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Abstract
This paper addresses detecting anomalous patterns in images, time-series, and tensor data when
the location and scale of the pattern and the pattern itself is unknown a priori. The multiscale scan
statistic convolves the proposed pattern with the image at various scales and returns the maximum
of the resulting tensor. Scale corrected multiscale scan statistics apply different standardizations at
each scale, and the limiting distribution under the null hypothesis—that the data is only noise—is
known for smooth patterns. We consider the problem of simultaneously learning and detecting the
anomalous pattern from a dictionary of smooth patterns and a database of many tensors. To this end,
we show that the multiscale scan statistic is a subexponential random variable, and prove a chaining
lemma for standardized suprema, which may be of independent interest. Then by averaging the
statistics over the database of tensors we can learn the pattern and obtain Bernstein-type error
bounds. We will also provide a construction of an ε-net of the location and scale parameters,
providing a computationally tractable approximation with similar error bounds.
Keywords: Detection, multiscale scan statistics, pattern adaptation, generic chaining

1. Introduction

Detection is the statistical task of determining if there is some structured signal within noisy data. If
classification answers the question, “what am I seeing?”, detection answers the question, “do I see
anything at all?”. In a sensor network (see Culler et al. (2004)), one is often interested in the dual
problems of noticing an anomaly (detection) and then determining its location and extent (classi-
fication). Sensor networks are deployed in natural environments for contaminant detection, Yang
et al. (2009); White et al. (2008), real-time surveillance (Caron et al. (2002)), radiation monitoring
(Brennan et al. (2004)), and fire detection (Pozo et al. (1997)). In medical imaging, the critical task
is often to test the existence of an anomaly (Moon et al. (2002); James et al. (2001)). Quick detec-
tion of outbreaks of pathogens, Heffernan et al. (2004); Rotz and Hughes (2004), can lead to early
intervention. Yet, given that this is such a fundamental task in many applications, the development
of detection methodology lags behind the sophisticated tools for classification.

In images, time series, and tensors, it is natural to assume that there is a structured signal, such as
blob-like objects, but we do not know its location or scale. In Figure 1, we can see a chemical plume
from a multispectral image where each pixel value is lighter if a certain spectral signature is present
(see Manolakis and Shaw (2002)). We did not know a-priori where this chemical would appear, nor
how large it would be. A natural approach to detecting signals of this type would be to center a
regular shape, or pattern, such as a square or an ellipse around every pixel and detect anomalously
large quantities of the spectral signature. In this work, we will address the dual problem of detecting
anomolous patterns in tensors, and learning regularly occuring patterns in a tensor dataset from a
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dictionary. Let’s begin by outlining multiscale scan statistics and the recent advances in adaptive
detection.

Figure 1: An image with an anomalous region of contaminant (left) and a simulated time series
with an embedded sinusoidal signal with values on the y-axis (right).

The aptly named scan statistic is a test statistic that is based on scanning the image or time series
(X) for a pattern (f ) that may be centered anywhere in the domain. For each location (t), one can
form a likelihood ratio, and test if this statistic exceeds some predetermined threshold (thus, it is a
generalized likelihood ratio test). Scan statistics are widely used in spatial detection applications;
see Glaz et al. (2001) for a thorough introduction to the topic. They are commonly used to detect
patterns in point clouds, Naus (1965); Neill (2012), a closely related problem to our own. Because
we often do not know the size as well as the location of the anomaly, we will scan all locations (t)
and scales (h) simultaneously—this is called the multiscale scan statistic. Hence, the multiscale
scan will translate various scaled versions of a pattern, such as rectangles with many options of side
lengths or circles of varying radii. In Neyman-Pearson testing, we attempt to control the probability
of false rejection under a null hypothesis, when our data only consists of noise. To this end, we
either must approximate the distribution of the scan statistic asymptotically, or set the detection
threshold by simulation or resampling. Siegmund and Worsley (1995) provided a weak limit for
the scan consisting of all intervals in 1 dimension (other approximations can be found in Naus
and Wallenstein (2004) and Pozdnyakov et al. (2005)). In 2 dimensions, Glaz and Zhang (2004);
Haiman and Preda (2006); Wang and Glaz (2014); Kabluchko (2011), provided approximations of
the null distribution for the multiscale scan statistic. Arias-Castro et al. (2005, 2011) analyzed scan
statistics for blob-like patterns and determined thresholds for detectability in this context.

