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Abstract
We propose and analyze a variant of the classic Polyak–Ruppert averaging scheme, broadly used in
stochastic gradient methods. Rather than a uniform average of the iterates, we consider a weighted
average, with weights decaying in a geometric fashion. In the context of linear least-squares regres-
sion, we show that this averaging scheme has the same regularizing effect, and indeed is asymptoti-
cally equivalent, to ridge regression. In particular, we derive finite-sample bounds for the proposed
approach that match the best known results for regularized stochastic gradient methods.
Keywords: stochastic gradient descent, least squares, regularization, Tikhonov regularization

1. Introduction

Stochastic gradient methods are ubiquitous in machine learning, where they are typically referred
to as SGD (stochastic gradient descent1). Since these incremental methods use little computation
per data point, they are naturally adapted to processing very large data sets or streams of data.
Stochastic gradient methods have a long history, starting from the pioneering paper by Robbins
and Monro (Robbins and Monro, 1951). For a more detailed discussion, we refer to the excellent
review given by Nemirovski et al. (2009). In the present paper, we propose a variant of SGD based
on a weighted average of the iterates. The idea of averaging iterates goes back to Polyak (1990)
and Ruppert (1988), and it is often referred to as Polyak–Ruppert averaging (see also Polyak and
Juditsky, 1992). In this paper, we study SGD in the context of the linear least-squares regression
problem, considering both finite- and infinite-dimensional settings. This latter case allows to derive
results for nonparametric learning with kernel methods—we refer to the appendix in Rosasco and
Villa (2015) for a detailed discussion on this subject. The study of SGD for least squares is classical
in stochastic approximation (Kushner and Yin, 2003), where it is commonly known as the least-
mean-squares (LMS) algorithm.

In the context of machine learning theory, prediction-error guarantees for online algorithms can
be derived through a regret analysis in a sequential-prediction setting and a so called online-to-batch
conversion (Shalev-Shwartz, 2012; Hazan, 2016). This technique has been particularly successful
for optimization of strongly convex (and potentially non-smooth) loss functions (Hazan and Kale,

1. Albeit in general they might not be descent methods.
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2014; Rakhlin et al., 2012; Shamir and Zhang, 2013), where it has lead to essentially optimal per-
formance guarantees. While the same approach can be used to obtain fairly strong results for the
specific problem of least squares through converting the bounds of Vovk (2001); Azoury and War-
muth (2001) and Hazan et al. (2007), the strongest known results are achieved by a direct analysis
of SGD for this particular setting. This path was taken by Smale and Yao (2006); Ying and Pontil
(2008); Tarres and Yao (2014), where the last iterate and decaying step-size are considered, and
more recently by Rosasco and Villa (2015); Lin and Rosasco (2017) where multiple passes and
mini-batching are considered. A recently popular approach is combining constant step-sizes with
Polyak–Ruppert averaging, which was first shown to lead to minimax optimal finite-time predic-
tion guarantees after a single pass on the data by Bach and Moulines (2013). This approach was
first studied by Györfi and Walk (1996) and subsequent progress was made by Défossez and Bach
(2015); Dieuleveut and Bach (2016); Dieuleveut et al. (2017); Jain et al. (2016, 2017); Lakshmi-
narayanan and Szepesvári (2018).

In this paper we propose and analyze a novel form of weighted averaging, given by a sequence
of weights decaying geometrically, so that the first iterates have more weight. Our main technical
contribution is a characterization of the properties of this particular weighting scheme that we call
geometric Polyak–Ruppert averaging. Our first result shows that SGD with geometric Polyak–
Ruppert averaging is in expectation equivalent to considering SGD with a regularized loss function,
and both sequences converge to the Tikhonov-regularized solution of the expected least-squares
problem. The regularization parameter is a tuning parameter defining the sequence of geometric
weights. This result strongly suggests that geometric Polyak–Ruppert averaging can be used to
control the bias-variance properties of the corresponding SGD estimator. Indeed, our main result
quantifies this intuition deriving a finite-sample bound, matching previous results for regularized
SGD, and leading to optimal rates (Tsybakov, 2008). While averaging is widely considered to have a
stabilizing effect, to the best of our knowledge this is the first result characterizing the stability of an
averaging scheme in terms of its regularization properties and corresponding prediction guarantees.
Our findings can be contrasted to recent results on tail averaging (Jain et al., 2016) and provide
some guidance on when and how different averaging strategies can be useful. On a high level, our
results suggest that geometric averaging should be used when the data is poorly-conditioned and/or
relatively small, and tail averaging should be used in the opposite case. Further, from a practical
point of view, geometric Polyak–Ruppert averaging provides an efficient approach to perform model
selection, since a regularization path (Friedman et al., 2001) is computed efficiently. Indeed, it is
possible to compute a full pass of SGD once and store all the iterates, to then rapidly compute off-
line the solutions corresponding to different geometric weights (or tail averages), hence different
regularization levels. As the averaging operation is entirely non-serial, this method lends itself to
trivially easy parallelization.

The rest of the paper is organized as follows. In Section 2, we introduce the necessary back-
ground and present the geometric Polyak–Ruppert averaging scheme. In Section 3, we show the
asymptotic equivalence between ridge regression and constant-stepsize SGD with geometric iterate
averaging. Section 4 presents and discusses our main results regarding the finite-time prediction
error of the method. Section 5 describes the main steps in the proofs. The full proof is included
in the Appendix. We conclude this section by introducing some basic notation used throughout the
paper.
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ITERATE AVERAGING AS REGULARIZATION FOR SGD

Notation. LetH be a separable Hilbert space with the inner product 〈·, ·〉 and norm ‖·‖ =
√
〈·, ·〉.

We let v ⊗ v be the outer product of vector v ∈ H, which acts on u ∈ H as the rank-one op-
erator (v ⊗ v)u = 〈u, v〉 v. For a linear operator A acting on H, we let A∗ be its adjoint and
‖A‖ =

√
tr [A∗A] the Frobenius norm. An operator A is positive semi-definite (PSD) if it satisfies

〈x,Ax〉 ≥ 0 for all x ∈ H and Hermitian if A = A∗. We use A < 0 to denote that an operator A
is Hermitian and PSD (in short, HPSD). For HPSD operators A and B, we use A < B to denote
A − B < 0. For a HPSD operator A, we use A1/2 to denote the unique HPSD operator satisfying
A1/2A1/2 = A. The identity operator on H is denoted as I . Besides standard asymptotic notation
like O (·) or o (·), we will sometimes use the cleaner but less standard notation a . b to denote
a = O (b). We will consider algorithms that interact with stochastic data in a sequential fashion.
The sequence of random variables observed during the interaction induce a filtration (Ft)t≥0. We
will use the shorthand Et [·] = E [ ·| Ft] to denote expectations conditional on the history.

