n′ variables their pessimistic assignments.

– Otherwise, we must have found a variable whose verified assignment is its optimistic
assignment, and we can assign the values of at least n′/2 variables accordingly.

2.2. Sketch of Linear Runtime

The above algorithm, as presented, would require a quadratic runtime, as determining the “optimistic”
assignment to each variable, x, (the assignment that would imply the values for at least half the variables)

8

A DATA PRISM

requires inspecting a linear number of constraints—namely the constraints C(x,x′) as x′ ranges over the
O(n) variables. This, however, can easily be avoided via a sampling based approach: for each variable, x, it
is sufficient to examine a constant, dependent on ε and δ, number of constraints, to determine an assignment
that, with good probability, would imply the values of at least a 0.49 fraction of the remaining variables.

Given (mostly) accurate assignments of “optimistic” values to the variables, the algorithm of the
previous section proceeds by getting verified values for a constant-sized set of k of these variables. If
none of them agree with the optimistic assignments, then we conclude that most variables take their
pessimistic values, and we are done in linear time, via the constant-query sampling to determine the
optimistic/pessimistic values of each of theO(n) variables.

If, however, one of the k verified variables takes its optimistic value, at an additionalO(n) cost, we
explore theO(n) implications implied by this optimistic assignment; this additional step also clearly takes
linear time.

Finally, note that we do not need to know the verified values for the k variables before querying the
implications that would be implied if each of them were to take their optimistic values. Hence, given
only the identities of the k verified variables (but not their values), at a cost ofO(kn)=O(n) we could
probe a linear number of constraints, such that after the values of the k variables are revealed, we can
compute the assignment to all>0.49n variables using only the linear amount of information and linear
computation. In the crowd-sourcing setting, this corresponds to collecting Õ(kn) evaluations of pairs
of items, (x1,·),...,(xk,·) where x1,...,xk represent the k variables for which we will receive verified
evaluations; based on this linear amount of information, at a later time, one could collect the verified
evaluations of the prescribed k items, and then output accurate assignments to the items.

2.3. From r-tuples to r−1-tuples: Pessimism All The Way Down

Given the algorithm for the r=2 case, which is successful provided every pair of variables has at least one
forbidden assignment, the question is how to reduce the setting with constraints on sets of r≥3 variables,
to the setting of constraints on sets of r−1 variables. The following observation is the key to this reduction:

Lemma 5 Given an r-tuple and set of at most 2r−1 allowable assignments to those r variables, then
for any subset of r−1 of those variables, there exists an assignment to those r−1 variables that would
imply the value of the rth variable.

Proof Consider an r−1 tuple, t, and an additional variable v, and the set of≤2r−1 allowable assignments
to the r-tuple (t∪v). If the restriction of these assignments to the r−1 variables in t contains all 2r−1

possible assignments, it must be the case that for at least one of these assignments, there is a unique value
that v must assume, otherwise this r-tuple would have all 2r possible assignments. If the restriction of
the 2r−1 assignments to the r−1 tuple does not contain all 2r−1 assignments, then any assignment
σ∈{T,F}r−1 that cannot be obtained as a restriction of one of the assignments to the r−1 variables,
vacuously implies the value of the rth variable.

The utility of this lemma is that if we have an r−1-tuple of variables, t, then by considering all possible
additional variables v 6∈ t, there exists an assignment to t that determines the value of at least a 1/2r−1

fraction of the variables not in t. Hence we can designate an “optimistic” assignment with the property
that if that assignment holds, then it will imply assignments to at least a 1/2r−1 fraction of the remaining
variables. We will then assume that this “optimistic” assignment is not allowed, thereby reducing the set
of allowable assignments of variables in t to size 2r−1−1, and proceed inductively. In this sense, at some

9

A DATA PRISM

intermediate step of this algorithm where we are considering sets of r′<r variables, the allowable sets
of assignments that we are considering may not be completely accurate, as we are not verifying whether
the sets actually do take their “optimistic” assignments or not. However, if a r′-tuple of variables actually
takes the values of a forbidden/optimistic assignment, then either it will immediately imply the values
of a constant (i.e. at least 1/2r) fraction of variables, or it must be a subset of a larger tuple that takes its
“optimistic” assignment. Which of these two cases holds can be easily decided via querying the values
of a (constant) number of random variables. We describe the full algorithm in the following section.