It was observed that if one naively tests all scales in the multiscale scan at the same thresh-
old, then the rejection events will be dominated by the finest scale (Chan and Walther (2013)). It
was shown in Dumbgen and Spokoiny (2001) that by separately standardizing the 1-dimensional
scan at each scale one can detect with a signal-to-noise ratio that adapts to the scale of the anoma-
lous signal. This scale correction for multiscale scan statistics with rectangular shapes was further
studied in Walther (2010); Sharpnack and Arias-Castro (2016). Proksch et al. (2016) showed that
similar results can be achieved for a large class of patterns that satisfy an average Hölder continuity
assumption.

In traditional detection applications, a tensor is scanned for a known function or for specific
blob-like patterns. In a database of many tensors with a repeated anomalous pattern in a database
then it may be possible to simultaneously test for all of the patterns in a class F . The catch is that
each time-series or image—more generally, tensor—will have the anomalous pattern in a different
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location and at a different scale. For example, we have many time series, all of which have some
embedded smooth signal (such as the sinusoid in Figure 1) where the sinusoid begins at various
time points, and has different periodicities. Without knowing a priori that we are looking for a
sinusoid this problem seems intractable, but given that we know enough about the signal (such as it
comes from a finite dictionary of functions), then with enough data we may both learn and detect
the pattern within very noisy data.

Previous works have also studied the detection of any pattern from a large class of patterns in a
single noisy tensor and other more complicated detection scenarios. The main difference between
these works and our own is in the order of operations, namely our methodology proposes a pattern
f , then tests if this patterns occurs in the tensors Xi for all i in a multiscale fashion, and repeats
this for all patterns in a class; most methods will consider a tensor Xi (or a subset of tensors) then
tests for any pattern within a class. Arias-Castro et al. (2011) studied the detection of Lipschitz
deformations of the Euclidean ball in a single image. One can also consider a time series of images
to form a single order 3 tensor; this is studied in Kifer et al. (2004), where they detect temporal
changepoints of any patterns within a VC class. Detecting intervals in multiple time-series has also
been studied in Chan et al. (2015), but this setting differs from our own because it assumes that only
a sparse subset of the time series will contain an anomalous interval.

1.1. Contributions

We will introduce the multiscale scan statistic, with scale correction, in Section 2, and describe
an ε-net construction using repeated dilation and convolution operations. We begin our theoretical
analysis, in Section 3, by proving a chaining result which shows that the standardized supremum of
certain subGaussian random fields is a subexponential random variable. This is then used, in Section
4 to provide a finite sample bound on the scale corrected multiscale scan statistic (until now it was
only known that it was A.S. bounded). We conclude by demonstrating that our ε-net construction is
indeed correct and a type 2 error control in Section 5.

2. Method and Model

2.1. Continuous scan statistic

Let’s begin with the basic scan statistic over an image. For an image, which can be represented by
a matrix, {Yk,l : k, l = −L, . . . , L} we can convolve a pattern {Pk,l : k, l = −H, . . . ,H} with the
image,

(P ? Y )k,l =
H∑

k′,l′=−H
Yk−k′,l−l′Pk′,l′ , k, l = −L+H, . . . , L−H.

Then the simple scan statistic is maxk,l(P ? Y )k,l (one can take the absolute value by also consid-
ering P ← −P ). In the case that Pk,l = 1/(2H) then this scans a square activation pattern over
the image. A common assumption in this problem, is that under the null hypothesis, Yk,l are inde-
pendent standard subGaussian random variables. For an arbitrary, pattern matrix P we would like
to scale both dimensions, so that H ← H ′j in dimension j for some 1 ≤ H ′j ≤ L (e.g. stretching
the square to form a rectangle). For general patterns, this can be difficult, and one approach is to
scale the dimensions for a continuous function, f , and then rasterize it. This analysis can become
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very cumbersome and not terribly enlightening, so we will approximate the pixels with a continuous
domain and the image with a random field.