2. Preliminaries

We study the problem of linear regression under the square loss, more commonly known as linear
least-squares regression. The objective in this problem is to minimize the expected risk

R(w) =
1

2
E
[
(〈w, x〉 − y)2

]
, (1)

where w ∈ H is a parameter vector, x ∈ H is a covariate and y ∈ R is a label, with (x, y) drawn
from a fixed (but unknown) distribution D. Letting Σ = E [x⊗ x] denote the covariance operator,
the minimizer of the risk is given by

w∗ = Σ−1E [xy] (2)

and satisfies R(w∗) = infw∈HR(w). Without loss of generality, we assume Σ is positive definite,
as this can be always satisfied by restricting H to the subspace in which all the covariates xn lie
almost surely. We also assume w∗ to exist, even though in general this might not be true whenH is
infinite dimensional.

We study algorithms that take as input a set of data points {(xt, yt)}nt=1 drawn identically and
independently from D and output a weight vector w to approximately minimize (1). The quality of
an approximate solution is measured by the the excess risk

∆(w) = R(w)−R(w∗) =
∥∥∥Σ1/2 (w − w∗)

∥∥∥2
.

To compute a solution from data, we consider the stochastic gradient method, a.k.a. SGD, that for
least squares takes the form

wt = wt−1 − ηt (xt 〈xt, wt−1〉 − xtyt) , (3)

where (ηt)t > 0 is a sequence of stepsizes (or learning rates), and w0 ∈ H is an initial point.
Typically, a decaying stepsize sequence is chosen to ensure convergence of the final iterate wn,
see Nemirovski et al. (2009) and references therein. A well-studied alternative approach is using a
constant stepsize η and studying the properties of the average of the iterates

wn =
1

n+ 1

n∑
t=0

wt,
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as first proposed by Polyak (1990) and Ruppert (1988). We will duly refer to this postprocessing
step as Polyak–Ruppert (PR) averaging. As shown by Bach and Moulines (2013), this approach
leads to minimax optimal performance guarantees for the finite dimensional setting without requir-
ing significant prior knowledge about Σ (see also Györfi and Walk, 1996). This result was later
strengthened in various respects by Défossez and Bach (2015) and Dieuleveut, Flammarion, and
Bach (2017), notably by weakening the assumptions in Bach and Moulines (2013) and separating
error terms related to “bias” and “variance”. We highlight one result from Dieuleveut et al. (2017)
which considers optimizing the objective (1) plus an additive regularization term of 1

2 ‖w − w0‖2
by iteratively computing the updates

wt = wt−1 − η (Σwt−1 − xtyt + λ (wt−1 − w0)) . (4)

Under technical assumptions discussed later, Dieuleveut et al. (2017) prove the excess-risk bound

E [∆(wn)] .
σ2tr

[
Σ2 (Σ + λI)−2

]
n

+

(
λ+

1

ηn

)2 ∥∥∥Σ1/2 (Σ + λI)−1 (w0 − w∗)
∥∥∥2
, (5)

where σ2 > 0 is an upper bound on the variance of the label noise. The iteration (4) is only of
theoretical interest since the covariance Σ is not known in practice. However, the obtained bound is
simpler to present allows easier comparison with our result. A bound slightly more complex than (5)
can be obtained when Σ is not known (Dieuleveut et al., 2017, Theorem 2).

In this paper, we propose a generalized version of Polyak–Ruppert averaging that we call geo-
metric Polyak–Ruppert averaging. Specifically, the algorithm we study computes the standard SGD
iterates with some constant stepsize η as given by Equation (3) and outputs

w̃n =
1∑n

k=0 (1− γλ)k
·
n∑
t=0

(1− γλ)twt (6)

after round n, where λ ∈ [0, 1/γ) is a tuning parameter and γ satisfies η = γ
(1−γλ) . That is,

the output is a geometrically discounted (and appropriately normalized) average of the plain SGD
iterates that puts a larger weight on initial iterates. It is easy to see that setting λ = 0 exactly
recovers the standard form of Polyak–Ruppert averaging. Our main result essentially shows that the
resulting estimate w̃n satisfies2

E [∆(w̃n)] .

(
γλ

2
+

1

n

)
σ2tr

[
Σ2 (Σ + λI)−2

]
+

(
λ+

1

γn

)2 ∥∥∥Σ1/2 (Σ + λI)−1 (w0 − w∗)
∥∥∥2

under the same assumptions as the ones made by Dieuleveut et al. (2017). Notably, this guarantee
matches the bound of Equation (5), with the key difference being that the factor 1

n in the first
term is replaced by 1

n + γλ
2 . This observation suggests the (perhaps surprising) conclusion that

geometric Polyak–Ruppert averaging has a regularization effect qualitatively similar to Tikhonov
regularization. Before providing the proof of the main result stated above, we first show that this
similarity is more than a coincidence. Specifically, we begin by showing in Section 3 that the limit
of the weighted iterates is exactly the ridge regression solution on expectation.

2. The bound shown here concerns an iteration similar to the one shown on Equation (4), and is proved in Appendix C.
We refer to Theorem 3 for the precise statement of our main result.
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3. Geometric iterate averaging realizes Tikhonov regularization on expectation

We begin by studying the relation between the averaged iterates of unregularized SGD and the
iterates of regularized SGD on expectation. This setting will allow us to make minimal assumptions:
We merely assume that E‖x‖2 < ∞ so that the covariance operator Σ satisfies Σ 4 B2I for some
B > 0. For ease of exposition, we assume in this section that w0 = 0. First, we notice the relation

Et [wt] = wt−1 − η (Et [xt ⊗ xt]wt−1 − Et [xtyt]) = (I − ηΣ)wt−1 + ηE [xy]

between wt and wt−1, which can be iteratively applied to obtain

E [wt] = η

t∑
k=1

(I − ηΣ)k−1 E [xy] .