2.4. The Inefficient Algorithm

The high-level structure of the algorithm described in the previous part takes the form of a “descending”
pass followed by an “ascending” pass. In the descending pass, we iteratively turn constraints on r0 tuples
into constraints on r0−1 tuples, then r0−2 tuples, etc; all the while, we forbid “optimistic” assignments
to ensure that in the rth level, each r tuple has at most 2r−1 allowable assignments. This descending
phase terminates with r=1, where we have our “pessimistic” conjectured assignments to all variables. We
then randomly check a few of these values; if we do not discover any inconsistencies with the conjectured
values, then we can safely conclude that most of the conjectured values are correct.

If we have discovered any inconsistencies, then we begin the ascending phase that investigates and
checks any discovered “optimistic” assignments. One minor wrinkle is that we should not trust the>1/2r

fraction of values that appear to be implied by an optimistic assignment to a set of r<r0−1 variables. These
implications might be the result of forbidding an optimistic assignment for some larger tuple. Nevertheless,
if we randomly check some of the implications, then we will either verify the accuracy of these implications,
or have found an optimistic assignment to a r+1 tuple. In this sense, the ascending phase will either
terminate upon satisfactorily verifying a significant (constant sized) subset of the set of output assignments,
or we will have found an “optimistic” assignment to a r0−1 tuple, and the implications of r0−1 tuples
are based directly on the given set of constraints to r0-tuples, which are valid by assumption. Hence each
phase of the algorithm will return assignments to a constant (at least 1/2r0) fraction of the variables.

We formally describe this algorithm now. As described, the runtime of is not linear in the number of
items, n, and this algorithm will require a number of “verified” samples that is inverse polynomial in the
error parameter ε, as opposed to the nearly inverse linear dependence specified in the Theorem 3. The
algorithm to which Theorem 3 applies is an extension of this algorithm, and results from combining the ideas
of Section 2.2 with this algorithm. The full linear-time variant of this algorithm is provided in Appendix A.

FindAssigments:
Input: Set of n variables, integer r0, and for every tuple t⊂ [n]r0 of r0 distinct variables, a set of allowable
assignments to those variables Ct ⊂ {T,F}r0, with |Ct| ≤ 2r0−1. Error parameter ε > 0 and failure
parameter δ>0.
Output: Assignments to at least (1− ε

2)n variables.

• While there exists≥εn/2 variables without assignments, run DESCEND on the set of unassigned
variables and their corresponding sets of allowable assignments.

10

A DATA PRISM

DESCEND:
Input: For each r-tuple, a set C of assignments to those variables, with |C|≤2r−1.

1. If r=1, AscendAndVerify(set of assigned values to each variable, r=1).

2. Else, for every r−1 tuple, t, we will create a set Ct of≤2r−1−1 assignments:

• Find an “optimistic” assignment σt that would determine at least a 1/2r fraction of variables
not in t. (The existence of such an assignment is guaranteed by Lemma 5.)

• Set Ct={T,F}r−1\σt.

3. Run DESCEND on the set of r−1-tuples and their corresponding sets of assignments, each of
size 2r−1−1.

ASCEND AND VERIFY:
Input: Proposed assignments σv for each variable v∈V for some set V of variables. Integer r indicating
the size of the tuples whose constraints generated the proposed assignments, and assignment σt to a
r−1-tuple t, such that Ct∪v provided the implication σt→σv. Access to sets of allowable assignments
corresponding to all tuples of size r′∈{r,...,r0}. ConstantA=2r0log(1/δ)log(1/ε))/ε2.

1. Randomly sampleA verified variable assignments.

2. If all verified variable assignments agree with the proposed assignments, σv, then permanently
assign v∈V with their proposed assignments, σv.