In order to implement our scan, we begin by proposing a given pattern, which is a function
f ∈ F over the d-dimensional domain. For images, d = 2, and for time-series, d = 1, but
we will only assume that the d is fixed in our asymptotics. We assume that for every f ∈ F ,
‖f‖L2 = 1 and is supported over Ω := [−1, 1]d. We will further assume that f has continuous
gradient (F ⊂ C1(Ω)). For a given field, Xi, over ΩL := [−L,L]d, we propose a scale parameter,

h ∈ H := ×j [1, L),

such that hj is the scale parameter for dimension j. (Throughout j = 1, . . . d and j will always
indicate dimension.) Given an h ∈ H, we select

t ∈ Th := ×j [−(L− hj), L− hj ]

respectively, and test if the pattern f centered at t and scaled by h is hidden within image Xi. This
is accomplished by convolving the field, Xi, with the scaled function fh := h

−1/2
• f(./h),

(fh ? dXi)(t) =

∫
ΩL

fh(τ)dXi(t− τ) =

∫
Ω

1√
h•
f(τ)dXi(t− hτ),

where h• =
∏
j hj and vector operations are such that t/h are performed elementwise. (Through-

out, fh(t) = 0 if t is outside of the domain of fh.) The multiscale scan statistic takes the form,

s(Xi; f) := max
h∈H

vh

(
max
t∈Th

(fh ? dXi)(t)− vh
)
. (1)

where in this work we will take vh =
√

2
∑

j log(L/hj). Hence, when the scale is coarse (hj is
large) then vh is smaller. At the finest scale, vh is large, the maximum at this scale concentrates
about vh with a rate parameter vh (meaning that this concentrates more tightly than the pixel noise
variance of 1).

Throughout, we will denote the set of all valid scale and location parameters as

D := {(t, h) : h ∈ H, t ∈ Th}.

We will assume that the fields, Xi, are independent and have additive white noise terms, W i. Our
noise model is such that

∫
fdW i is a zero mean subGaussian random field indexed by f with

variance ‖f‖2L2
(see Section 3 for a definition). We will test if the field Xi is just noise (null

hypothesis) or the noise is added to the function, f , which is translated by ti and scaled by hi,

H0 : dXi(τ) = dW i(τ), i = 1, . . . , n

H1 : dXi(τ) = µfhi(t
i − τ)dτ + dW i(τ)

for some f ∈ F , and (ti, hi) ∈ D, i = 1, . . . , n.

Critically, the location and scale parameters ti, hi, differ for each image. Notice that ‖fh‖L2 = 1,
so under the null hypothesis, the convolution (fh ? dXi)(t) has mean 0 and variance 1. Because
each statistic, s(Xi; f), is independent and standardized by vh, then we can average these in order
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to increase the power of our final test statistic. To this end, let’s define the pattern adapted multiscale
scan statistic (PAMSS),

Sn(X;F) := max
f∈F

1√
n

n∑
i=1

sn(Xi; f). (2)

We will show that sn(Xi; f) is subexponential, and so we can obtain probabilistic bounds on Sn
with the subexponential Bernstein-type inequality.

2.2. Multiscale ε-net construction

In practice, data is discrete, and the scan statistic must be computed over a finite set of scales
and locations. Suppose that for sample, Xi, we have a draw from the null hypothesis, so that
EdXi(τ) = µfhi(t

i− τ). Instead of scanning over all (t, h) ∈ D, we use a finite subset, Dnet ⊂ D.
Let t′, h′ be values in Dnet that are close to ti, hi in some sense. Then the expectation of the scan at
this approximating location and scale is

E(fh′ ? dXi)(t′) = µ

∫
fh′(τ)fhi(τ + ti − t′)dτ.

If we define the shift operator (Stf)(τ) := f(τ+t) then we see that this expectation is µ〈St′fh′ , Stifhi〉L2 .
Incidentally, this metric appears when we consider the variation of our scan statistic under the null
hypothesis,

νf ((t, h), (t′, h′)) := ‖Stfh − St′fh′‖L2
=
(
V
(
(fh ? dW )(t)− (fh′ ? dW )(t′)

)) 1
2 ,

where dW satisfies our noise assumptions (such as the standard multivariate Brownian motion).
This fact will be useful for when we provide type 1 error control for our scan statistic. With this
metric we will say that a finite subsetDnet ⊂ D is an ε-net if for any f ∈ F and any point (t, h) ∈ D
there exist points (t′, h′) ∈ Dnet such that νf ((t, h), (t′, h′)) ≤ ε.

The sensitivity of νf to small changes in t, h will depend on the smoothness of f . If f has large
gradients then a small shift, St, can misalign the function with the unshifted version. To this end,
we will consider two different notions of smoothness for the functions in our dictionary, F . Define
the isotropic total variation (recall that the functions have continuous gradients),

‖f‖TV :=

∫
Ω
‖∇f(u)‖2du.