In contrast we also define the iterates of regularized SGD with stepsize γ > 0 and regularization
parameter λ as

ŵt = ŵt−1 − γ (xt 〈xt, ŵt−1〉 − xtyt + λŵt−1) , (7)

which can be similarly shown to satisfy

E [ŵt] = γ

t∑
k=1

(I − γΣ− γλI)k−1 E [xy] .

This latter definition can be seen as an empirical version of the iteration in Eq. (4) with w0 = 0.
The following proposition reveals a profound connection between the limits of E [ŵt] and the

geometrically discounted average E [w̃t] as t → ∞, given that the stepsizes are carefully chosen
and small enough for the limits to exist.

Proposition 1 Let η, γ and λ be such that γλ < 1 and η = γ
1−γλ , and assume that γ ≤ 1

B2 . Then,
ŵ∞ = limt→∞ E [ŵt] and w̃∞ = limt→∞ E [w̃t] both exist and satisfy

ŵ∞ = w̃∞ = (Σ + λI)−1 E [xy] .

Proof The analysis crucially relies on defining the geometric random variableGwith law P [G = k] =
γλ (1− γλ)k−1 for all k = 1, 2, . . . and noticing that P [G ≥ k] = (1− γλ)k−1. We let EG [·] stand
for taking expectations with respect to the distribution of G. First we notice that the limit of E [wt]
can be written as

lim
t→∞

E [ŵt] = γ
∞∑
k=1

(I − γΣ− γλI)k−1 E [xy] .

By our assumption on γ, we have γΣ 4 I , which implies that the series on the right-hand side con-
verges and satisfies

∑∞
k=1 (I − γΣ− γλI)k−1 = (γΣ + γλI)−1. Having established the existence

of the limit, we rewrite the regularized SGD iterates (7) as

lim
t→∞

E [ŵt] = γ

∞∑
k=1

(I − γΣ− γλI)k−1 E [xy] = γ

∞∑
k=1

(I − ηΣ)k−1 (1− γλ)k−1E [xy]

= γ
∞∑
k=1

(I − ηΣ)k−1 P [G ≥ k]E [xy] = γEG

[ ∞∑
k=1

(I − ηΣ)k−1 I{k≤G}E [xy]

]
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= γEG

[
G∑
k=1

(I − ηΣ)k−1 E [xy]

]
= γEG

[
1

η
E [wG]

]
=
γ

η

∞∑
k=1

P [G = k]E [wk]

=
γ

η

∞∑
k=1

γλ(1− γλ)k−1E [wk] =
γ

η(1− γλ)

∞∑
k=0

γλ(1− γλ)kE [wk]

= lim
t→∞

t∑
k=0

γλ(1− γλ)kE [wk] = lim
t→∞

t∑
k=0

γλ(1− γλ)kE [w̃t] = lim
t→∞

E [w̃t] .

This concludes the proof.

It is useful to recall that (Σ + λI)−1E [xy] is the solution of the problem

min
w∈H

1

2
E
[
(y − 〈w, x〉)2

]
+
λ

2
‖w‖2 ,

that is Tikhonov regularization applied to the expected risk or, in other words, the population version
of the ridge regression estimator. Then, the above result shows that SGD with geometric averag-
ing (6) and the regularized iteration (7) both converge to this same solution. Besides this result, we
can also show that the expected iterates E [ŵt], E [wt] and E [w̃t] are also closely connected for finite
t, without any assumption on the learning rates.

Proposition 2 Let η, γ and λ be such that γλ < 1 and η = γ
1−γλ . Then,

E [ŵt] =
(
1− (1− γλ)t

)
E [w̃t] + (1− γλ)tE [wt] .

This proposition is proved using the same ideas as Proposition 1; we include the proof in Ap-
pendix A for completeness.

4. Main result: Finite-time performance guarantees

While the previous section establishes a strong connection between the geometrically weighted
SGD iterates with the iterates of regularized SGD on expectation, this connection is clearly not
enough for the known performance guarantees to carry over to our algorithm. Specifically, the two
iterative schemes propagate noise differently, thus the covariance of the resulting iterate sequences
may be very different from each other. In this section, we prove our main result that shows that the
prediction error of our algorithm also behaves similarly to that of SGD with Tikhonov regularization.
For our analysis, we will make the same assumptions as Dieuleveut et al. (2017) and we will borrow
several ideas from them, as well as most of their notation.

We now state the assumptions that we require for proving our main result. We first state an
assumption on the fourth moment of the covariates.

Assumption 1 There exists R > 0 such that

E
[
‖x‖2 x⊗ x

]
4 R2Σ.
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This assumption implies that tr [Σ] ≤ R2, and is satisfied, for example, when the covariates satisfy
‖x‖ ≤ R almost surely. We always assume a minimizer w∗ of the expected risk to exist and also
make an assumption on the residual ε defined as the random variable

ε = y − 〈w∗, x〉 .

It is easy to show that E [εx] = 0, even though E [ε|x] = 0 does not hold in general. We make the
following assumption on the residual:

Assumption 2 There exists σ2 > 0 such that

E
[
‖ε‖2 x⊗ x

]
4 σ2Σ.

This assumption is satisfied when ‖x‖ and y are almost surely bounded, or when the model is
well-specified and corrupted with bounded noise (i.e., when ε is independent of x and has variance
bounded by σ2). Under the above assumptions, we prove the following bound on the prediction
error—our main result:

Theorem 3 Suppose that Assumptions 1 and 2 hold and assume that η ≤ 1
2R2 and λ ∈ [0, 1/η).

Then, the iterates computed by the recursion given by Equations (3) and (6) satisfy

E [∆(w̃n)] ≤ 4

1− γλ

(
γλ

(2− γλ)
+

2

(2− γλ) (n+ 1)

) σ2tr
[
Σ2 (Σ + λI)−2

]
2− ηR2

+ 2

(
λ+

1

γ (n+ 1)

)2 ∥∥∥Σ1/2
(
Σ + λ

2 I
)−1

(w0 − w∗)
∥∥∥2

+

(
λ+

1

γ (n+ 1)

)2

tr
[
Σ (Σ + λI)−1

] ∥∥∥(Σ + λ
2 I
)−1/2

(w0 − w∗)
∥∥∥2

The (rather technical) proof of the theorem closely follows the proof of Theorem 2 of Dieuleveut
et al. (2017). We describe the main components of the proof of our main result in Section 5.
For didactic purposes, we also present a simplified version of our analysis where we assume full
knowledge of Σ in Appendix C.