3. Otherwise, let v denote a variable whose true/verified assignment av 6= σv, disagrees with the
proposed assignment to v. Hence (σt,av) 6∈Ct∪v so assignment (σt,av) together with the constraints
on the r+ 1 tuples must imply at least a 1/2r fraction of variable assignments. Denote these
assignments by σnew.

• Run AscendAndVerify(σnew,r+1,{t∪v},(σt,av))

3. Future Work

This work shows that it is possible to tolerate a fraction of “good” data, α, that is inverse exponential in r0,
the sparsity of each datapoint (i.e. the number of evaluations submitted per reviewer), provided the number
of datapoints/reviewers is sufficiently large to ensure that each set of r items queried has been evaluated
by a significant number of good reviewers. Our algorithm runs in time linear in the number of items to
review (provided the ability to query summary statistics of the set of reviewers who have evaluated a given
sets of items), and uses a constant number of “verified” reviews, which is independent of the total number
of items to review, and depends inverse linearly on the desired error (to logarithmic factors).

One natural question is prompted by the results of (Steinhardt et al., 2016), which provide efficient
algorithms for the regime where r=poly(1/α), but where it suffices to have a linear number of reviewers
that independently choose sets of r items to evaluate. (In our setting, we would require >nr reviewers
if each chooses their set uniformly at random—the setting where we have positive results using Õ(n)
reviewers requires that we can choose the sets of r items to assign to each reviewer.) Is it possible to achieve
the best-of-both-worlds: r=polylog(1/α), and a number of reviewers that is linear, or grows significantly
more slowly than the nr that we require, while leveraging a constant number of verified reviews?

11

A DATA PRISM

To this end, our algorithm only ever considers “single-hop” implications of proposed assignments: an
assignment to a set of r variables is considered “optimistic” if it directly implies values for a significant
fraction of the other variables. It is easy to imagine extending this definition to also consider longer chains
of implication. Perhaps a specific assignment to r variables would imply values to c1 additional variables,
which in turn would imply values to c2 variables, etc. Indeed, in the basic setting of r=2, this approach
can be realized to yield an algorithm that only requires constraints on a random subset of sizeO(n3/2),
as opposed toO(n2) constraints.

From a computational perspective, it seems unlikely that such an approach could be pushed to yield an
efficient algorithm for the regime in which fewer than nr/2 sets of r variables have nontrivial constraints.
Indeed, even for random instances of r−SAT with a planted solution, efficient algorithms below this
threshold have been elusive (see, for example, the recent related work on random CSPs with planted
assignments (Feldman et al., 2015; Raghavendra et al., 2016)).

From a purely information theoretic perspective—the picture is not entirely clear either. In contrast
to random CSPs with planted assignments, for which constraints are placed on random r-tuples and the
constraints are chosen randomly subject to respecting the planted assignment, our setting is complicated by
the adversarial nature of the constraints that are placed on the r-tuples. In a fully adversarial CSP model,
for which both the choices of the r-tuples as well as the constraints themselves are chosen adversarially—to
the best of our knowledge—very little is known. Of course, in this setting, the goal is to find a satisfying
assignment (that might not necessarily correspond to the planted assignment). In the semi-adversarial
CSP model, where the identities of the r-tuple sets are picked at random, and the adversary chooses the
constraints, our results show that we can recover an assignment, provided we can selectively queryO(n)
of the

(
n
r

)
possible constraints. In these settings it is not immediately clear how to analyze the extent to

which implications “propagate”. A second difficulty is that the goal of our setting is not just to find a
satisfying assignment, but to find something close to a specific planted assignment. Our results imply, for
the settings we consider, that there are at most a constant number of solution clusters. It seems interesting
to investigate the extent to which this holds for semi-adversarial CSPs with fewer constraints, perhaps with
constraints chosen adversarially corresponding to onlyN�

(
n
r

)
random r-tuples; in this setting it seems

plausible thatN=nr/2 is the threshold between a constant and super-constant number of such solution
clusters, though this might be difficult to prove.