Then we may assume that all of the function are of bounded variation,

∃γ1 > 0 s.t. ∀f ∈ F , ‖f‖TV ≤ γ1. (TVC)

The bounded variation assumption is consistent with the assumption in Dumbgen and Spokoiny
(2001), although we generalize this work to the multidimensional case. Another notion of smooth-
ness is the average Hölder condition of Proksch et al. (2016). Define the Hölder functional,

At,s(f) :=

∫
ΩL

|f(t− z)− f(s− z)|2 dz.
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Then an alternative to the bounded variation assumption is that

∃0 < γ2 ≤ 1 s.t. ∀f ∈ F , At,s(f) ≤ cA‖t− s‖2γ22 (AHC)

where cA is some constant. Throughout the paper we will refer to both conditions, and denote γ as
either γ1 or γ2 depending on context.

Given that our functions F satisfy some smoothness assumptions, we can specify an ε-net con-
struction. For a given β > 1 define `max = blogβ Lc. We will begin with a subset of scales,

Hβ = {β` : ` = {0, . . . , `max}d}.

where β > 1 is some parameter. At a given scale, we will consider a grid of evenly spaced locations,
where the distances between grid points increases with the scale, h,

Tα,h := (×j(αhj · Z)) ∩ Th.

The spacing, α > 0, is a tuning parameter as well in this construction. With β, α specified, we can
consider the ε-net to be

Dβ,α = {(t, h) : h ∈ Hβ, t ∈ Tα,h}.

(Notationally, we exchange Dnet ← Dβ,α.) This is similar to the construction in Sharpnack and
Arias-Castro (2016), which has a fast implementation on GPUs using a hierarchy of convolution and
downsampling layers. The main idea is that instead of expanding the function f → fh can instead
downsample the tensor (but the details on a finite image are somewhat arduous). We expect that a
similar implementation is possible in this context, when the functions are adaptively rasterized, but
such developments are outside of the scope of this paper.

Given an ε-net, we can compute the approximate scan by restricting the evaluations to the finite
set of location and scales,

eβ,α(Xi; f) := max
(t,h)∈Dβ,α

vh
(
(fh ? X

i)(t)− vh
)
.

Then we similarly can define the ε-net pattern adapted multiscale scan statistic (ε-PAMSS),

En(X;F) = max
f∈F

1√
n

n∑
i=1

eβ,α(Xi; f).

It is clear that En ≤ Sn since we are maximizing over a strict subset of the continuous scan. Hence,
any type 1 error bound on Sn is also conferred to En.

3. A chaining bound for standardized suprema

The scale correction in (1) is based on a precise characterization of the rate and location of a supre-
mum of the random field resulting from the convolution. This standardization complicates the
analysis significantly, and until now, it was only known that s(Xi; f) was almost surely bounded.
We initially select the location and scale parameters (t, h) ∈ D and take the supremum over this
selection in forming the scan of f over Xi. Because under H0, the random variables s(Xi; f)
form iid copies of the same random variable, we will seek to exponential concentration inequal-
ities bounding s. With this in hand, we can hope to obtain PAC-style bounds on their average
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and the resulting selection of pattern from a finite function class F . We will restrict this work to
|F| < ∞, but a continuous class of location and scale parameters, D. While this bar seems to be
set pretty low compared to the rich developments in classification, such as Vapnik-Chernovenkis
theory, as we will see, controlling our statistic under finite function classes is a challenging first
step to a more complete understanding of learning patterns in detection. Let us begin with a for-
mal definition of a subGaussian random field, and recall that this is what we assume for the field,
{
∫
fhdW i(t− .) : t, h ∈ D}, which satisfied when W i is the d-dimensional Weiner process.

Definition 1 We say that a random field, {Z(ι)}ι∈I , is a (zero mean) standard subGaussian process
if there exists a constant u0 > 0 such that

P {|Z(ι0)− Z(ι1)| ≥ u} ≤ 2 exp

(
− u2

2dZ(ι0, ι1)

)
, (3)

P {Z(ι0) ≥ u} ≤ exp

(
−u

2

2

)
, (4)

for any ι0, ι1 ∈ I, u > u0, and dZ(ι0, ι1) =
√

E(Z(ι0)− Z(ι1))2, is the canonical distance.

Our noise model assumption can be formally stated as {(fh?dW i)(t) : (t, h) ∈ D} is a subGaussian
random field with canonical distance νf .