4.1. Discussion

We next discuss various aspects and implications of our results.

Comparison with Dieuleveut et al. (2017). Apart from constant factors3, our bound above pre-
cisely matches that of Theorem 1 of Dieuleveut et al. (2017), except for an additional term of order
γλσ2tr

[
Σ2 (Σ + λI)−2

]
. This term, however, is not an artifact of our proof: in fact it captures a

distinctive noise-propagating effect of our geometric PR averaging scheme. Indeed, the regulariza-
tion effect of our iterate averaging scheme is different from that of Tikhonov-regularized SGD in
one significant way: while Tikhonov regularization increases the bias and strictly decreases the vari-
ance, our scheme may actually increase the variance for certain choices of λ. To see this, observe
that setting a large λ puts a large weight on the initial iterates, so that the initial noise is amplified

3. By enforcing γλ ≤ 1/2, the 1 − γλ and 2 − γλ terms in the denominator can be lower bounded by a constant.
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compared to noise in the later stages, and the concentration of the total noise becomes worse. We
note however that this extra term does not qualify as a serious limitation, since the commonly rec-
ommended setting λ = O

(
1
ηn

)
still preserves the optimal rates for both the bias and the variance up

to constant factors.

Optimal excess risk bounds. The bound in Theorem 3 is essentially the same as the one de-
rived in Dieuleveut et al. (2017, Theorem 2). Following their same reasoning, the bound can be
optimized with respect to λ, γ to derive the best parameters choice and explicit upper bounds on
the corresponding excess risk. In the finite dimensional case, it is easy to derive a bound of order
O(d/n), which is known to be optimal in a minimax sense (Tsybakov, 2008). In the infinite di-
mensional case, optimal minimax bounds can again be easily derived, and also refined under further
assumptions on w∗ and the covariance Σ (De Vito et al., 2005; Caponnetto and De Vito, 2007). We
omit this derivation.

When should we set λ > 0? We have two answers depending on the dimensionality of the
underlying Hilbert space H. For infinite dimensional spaces, it is clearly necessary to set λ >
0. In the finite-dimensional case, the advantage of our regularization scheme is less clear at first
sight: while Tikhonov regularization strictly decreases the variance, this is not necessarily true for
our scheme (as discussed above). A closer look reveals that, under some (rather interpretable)
conditions, we can reduce the variance, as quantified by the following proposition.

Proposition 4 If tr
[
Σ−1

]
> 1

2γdn there exists a regularization parameter λ∗ > 0 satisfying(
γλ∗

2
+

1

n

)
tr
[
Σ2 (Σ + λ∗I)−2

]
<
d

n
.

Proof Letting s1, s2, . . . , sd be the eigenvalues of Σ sorted in decreasing order, we have

f(λ) =

(
γλ∗

2
+

1

n

)
tr
[
Σ2 (Σ + λ∗I)−2

]
=

(
γλ∗

2
+

1

n

) d∑
i=1

s2
i

(si + λ)2 .

Taking derivative of f with respect to λ gives

f ′(λ) =
γ

2

d∑
i=1

s2
i

(si + λ)2 − 2

(
γλ∗

2
+

1

n

) d∑
i=1

s2
i

(si + λ)3 .

In particular, we have

f ′(0) =
γd

2
− 2

n

d∑
i=1

1

si
=
γd

2
−

2tr
[
Σ−1

]
n

,

so f ′(0) < 0 holds whenever tr
[
Σ−1

]
> 1

4γdn. The proof is concluded by observing that f ′(0) < 0
implies the existence of a λ∗ with the claimed property.

Intuitively, Proposition 4 suggests that the geometric PR averaging can definitely reduce the variance
over standard PR averaging whenever the covariance matrix is poorly conditioned and/or the sample
size is small. Notice however that the above argument only shows one example of a good choice of
λ; many other good choices may exist, but these are harder to characterize.
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What is the computational advantage? The main practical advantage of our averaging scheme
over Tikhonov regularization is a computational one: validating regularization parameters becomes
trivially easy to parallelize. Indeed, one can perform a single pass of unregularized SGD over the
data, store the iterates and average them with various schedules to evaluate different choices of λ.
Through parallelization, this approach can achieve huge computational speedups over running reg-
ularized SGD from scratch. To see this, observe that the averaging operation is entirely non-serial:
one can cut the (stored) SGD iterates into K contiguous batches and let each individual worker per-
form a geometric averaging with the same discount factor (1−γλ). The resulting averages are then
combined by the master with appropriate weights. In contrast, regularized SGD is entirely serial, so
validation cannot be parallelized.

Geometric averaging vs. tail averaging. It is interesting to contrast our approach with the tail
averaging scheme studied by Jain et al. (2016, 2017): instead of putting large weight on the initial
iterates as our method does, Jain et al. suggest to average the last n − τ iterates of SGD for some
τ . The effect of this operation is that the

∥∥Σ−1/2 (w∗ − w0)
∥∥2
n−2 term arising from Polyak–

Ruppert averaging is replaced by a term of order exp(−ηµτ) ‖w∗ − w0‖2 (n− τ)−2, where µ > 0
is the smallest eigenvalue of Σ. Clearly, this yields a significant asymptotic speedup, but gives no
advantage when γn ≤ µ−1 (noting that τ < n). Contrasting this condition with our Proposition 4
leads to an interesting conclusion: for small values of n, geometric averaging has an edge over tail
averaging and vice versa. Since the above method for post-processing the iterates can be also used
for tuning τ , we conclude that choosing the right averaging can be done in a simple and highly
parallelizable fashion.

Connections to early stopping. A close inspection of the proofs of our Propositions 1 and 2 re-
veals an interesting perspective on geometric iterate averaging: Thinking of the averaging operation
as computing a probabilistic expectation, one can interpret the geometric average as a probabilistic
early stopping method where the stopping time is geometrically distributed. Early stopping is a
very well-studied regularization method for multipass stochastic gradient learning algorithms that
has been observed and formally proved to have effects similar to Tikhonov regularization (Yao et al.,
2007; Rosasco and Villa, 2015). So far, all4 published results that we are aware of merely point out
the qualitative similarities between the performance bounds obtained for these two regularization
methods, showing that using the stopping time should be chosen as t∗ = 1/γλ. In contrast, our
Propositions 1 and 2 show a much deeper connection: geometric random stopping with expected
stopping time E [G] = 1/γλ not only recovers the performance bounds, but exactly recovers the
ridge-regression solution.