References

Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):
925–936, 2010.

M. Charikar, J. Steinhardt, and G. Valiant. Learning from untrusted data. In Symposium on Theory of
Computing (to appear), 2017.

Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair Stewart. Robust
estimators in high dimensions without the computational intractability. In Foundations of Computer
Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 655–664. IEEE, 2016.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Learning geometric concepts with nasty noise.
arXiv preprint arXiv:1707.01242, 2017a.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable robust mean estimation and
learning mixtures of spherical gaussians. arXiv preprint arXiv:1711.07211, 2017b.

12

A DATA PRISM

Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity of random satisfiability problems
with planted solutions. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, pages 77–86. ACM, 2015.

Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel. Robust statistics: the
approach based on influence functions, volume 114. John Wiley & Sons, 2011.

David Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded vapnik-
chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–232, 1995.

Peter J Huber. Robust statistics. Springer, 2011.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a few entries.
IEEE Transactions on Information Theory, 56(6):2980–2998, 2010.

Pravesh K Kothari and Jacob Steinhardt. Better agnostic clustering via relaxed tensor norms. arXiv
preprint arXiv:1711.07465, 2017.

Pravesh K Kothari and David Steurer. Outlier-robust moment-estimation via sum-of-squares. arXiv
preprint arXiv:1711.11581, 2017.

Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance. In Founda-
tions of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 665–674. IEEE, 2016.

Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random csps below the spectral
threshold. arXiv preprint arXiv:1605.00058, 2016.

Jacob Steinhardt, Gregory Valiant, and Moses Charikar. Avoiding imposters and delinquents: Adversarial
crowdsourcing and peer prediction. In Advances in Neural Information Processing Systems, pages
4439–4447, 2016.

Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for learning in the presence
of arbitrary outliers. In Innovations in Theoretical Computer Science (ITCS), 2018.

John W Tukey. A survey of sampling from contaminated distributions. Contributions to probability and
statistics, 2:448–485, 1960.

Appendix A. An Efficient Algorithm

The linear-time variant of the basic algorithm described in Section 2.4 leverages the two ideas sketched
in Section 2.2 for the r=2 setting. We now formalize them in this general r setting. For a given r-tuple
t, rather than consulting all Θ(n) constraints Ct∪xi for all xi 6∈t to determine the “optimistic” assignment
to t, one can determine an assignment that implies at least a 1

2
1
2r fraction of the variable values, with high

probability, via sampling a constant (independent of n but dependent on r,ε,δ) number of such constraints.
Note that this sampling does not look at any of the “verified” variable assignments—it just samples which
of the constraints to consider. We formalize this ability to efficiently determine an “optimistic” assignment
via the following subroutine, and the following lemma characterizing its performance.

13

A DATA PRISM

FIND OPTIMISTIC ASSIGNMENT:
Input: Set of n variablesX, r-tuple t, the ability to query constraints Ct′ for |t′|=r0≥r (i.e. the ability
to find optimistic assignments to tuples t′ with |t′|=r0) and probability of failure γ>0.
Output: An optimistic assignment σt to t that would, with probability at least 1−γ, imply the assignments
to at least a 1/2r+1 fraction of other variables via the constraints Ct∪x. We define Ct :={T,F}r\{σt}.

1. If r=r0 then return constraint Ct.

2. Else

• Select s=3·2|t|log(1/γ) variables x1,...,xs uniformly at random fromX\t.
• For each of these s variables, xi, compute Ct∪xi via a (recursive) call to
FindOptimisticAssignment(X,t∪xi,ProbFailure=γ/(2s)).

• Define assignment σt ∈ {T,F}r to be the lexicographically first assignment that, via the
constraints {Ct∪xi}, implies at least a 1/2r fraction of variables {x1,...,xs}. [Note that such
an assignment exists, since for each xi, |Ct∪xi| ≤ 2r+1−1 has at least one out of the 2r

possible assignment to t that would imply that value of xi.]

• Call σt the “optimistic” assignment to tuple t, and store Ct={T,F}r\σt.