The generic chaining is a tool for bounding the suprema of random fields with subGaussian
tails, Talagrand (2006) (it also has generalizations to other types of concentration). For general
subGaussian random fields, the expectation of the supremum is bounded by a quantity, E supZ ≤
TZ , and one can also show that (supZ−TZ)/TZ is a standard subGaussian random variable (using
the standard chain construction). Hence, as the expectation bound, TZ , increases the scale can also
grow with TZ (meaning that the supremum becomes more dispersed). This is in contrast to what
we know from extreme value theory, where the maximum of independent random variables tends
to concentrate more tightly (with a lower asymptotic variance), not less. For example, let {zi}Ni=1

be iid standard normal random variables. Then we know that bN (maxi zi − bN ) approaches a
Gumbel distribution where bN =

√
2 log n+ o(1) is a specific sequence (see De Haan and Ferreira

(2007)). Notice that the scale of the max decreases like 1/bN , which is in contrast to what we obtain
from the standard construction in the generic chaining, which has increasing scale. Multiscale scan
statistics also have a Gumbel limiting distribution, Sharpnack and Arias-Castro (2016), and so we
know that the scale of the statistic should be decreasing, and not increasing. The following theorem
significantly modifies the construction in the generic chaining in order to provide an exponential
inequality under VC-style conditions on the entropy of the random field, Z.

Theorem 2 Let Z(ι) be a standard subGaussian process over an index set I. Suppose that the
metric space (I, dZ) has the following bound on the ε-covering number (ρ > 0),

N (I, dZ , ε) ≤ Γε−ρ. (5)

Then there exists an Γ0 > 0 such that for any Γ ≥ Γ0, the following supremum is bounded in
probability,

P
{√

c0 log Γ

(
sup
ι∈I

Z(ι)−
√

2 log Γ

)
− a0 log log Γ > u

}
≤ e−u, (6)
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for u > u0 where u0, c0, a0 are constant depending on ρ (but not on Γ). In words, the supremum of
such a subGaussian process is subexponential with location and rate parameter, (2 log Γ)1/2.

Remark 3 For a VC class of sets with metric L2(Q) for some measure Q and VC dimension dV ,
the above entropy bound holds with ρ = 2dV − 1 and log Γ = dV log(4e) + log dV +K for some
constant K (see Thm 2.6.4 of Van der Vaart and Wellner (1996)).

Proof Sketch. The generic chaining consists of a clever use of the union bound, subGaussian con-
centration, and a detailed chain construction. In order to illustrate how we can obtain an exponential
inequality for the max of subGaussian random variables, let us consider the max of iid standard
Gaussian random variables, {zi}Ni=1. Notice that by union bound and subGaussian concentration,

P
{

max
i
zi >

√
2 logN + u2

}
≤ Ne− logN−u

2

2 = e−
u2

2 .

Now, instead of bounding,
√

2 logN + u2 ≤ u+ (logN)/u as is done in the generic chaining, we
will use the bound

√
2 logN + u2 ≤

√
2 logN + u2/(2

√
2 logN) (we Taylor expand the square

root around 2 logN instead of around u2). Hence, we obtain,

P
{

2
√

2 logN

(
max
i
zi −

√
2 logN

)
> u

}
≤ e−u.

This is the main technique that we use for obtaining subexponential bounds from the max of inde-
pendent subGaussian random variables.

The chain construction refers to a sequence of partitionings of the space I. Given a partition
Ak of I, we let Ak(ι) ∈ Ak be the element that contains the point ι ∈ I and ∆(Ak(ι)) be its
radius. In the standard generic chaining, a partition is called admissible if |Ak| ≤ 22k . Then the
supremum is controlled by uniformly bounding the centers of the single element A0 ∈ A0, and then
the differences between the centers of Ak ∈ Ak and their closest centers in at level k − 1. The
standard result is a bound on the supremum based on a functional of the radii ∆(Ak(ι)). For our
modifications, the subexponential bound above requires a growing number of independent points to
work, so we begin our chain at a deeper level than at k = 0. Furthermore, we have to modify the
definition of an admissible partition to be |Ak| ≤ aa

k
where a → 1 as Γ → ∞. Technical details

regarding the chain introduce the log log Γ term. See the appendix for a complete proof. Although,
we assume a specific form for the covering numbers, it may be possible to generalize this technique
to other entropy bounds.