Open questions. It is natural to ask whether geometric iterate averaging has similar regularization
effects in other stochastic approximation settings too. A possible direction for future work is study-
ing the effects of our averaging scheme on accelerated and/or variance-reduced variants of SGD.
Another promising direction is studying general linear stochastic approximation schemes (Laksh-
minarayanan and Szepesvári, 2018), and particularly Temporal-Difference learning algorithms for
Reinforcement Learning that have so far resisted all attempts to regularize them (Sutton and Barto,
1998; Szepesvári, 2010; Farahmand, 2011).

4. With the notable exception of Fleming (1990), who shows an exact relation between the ridge-regression solution
and a rather complicated early stopping rule involving a preconditioning step that requires computing the eigende-
composition of Σ.
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5. The proof of Theorem 3

Our proof closely follows that of Dieuleveut et al. (2017, Theorem 1), with the key differences that

• we do not have to deal with an explicit “regularization-based” error term that gives rise to a
term proportional to λ2 in their bound, and

• the 1
n factors for iterate averaging are replaced by cn(1− γλ)t for each round, where

cn =
1∑n

t=0(1− γλ)t
=

γλ

1− (1− γλ)n
.

As we will see, this change will propagate through the analysis and will eventually replace the
1
γ2n

and
(

2λ+ 1
ηn

)
factors in the final bound by c2

n

∑n
t=0 (1− γλ)2t and c2n

γ2
, respectively.

In the interest of space, we only provide an outline of the proof here and defer the proofs of the key
lemmas to Appendix B. Throughout the proof, we will suppose that the conditions of Theorem 3
hold. The lemma below shows that the factors involving c2

n are of the order claimed in the Theorem.

Lemma 5 For any n ≥ 1, we have

c2
n ≤

(
γλ+

1

n+ 1

)2

and

c2
n

n∑
t=0

(1− γλ)2t ≤ γλ

(2− γλ)
+

2

(2− γλ) (n+ 1)
.

The straightforward proof is given in Appendix B.1.
Now we are ready to lay out the proof of Theorem 3. Let us start by introducing the notation

Mi,j =

(
j∏

k=i+1

(I − ηxk ⊗ xk)

)

for all i < j and Mi,i = I for all i, and recalling the definition εt = yt − 〈xt, w∗〉. A simple
recursive argument shows that

wt − w∗ = wt−1 − η (〈xt, wt−1〉 − yt)xt − w∗

= (I − ηxt ⊗ xt) (wt−1 − w∗) + ηxtyt − ηxt 〈xt, w∗〉
= (I − ηxt ⊗ xt) (wt−1 − w∗) + ηεtxt

= Mt−1,t (wt−1 − w∗) + ηεtxt

= M0,t (w0 − w∗) + η

t∑
j=1

Mj,tεjxj .

(8)

Thus, the averaged iterates satisfy

w̃n − w∗ = cn ·
n∑
t=0

(1− γλ)t (wt − w∗)

10
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= cn ·
n∑
t=0

(1− γλ)t

M0,t (w0 − w∗) + η

t∑
j=1

Mj,tεjxj

 .

We first show a simple upper bound on the excess risk ∆(w̃n) =
∥∥Σ1/2 (w̃t − w∗)

∥∥2
:

Lemma 6

E [∆(w̃n)] ≤ 2c2
n

γ

n∑
t=0

(1− γλ)2tE
[∥∥∥Σ1/2 (Σ + λI)−1/2 (wt − w∗)

∥∥∥2
]

The proof is included in Appendix B.2. In order to further upper bound the right-hand side in the
bound stated in Lemma 6, we can combine the decomposition of wt − w∗ in Equation (8) with the
Minkowski inequality to get

n∑
t=0

(1− γλ)2tE
[∥∥∥Σ1/2 (Σ + λI)−1/2 (wt − w∗)

∥∥∥2
]

≤ 2
n∑
t=0

(1− γλ)2tE
[∥∥∥Σ1/2 (Σ + λI)−1/2M0,t (w0 − w∗)

∥∥∥2
]

︸ ︷︷ ︸
∆1

+ 2η2
n∑
t=0

(1− γλ)2t E

∥∥∥∥∥∥Σ1/2 (Σ + λI)−1/2
t∑

j=1

Mj,tεjxj

∥∥∥∥∥∥
2

︸ ︷︷ ︸
∆2,t

(9)

The first term in the above decomposition can be thought of as the excess risk of a “noiseless”
process (where σ = 0) and the second term as that of a “pure noise” process (where w0 = w∗). The
rest of the analysis is devoted to bounding these two terms.

We begin with the conceptually simpler case of bounding ∆2,t, which can be done uniformly
for all t. In particular, we have the following lemma:

Lemma 7 For any t, we have

∆2,t ≤
ησ2

2− ηR2
tr
[
Σ2 (Σ + λI)−2

]
.

The rather technical proof is presented in Appendix B.3. We now turn to bounding the excess risk
of the “noiseless” process, ∆1:

∆1 =

n∑
t=0

(1− γλ)2t · E
[
tr
[
M∗0,tΣ (Σ + λI)−1M0,t (w0 − w∗)⊗ (w0 − w∗)

]]
.

The following lemma states a bound on ∆1 in terms of E0 = (w0 − w∗)⊗ (w0 − w∗).