The following two lemmas quantify the performance of the above algorithm. The first lemma char-
acterizes the probability of failure, and the proof follows immediately from standard Chernoff tail bounds.

Lemma 6 With probability at least 1−γ the optimistic assignment σt returned by algorithm FindOpti-
misticAssignment on inputX and t has the property that for at least a 1/2|t|+1 fraction of variables x∈X,
the assignment σt together with the constraint set Ct∪x that would be computed by the algorithm on input
tuple t∪x, implies the value of variable x.

Proof Letting p denote the true fraction of variables, x, whose assignments are implied by σt and Ct∪x.
Recall that σt was chosen based on s independent samples, yielding an empirical estimate p̂≥1/2|t|, and
standard tail bounds yield that Pr[p̂>2p]≤e−

s

3·2|t| , yielding the lemma, since s=3·2|t|log(1/γ).

Lemma 7 Given constant-time query access to the constraint sets Ct′ for tuples satisfying |t′|=r0, for
any tuple t, algorithm FindOptimisticAssignment on input t and probability of failure γ>0 returns Ct
and runs in time/queries (2log(1/γ))O(r20), which is independent of the size of the variable set, |X|.

Proof Note that computingCt callsO(2|t|log(1/γ)) computations ofCt′ for |t′|= |t|+1, each called with
error parameter 2|t| smaller. When |t|=r0, Ct is obtained via a single constant-time query. Expanding
this recursion yields the above lemma.

The second observation that underpins the efficient algorithm is that we do not need to determine the
optimistic assignments and form constraints Ct for all

(
n
r

)
r-tuples t. For each phase of the algorithm,

which returns assignments to a constant fraction of the unassigned variables—at least 1/2r0—it suffices to
find a single tuple t that takes its “optimistic” assignment. Indeed, such a tuple, by definition, takes values
that imply assignments to a constant fraction of the remaining variables. And for each of these variables,

14

A DATA PRISM

x, whose assignment is implied by the assignment to the tuple t, the value of variable x can be determined
in constant time by consulting the constraint Ct∪x. This observation is clarified in the following algorithm,
which is an adaptation of the Descend/AscendAndVerify algorithm described in the previous section.

Finally, we highlight the fact that the algorithm proceeds iteratively. Given an initial set of variables,
Y , at some intermediate step in the algorithm, we let X denote the set of variables for which we have
not yet output an assignment. The algorithm will terminate when |X|≤ε|Y |/2. The goal of the current
step of the algorithm will be to output assignments to at least a 1/2r0 fraction of variables in X, such
that the fraction of such assignments that are incorrect is bounded by ε

2log(2/ε)
|Y |
|X| . Given this bound on

the fraction of incorrect assignments returned at this phase of the algorithm, the total fraction of errors
is bounded by ε/2+

∫ 1
t=ε/2

ε
2log(2/ε) ·

1
tdt=ε where the first ε/2 is a bound on the error due to the arbitrary

assignments to the last ≤ ε|Y |/2 variables. The benefit of having the target accuracy increase as |X|
decreases is because we are given verified samples, drawn uniformly at random from Y . To “check” a
proposed assignment to setX to a target accuracy of γ, we need at least 1/γ verified samples from the
setX (ignoring the logarithmic dependence on the probability of failure). To guarantee that this number
of verified samples is obtained from setX, we will need to draw≈ |Y |

γ|X| verified samples from Y . Using
the above trick of having the desired accuracy degrade as |X| decreases, for each phase of the algorithm,
a set of |Y |/|X|

ε
2log(2/ε)

|Y |
|X|

=Õ(1/ε) verified samples is required—as opposed to the Θ(1/ε2) samples that would

have been required if we had fixed the target error rate to be ε for all rounds of the algorithm.

EFFICIENT FIND ASSIGNMENTS:
Input: Set of n variables Y , integer r0 and for every r0-tuple t⊂Y , a set of allowable assignments Ct
with |Ct|≤2r0−1. Error parameter ε>0 and probability of failure δ.
Output: Set of T/F assignments to each x∈Y .