Lemma 8

∆1 ≤
1

2γ
tr
[
Σ (Σ + λI)−1 (Σ + λ

2 I
)−1

E0

]
+

1

4γ
tr
[
Σ (Σ + λI)−1

]
tr
[(

Σ + λ
2 I
)−1

E0

]

11
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The extremely technical proof of this theorem is presented in Appendix B.4.
The proof of Theorem 3 is concluded by plugging the bounds of Lemmas 7 and 8 into Equa-

tion (9) and using Lemma 6 to obtain

E [∆(w̃n)] ≤ c
2
n

γ2

(
2tr
[
Σ (Σ + λI)−1 (Σ + λ

2 I
)−1

E0

]
+ tr

[
Σ (Σ + λI)−1

]
tr
[(

Σ + λ
2 I
)−1

E0

])
+

4ηc2
n

γ

n∑
t=0

(1− γλ)2t
σ2tr

[
Σ2 (Σ + λI)−2

]
2− ηR2

Now we can finish by using the bounds on c2
n and c2

n

∑n
t=0(1− γλ)2t given in Lemma 5.
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Appendix A. The proof of Proposition 2

The proof is similar to that of Proposition 1, although a little more cluttered due to the normaliza-
tion constants involved in the definition of w̃t. The crucial difference is in defining the truncated
sequence of SGD iterates (w′k), where w′k = wk for k ≤ t and w′k = 0 for k > t. Defining again
the geometric random variable G with law P [G = k] = γλ (1− γλ)k−1 and letting EG [·] stand for
taking expectations with respect to the distribution of G, we rewrite the regularized SGD iterates as

E [ŵt] = γ
t∑

k=1

(I − γΣ− γλI)k−1 E [xy] = γ
t∑

k=1

(I − ηΣ)k−1 (1− γλ)k−1E [xy]

14
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= γ
t∑

k=1

(I − ηΣ)k−1 P [G ≥ k]E [xy] = γEG

[
t∑

k=1

(I − ηΣ)k−1 I{k≤G}E [xy]

]

= γEG

[
G∧t∑
k=1

(I − ηΣ)k−1 E [xy]

]
= γEG

[
1

η
E [wG∧t]

]

=
γ

η

t−1∑
k=1

P [G = k]E [wk] +
γ

η
P [G ≥ t]E [wt]

=
γ

η

t−1∑
k=1

γλ(1− γλ)k−1E [wk] +
γ

η
(1− γλ)t−1E [wt]

(∗)
=

γ

η(1− γλ)

t−1∑
k=0

γλ(1− γλ)kE [wk] +
γ

η(1− γλ)
(1− γλ)tE [wt]

=
t−1∑
k=0

γλ(1− γλ)kE [w̃t] + (1− γλ)tE [wt]

=
(
1− (1− γλ)t

)
E [w̃t] + (1− γλ)tE [wt] ,

where we used w0 = 0 in the step marked by (∗). This concludes the proof.

Appendix B. Tools for proving Theorem 3

B.1. The proof of Lemma 5

Regarding the first statement, we have

cn =
1∑n

t=0(1− γλ)t
=

γλ

1− (1− γλ)n+1
≤ γλ

1− e−γλ(n+1)
≤ γλ

(
1 +

1

γλ (n+ 1)

)
,

where the first inequality uses 1 − x ≤ e−x that holds for all x ∈ R and the second one uses
1

1−e−x ≤ 1
x + 1 that holds for all x > 0. The second statement is proven as

c2
n

n∑
t=0

(1− γλ)2t =

∑n
t=0 (1− γλ)2t

(
∑n

t=0(1− γλ)t)2 =
(γλ)2(

1− (1− γλ)2
) · (1− (1− γλ)2(n+1)

)
(1− (1− γλ)n+1)2

=
(γλ)2

γλ (2− γλ)
· 1 + (1− γλ)n+1

1− (1− γλ)n+1
≤ γλ

2− γλ
· 1 + e−γλ(n+1)

1− e−γλ(n+1)

=
γλ

2− γλ
·

(
1 +

2e−γλ(n+1)

1− e−γλ(n+1)

)
≤ γλ

2− γλ
·
(

1 +
2

γλ (n+ 1)

)
,

where the first inequality again uses 1− x ≤ e−x that holds for all x ∈ R and the second one uses
e−x

1−e−x ≤ 1
x that holds for all x > 0.
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B.2. The proof of Lemma 6

We start by noticing that∥∥∥Σ1/2 (w̃n − w∗)
∥∥∥2

= c2
n

n∑
t=0

n∑
k=0

(1− γλ)t+k
〈
wt − w∗,Σ (wk − w∗)

〉
(10)

= c2
n

n∑
t=0

(1− γλ)2t
〈
wt−w∗,Σ (wt−w∗)

〉
+ 2c2

n

n∑
t=0

n∑
k=t+1

(1− γλ)t+k
〈
wt−w∗,Σ (wk−w∗)

〉
.

To handle the second term, we first notice that for any t and k > t, we have

Et
[〈
wt − w∗,Σ (wk − w∗)

〉]
= Et

〈wt − w∗,Σ
Mt,k (wt − w∗) + η

k∑
j=t+1

Mj,kεjxj

〉
=
〈
wt − w∗,Σ (I − γΣ)k−t (wt − w∗)

〉
,

where we used Et [εjxj ] = 0 that holds for j > t and Et [Mt,k] = (I − γΣ)k−t. Using this insight,
we obtain

c2
nE

[
n∑
t=0

n∑
k=t+1

(1− γλ)t+k
〈
wt − w∗,Σ (wk − w∗)

〉]

= c2
nE

[
n∑
t=0

n∑
k=t+1

(1− γλ)t+k
〈
wt − w∗,Σ (I − γΣ)k−t (wt − w∗)

〉]

= c2
nE

[
n∑
t=0

(1− γλ)t

〈
wt − w∗,Σ

(
n∑

k=t+1

(1− γλ)k (I − ηΣ)k−t (wt − w∗)

)〉]

= c2
nE

[
n∑
t=0

(1− γλ)t

〈
wt − w∗,Σ

(
n∑

k=t+1

(1− γλ)t (I − γΣ− γλI)k−t (wt − w∗)

)〉]

≤ c2
nE

[
n∑
t=0

(1− γλ)2t

〈
wt − w∗,Σ

( ∞∑
k=t+1

(I − γΣ− γλI)k−t (wt − w∗)

)〉]
(adding nonnegative terms to the sum)

=
c2
n

γ
E

[
n∑
t=0

(1− γλ)2t
〈
wt − w∗,Σ (Σ + λI)−1 (I − γΣ− γλI) (wt − w∗)

〉]
(using

∑∞
j=1(I −A)j = A−1 (I −A) that holds for A 4 I)

≤ c2
n

γ
E

[
n∑
t=0

(1− γλ)2t
〈
wt − w∗,Σ (Σ + λI)−1 (wt − w∗)

〉]

− c2
nE

[
n∑
t=0

(1− γλ)2t 〈wt − w∗,Σ (wt − w∗)〉

]
.

Noticing that the last term matches the first term on the right-hand side of Equation (10), the proof
is concluded.

16



ITERATE AVERAGING AS REGULARIZATION FOR SGD

B.3. The proof of Lemma 7

The proof of this lemma crucially relies on the following inequality:

Lemma 9 Assume that η ≤ 1
2R2 . Then, for all k < t, we have

E
[
Mk+1,tΣM

∗
k+1,t

]
4

1

η (2− ηR2)

(
E
[
Mk+1,tΣ (Σ + λI)−1M∗k+1,t

]
− E

[
Mk,tΣ (Σ + λI)−1M∗k,t

])
.

Proof We have

E
[
Mk,tΣ (Σ + λI)−1M∗k,t

]
= E

[
Mk+1,t (I − ηxk+1 ⊗ xk+1) Σ (Σ + λI)−1 (I − ηxk+1 ⊗ xk+1)M∗k+1,t

]
= E

[
Mk+1,tΣ (Σ + λI)−1 (I − 2ηxk+1 ⊗ xk+1)M∗k+1,t

]
+ η2E

[
Mk+1,t (xk+1 ⊗ xk+1) Σ (Σ + λI)−1 (xk+1 ⊗ xk+1)M∗k+1,t

]
4 E

[
Mk+1,t

(
Σ (Σ + λI)−1 − 2ηΣ2 (Σ + λI)−1 + η2R2Σ2 (Σ + λI)−1

)
M∗k+1,t

]
= E

[
Mk+1,tΣ (Σ + λI)−1M∗k+1,t

]
− η

(
2− ηR2

)
E
[
Mk+1,tΣ

2 (Σ + λI)−1Mk+1,t

]
Reordering, we obtain

E
[
Mk+1,tΣ

2 (Σ + λI)−1Mk+1,t

]
≤ 1

η (2− ηR2)

(
E
[
Mk+1,tΣ (Σ + λI)−1M∗k+1,t

]
− E

[
Mk,tΣ (Σ + λI)−1M∗k,t

])
.

The result follows from noticing that Σ 4 Σ2 (Σ + λI)−1.

Now we are ready to prove Lemma 7. Let us fix t and observe that

∆2,t = E

 t∑
k=1

t∑
j=1

〈
εjMj,txj ,Σ (Σ + λI)−1Mk,txkεk

〉
= E

[
t∑

k=1

〈
εkMk,txk,Σ (Σ + λI)−1Mk,txkεk

〉]

+ 2E

 t∑
k=1

t∑
j=k+1

〈
εjMj,txj ,Σ (Σ + λI)−1Mk,txkεk

〉
= tr

[
E

[
t∑

k=1

ε2
kMk,t (xk ⊗ xk)M∗k,tΣ (Σ + λI)−1

]]
(using that Ek [εjxj ] = 0 for j > k)

≤ σ2tr

[
t∑

k=1

Mk,tΣM
∗
k,tΣ (Σ + λI)−1

]
,

17



ITERATE AVERAGING AS REGULARIZATION FOR SGD

where the last inequality uses our assumption on the noise that E
[
ε2
k (xk ⊗ xk)

]
4 σ2Σ. Now,

using Lemma 9, we obtain

tr

[
t∑

k=1

E [Mk,tΣMk,t]
∗Σ (Σ + λI)−1

]

≤ 1

η (2− ηR2)
tr

[
t∑

k=1

E
[
Mk,tΣ (Σ + λI)−1M∗k,t

]
Σ (Σ + λI)−1

]

− 1

η (2− ηR2)
tr

[
t∑

k=1

E
[
Mk−1,tΣ (Σ + λI)−1M∗k−1,t

]
Σ (Σ + λI)−1

]

=
1

η (2− ηR2)
tr
[(

E
[
Mt,tΣ (Σ + λI)−1M∗t,t

]
− E

[
M0,tΣ (Σ + λI)−1M∗0,t

])
Σ (Σ + λI)−1

]
≤ 1

η (2− ηR2)
tr
[
Σ2 (Σ + λI)−2

]
,

where the last step uses the definition Mt,t = I . This concludes the proof.

B.4. The proof of Lemma 8

We begin by noticing that

∆1 ≤
∞∑
t=0

(1− γλ)2t · E
[
tr
[
M∗0,tΣ (Σ + λI)−1M0,t (w0 − w∗)⊗ (w0 − w∗)

]]
holds since the sum only has positive elements. Following Dieuleveut et al. (2017) again, we define
the operator T acting on an arbitrary Hermitian operator A as

T A = ΣA+AΣ− ηE [〈xt, Axt〉xt ⊗ xt] ,

and also introduce the operator S defined as

SA = E [〈xt, Axt〉xt ⊗ xt] ,

so that T A = ΣA + AΣ − ηSA. We note that S and T are Hermitian and positive definite (the
latter being true by our assumption about η). Finally, we define I as the identity operator acting on
Hermitian matrices. With this notation, we can write

E
[
M∗0,tAM0,t

]
= (I − ηT )tA.

Thus, defining E0 = (w0 − w∗)⊗ (w0 − w∗), we have

∞∑
t=0

(1− γλ)2tE
[
tr
[
M∗0,tΣ (Σ + λI)−1M0,tE0

]]
=

∞∑
t=0

(1− γλ)2ttr
[
(I − ηT )t

[
Σ (Σ + λI)−1

]
E0

]
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=

∞∑
t=0

(1− γλ)ttr
[
(I − η (1− γλ) T − γλI)t

[
Σ (Σ + λI)−1

]
E0

]
≤
∞∑
t=0

tr
[
(I − γT − γλI)i

[
Σ (Σ + λI)−1

]
E0

]
=

1

γ
tr
[
(T + λI)−1

[
Σ (Σ + λI)−1

]
E0

]
,

where the last step holds true if ‖I − ηT ‖ < 1. For a proof of this fact, we refer to Lemma 5 in
Défossez and Bach (2015). Let us define Tλ = T + λI and W = T −1

λ

[
Σ (Σ + λI)−1

]
, so that it

remains to bound γ−1tr [WE0]. We notice that, by definition, W satisfies

Σ (Σ + λI)−1 = ΣW +WΣ + λW − ηSW. (11)

Also introducing the operators UL and UR as the left- and right-multiplication operators with Σ,
respectively, we get after reordering that

W = (UL + UR + λI)−1 Σ (Σ + λI)−1 + η (UL + UR + λI)−1 SW

=
1

2
Σ (Σ + λI)−1 (Σ + λ

2 I
)−1

+ η (UL + UR + λI)−1 SW.