• Set T=r0·2r0+1log(2/ε).

• While there are at least εn/2 unassigned variables:

1. LetX⊂Y denote the set of unassigned variables.

2. Let εX= ε
2log(2/ε)

|Y |
|X| denote the target accuracy of this round, and set s=10 |Y |

εX |X| log(10T/δ).

3. Take s verified samples, revealing the planted assignment values for each of these variables.
Let X1⊂X denote the subset of these variables that are in set X, and for each x∈X1 let
ax denote the verified assignment to variable x. If |X1|<s |X|2|Y | output FAIL.

4. For each x ∈ X1, determine Cx via FindOptimisticAssignments with failure parameter
γ=δ/T .

5. If, for all x∈X1, ax=Cx, then for every variable x∈X, compute and output assignment Cx.

6. Otherwise, let x1 ∈ X1 denote a variable for which ax 6= Cx, and run
EfficientAscend(X,i,x1,ax1,s).

15

A DATA PRISM

EFFICIENT ASCEND:
Input: Set of variablesX, integer i∈{1,...,r0−1}, tuple t with |t|=i, verified assignments at∈{T,F}|t|
to tuple t, and parameter s.
Output: Output to a subset of variables in setX.

1. If i≥r0 output FAIL.

2. Take si=s·2i verified samples, and letXi+1 denote the intersection ofX with this set of variables
with verified assignments, with ax denoting the verified assignment to variable x∈Xi+1.

3. For each x ∈ Xi+1, determine Ct∪x via a call to FindOptimisticAssignment(X, t ∪
x,FailureProb=δ/(10T ·si)), and letX′i+1⊂Xi+1 denote the subset of variables x∈Xi+1 for
which the constraint Ct∪x together with at implies a value σx for x. If |X′i+1|≤si

|X|
4·2i|Y | output

FAIL.

4. If, for all x∈X′i+1, it holds that σx=ax, then for every variable x∈X, compute Ct∪x and output
assignment σx if σx is implied by Ct∪x and at.

5. Otherwise, let xi+1 ∈ X′i+1 denote a variable for which Ct∪xi+1 and at implies assignment
σxi+1 6=axi+1. Run EfficientAscend(X,i+1,t∪xi+1,(at,axi+1),s).

Proposition 8 Algorithm EfficientFindAssignments, when run with error parameter ε and probability of
failure δ, has the following properties:

• The algorithm will require at most Õ
(
1
ε ·2

2r0log(1/δ)
)

verified samples drawn uniformly at random
from the set of variables, Y .

• With probability at least 1−δ, the algorithm will output assignments to each variable x∈Y , such
that at most an ε fraction of the assignments disagree with the planted assignment.

• The algorithm runs in timeOr0,ε,δ(n), and only consults this number of constraints, C(·).

Proof The high level outline of the execution of algorithm EfficientFindAssignments is that in each
step of the outer WHILE loop, an assignment to at least a 1/2r0+1 fraction of the remaining unassigned
variables, X, will be output. This continues until |X|≤εn/2, at which point these remaining variables
can be assigned arbitrary labels and the algorithm terminates. Hence there will be at mostO(2r0log(1/ε))
iterations of the while loop. In the iteration conducted on unassigned variable setX⊂Y , the goal will be to
return assignments such that the fraction of returned assignments that are incorrect is at most ε

2log(2/ε)
n
|X| ,

where |Y |=n is the total number of initial variables. Provided these accuracy goals are met at each step
of the algorithm, the overall fraction of errors will be bounded by ε/2+

∫ 1
f=ε/2

1
f ·

ε
2log(2/eps)df=ε, where

the first term is the errors due to the arbitrary assignment to the remaining≤εn/2 variables. Additionally,
the number of verified samples required in each iteration is at most O(r0s ·s2r0) = Õ

(
2r0 1ε log(1/δ)

)
,

hence the total number of verified samples across the O(2r0log(1/ε)) iterations will be bounded by
Õ(22r0log(1/δ)/ε), as claimed.