Using the fact that UL + UR + λI and its inverse are Hermitian, we can show

tr [WE0] =
1

2
tr
[
Σ (Σ + λI)−1 (Σ + λ

2 I
)−1

E0

]
+ ηtr

[
SW (UL + UR + λI)−1E0

]
.

Furthermore, by again following the arguments5 of Dieuleveut et al. (2017, pp. 28), we can also
show

(UL + UR + λI)−1E0 4

〈
w0 − w∗,

(
Σ + λ

2 I
)−1

(w0 − w∗)
〉

2
I.

Since SW is positive, this leads to the bound

tr [WE0] ≤ 1

2
tr
[
Σ (Σ + λI)−1 (Σ + λ

2 I
)−1

E0

]
+
η
〈
w0 − w∗,

(
Σ + λ

2 I
)−1

(w0 − w∗)
〉

2
tr [SW ] ,

(12)

so it remains to bound tr [SW ]. On this front, we have

tr [SW ] = tr [E [〈xt,Wxt〉xt ⊗ xt]] ≤ R2tr [WΣ]

by our assumption on the covariates. Also, by Equation (11), we have

tr
[
Σ (Σ + λI)−1

]
= 2tr [WΣ] + λtr [W ]− ηtr [SW ]

= 2tr
[
W
(
Σ + λ

2 I
)]
− ηtr [SW ]

5. This result is proven for finite dimension by Dieuleveut et al. (2017), but can be easily generalized to infinite
dimensions.
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≥ 2tr [WΣ]− ηtr [SW ]

≥
(

2

R2
− η
)

tr [SW ]

≥ tr [SW ]

R2
,

by crucially using the assumption η ≤ 1/2R2. Plugging into Equation (12) and using ηR2 ≤ 2
again proves the lemma.

Appendix C. Analysis under additive noise

In this section, we consider the “additive-noise” model of Dieuleveut et al. (2017). This model
assumes that the learner has access to the gradient estimator Σw − ytxt, that is, the gradient is
subject to the noise vector ξt = ytxt − E [ytxt] which doesn’t depend on the parameter vector
w. This assumption is admittedly very strong, and we mainly include our analysis for this case
for didactic purposes. Indeed, the analysis for this case is significantly simpler than in the setting
considered in the main body of our paper.

In this setting, stochastic gradient descent takes the form

wt = wt−1 − η(Σwt−1 − xtyt), (13)

which is the unregularized counterpart of the iteration already introduced in Section 2 as Equa-
tion (4). Again, we will study the geometric average

w̃t =

∑t
k=0 (1− ηλ)k wk∑t
j=0(1− ηλ)j

. (14)

For the analysis, we recall the definition ξt = xtyt − E [xtyt] and study the evolution of w̃t − w∗:

w̃t − w∗ = (I − ηΣ) (w̃t−1 − w∗) + ηξt

= (I − ηΣ)t (w̃0 − w∗) + η

t∑
k=1

(I − ηΣ)t−k ξk.

We prove the following performance guarantee about this algorithm:

Proposition 10 Suppose that V = E [ξt ⊗ ξt] ≤ τ2Σ for some σ2 > 0 and assume that η ≤
λmax(Σ) and λ ∈ [0, 1/η). Then, the iterates computed by the recursion given by Equations (13)
and (14) satisfy

E [∆(w̃n)] ≤
(

γλ

(2− γλ)
+

2

(2− γλ) (n+ 1)

)
tr
[
Σ (Σ + λI)−2 V

]
+

(
λ+

1

γ (n+ 1)

)2 ∥∥∥Σ1/2 (Σ + λI)−1 (w0 − w∗)2
∥∥∥2
.
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Proof Recalling the notation cn =
(∑n

t=0(1− γλ)t
)−1, the geometric average can be written as

w̃n − w∗ = cn ·
n∑
t=0

(1− γλ)t (wt − w∗)

= cn ·
n∑
t=0

(1− γλ)t

(I − ηΣ)t (w0 − w∗) + η

t∑
j=1

(I − ηΣ)t−j ξj


= cn ·

 n∑
t=0

(1− γλ)t (I − ηΣ)t (w0 − w∗) + η

n∑
t=0

(1− γλ)t
t∑

j=1

(I − ηΣ)t−j ξj


= cn ·

 n∑
t=0

(I − γΣ− γλI)t (w0 − w∗) + η
n∑
j=1

(1− γλ)j
n∑
t=j

(1− γλ)t−j (I − ηΣ)t−j ξj


= cn ·

 n∑
t=0

(I − γΣ− γλI)t (w0 − w∗) + η
n∑
j=1

(1− γλ)j
n∑
t=j

(I − γΣ− γλI)t−j ξj


= cn ·

 n∑
t=0

(I − γΣ− γλI)t (w0 − w∗) + η
n∑
j=1

(1− γλ)j
n−j∑
t=0

(I − γΣ− γλI)t ξj


= cn ·

(
1

γ

(
I − (I − γΣ− γλI)n+1

)
(Σ + λI)−1 (w0 − w∗)

+
η

γ

n∑
j=1

(1− γλ)j
(
I − (I − γΣ− γλI)n−j+1

)
(Σ + λI)−1 ξj

)

Now, exploiting the assumption that the noise is i.i.d. and zero-mean, we get

E [∆(w̃n)] = E
[∥∥∥Σ1/2 (w̃n − w∗)

∥∥∥2
]

= c2
n ·
(
η

γ

)2 n∑
j=1

(1− γλ)2j tr
[(
I − (I − γΣ− γλI)n−j+1

)2
Σ (Σ + λI)−2 V

]
+ c2

n ·
1

γ2

∥∥∥(I − (I − γΣ− γλI)n+1
)

Σ1/2 (Σ + λ)−1 (w0 − w∗)
∥∥∥2

≤ c2
n

(
η(1− γλ)

γ

)2 n−1∑
j=0

(1− γλ)2j tr
[
Σ (Σ + λI)−2 V

]
+ c2

n ·
(

1

γ

)2 ∥∥∥Σ1/2 (Σ + λI)−1 (w0 − w∗)
∥∥∥2
,

The proof is concluded by observing that γ = η(1− γλ) and appealing to Lemma 5.
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