We now analyze each run of the WHILE loop in EfficientFindAssignments, and the recursive calls to
EfficientAscend. At a high level, in each recursive call to EfficientAscend, either an assignment to at least a

16

A DATA PRISM

1/2r0+1 fraction of the remaining unassigned variables is returned via the implications from some (verified)
optimistic assignment to a tuple, t; or, we have found a tuple t∪xi+1 for which we have verified assignments
to all |t|+1 variables, and for which that assignment, (at,axi+1) 6∈Ct∪xi+1 is the optimistic assignment,
in which case the subsequent call to EfficientAscend considers this strictly larger tuple t′=t∪xi+1.

To bound the runtime of the algorithm, note that each run of the algorithm requires constant time (de-
pendent on r0,ε,δ but independent of the number of variables, |X|, up until the point in the algorithm when
an assignment will be output (Step 4 in EfficientAscend). At this point in the algorithm, at a computational
expense ofOr0,ε,δ(|X|), an assignment to a constant fraction, at least 1/2r0+1 of the remaining variables
will be output, and the algorithm will then be repeated on the remaining unassigned variables. Hence, the
overall runtime of the algorithm will be linear in the number of variables.

To bound the probability that a given run of the WHILE loop fails to successfully output an as-
signment to at least |X|/2r0+1 variables that meets the target accuracy of ε

2log(2/ε)
|Y |
|X| , we will leverage

a union bound over a number of standard Chernoff tail bounds. First, note that the probability that
EfficientFindAssignments outputs ’FAIL’ in Step 3 in a given round of the algorithm is bounded by the
probability that |X1|≤E[|X1|/2], whereX1 is a sum of i.i.d 0/1 random variables, hence this probability
is bounded by exp(−E[|X1|]/8)≤ δ

10T , where T, as specified in EfficientFindAssignments is a bound
on the number of calls to EfficientAscend which bounds the number of runs of the WHILE loop. Given
that |X1|≥E[|X1|/2], the probability that the assignment output in Step 5 of EfficientFindAssignments
does not meet the target accuracy, εX= ε

2log(2/ε)
|Y |
|X| , is bounded by (1−εX)|X1|≤ δ

10T .
The remaining probability of failure stems from the execution of EfficientAscend. In this algorithm,

failure can stem from three different issues: 1) the constant number of constraints C· computed via Find-
OptimisticAssignment prior to Step 4 of EfficientAscend can be erroneous and fail to imply the desired
fraction of assignments. The probability of this is bounded by δ/(10Tsi), which is sufficient to guarantee
that every optimistic assignment/constraint set C· that is computed during the execution of the algorithm
is accurate and implies the desired fraction of assignments, aside from theO(|Y |) constraints computed
during the assignment output steps—Step 4 of EfficientAscend and Step 5 of EfficientFindAssignments.
2) EfficientAscend outputs FAIL during Step 1, though this cannot occur as the constraints corresponding
to i=r0 are the constraints on r0-tuples, which are satisfied by assumption. 3) The final potential failure
mode of the algorithm is Step 3 of EfficientAscend, if the random set of verified assignments is insuffi-
ciently large to verify (to the target accuracy) a given potential set of assignments implied by an optimistic
assignment via Ct∪x. Given that the assignment at to tuple t is optimistic, as guaranteed by the validity
of FindOptimisticAssignments described above, this probability of failure is also a trivial application of
standard Chernoff bounds, guaranteeing that the random variable |X′i+1| in Step 3 of EfficientAscend
deviates from a lower bound on its expectation by at most a factor of 1/2.

A union bound over these probabilities of failure for each of the ≤T runs of the EfficientAscend
algorithm yields the desired proposition.

17

	Introduction
	Formal Model
	Summary of Results and Connections to Random CSPs
	Related Work

	The Algorithm Intuition
	Intuition: Restricting to Pessimistic Constraints
	Sketch of Linear Runtime
	From r-tuples to r-1-tuples: Pessimism All The Way Down
	The Inefficient Algorithm

	Future Work
	An Efficient Algorithm