4. Type 1 error guarantees for learning patterns

A type 1 error—detecting an anomaly under the null hypothesis—is typically the first error to be
controlled in the Neyman-Pearson testing framework. Our statistic Sn will be compared to a thresh-
old, which is determined through calibration, simulation, or theoretical guarantees. In this section,
we will provide a finite-sample probabilistic bound for the multiscale scan statistic with exponential
tail probability. We will then use this result to obtain a finite sample bound on the PAMSS, Sn,
which increases logarithmically with the number of functions, log |F|.
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Lemma 4 Suppose that f ∈ F satisfies either (TVC) or (AHC). Let ` ∈ {0, . . . , blog2 Lc}d, and
H2(`) = ×j [2`j , 2`j+1]. Then when L ≥ L0,

P
{
c1 · max

h∈H`,t∈Th
vh
(
(fh ? dXi)(t)− vh

)
− a1 log logL > u

}
≤ e−u (7)

for constants L0, a1, c1 > 0 depending on γ, d only.

Proof Let D′ denote the index set in the above display. Throughout, let c1 and a1 denote arbitrary
constants depending on d, γ alone. By assumption, {(fh ? dW )(t) : (t, h) ∈ D′} is a subGaussian
random field with canonical distance νf . An ε-net of D, by definition, will be an ε-covering of
D′ ⊂ D, so we just need to bound the size of the ε-net, D′β,α := D′ ∩ Dβ,α. By construction,

|D′β,α| =
∑

h∈H2(`)∩Hβ

|Tα,h| ≤ c1

∑
h∈H2(`)∩Hβ

∏
j

L

αhj
≤ c1

(L logβ 2)d

αd2
∑
j `j

.

and we can take α, β as specified in the proof of Theorem 7. Furthermore, notice that 2`j is within a
factor of 2 of any hj in H2(`). Then, there are constants C̃, c̃ such that |D′β,α| ≤ C̃Ld/(h•ε

c̃). We
can see this because αd(log β)d ≤ αd(β−1)d ≤ εc̃ for some constant depending on d. By Theorem
2, we have the subexponential bound for the random variable,

sup
(t,h)∈D′

yh((fh ? dW )(t)− yh) where yh =

√
2
∑
j

log(L/hj) + 2 log C̃

Notice that yh = vh +O(1/vh) which gives us the result, along with log vh ≤ C log logL.

From here, we simply apply the union bound with the bound in Lemma 4, for every element in
the partitioning H = ∪`H2(`). There are on the order of log2(d log2 L) = log2 logL+ O(1) such
elements. This gives us

P
{
c2 ·

sn(Xi, f)

log logL
− a2 > u

}
≤ e−u,

for some constants c2, a2 depending on d, γ. The log logL is reminiscient of the law of iter-
ated logarithm, and indeed this is a LIL result (but in multiple dimensions). Hence, zi(f) :=
sn(Xi, f)/ log logL is subexponential with K := ‖zi(f)‖ψ1 only depending on d, γ (‖.‖ψ1 is the
Orlitz 1-norm). Thus, by the subexponential Bernstein inequality (Prop. 5.16 in Vershynin (2010)),

P

{
n∑
i=1

zi(f) ≥ t

}
≤ exp

(
−c3 min

{
t2

nK2
,
t

K

})
,

where c3 is an absolute constant. This gives us our main result (we absorb c3 into K below).

Theorem 5 LetF be finite and assume that either all functions inF satisfy either (TVC) or (AHC).
Let

Fn(δ) :=


√
K log

(
|F|
δ

)
, log |F| ≤ n

K + log δ

K√
n

log
(
|F|
δ

)
, log |F| > n

K + log δ
(8)

then for some constants K,L0 depending on d, γ, and L > L0,

P {Sn(X,F) > Fn(δ) · log logL} ≤ δ. (9)
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Theorem 5 proves this paper’s main hypothesis, that we can learn patterns from a finite dictio-
nary where the type 1 error bound increases logarithmically with |F|. In fact if log |F| = o(n) then
we have subGaussian concentration of the final test statistic Sn.

5. ε-net approximation and type 2 error

We have provided a construction of the ε-net with parameters α > 0 and β > 1, but we did not
specify the selection of either or prove the veracity of our claim that this indeed produces an ε-net.
We used the construction of our ε-net in the proof of Lemma 4, so we will be careful in this section
to prove the correctness of our construction from first principles. The following technical lemma is
the main driver of these results.

Lemma 6 There is a constant C depending on d alone such that

1. Suppose that (TVC) holds for the class F , then

νf ((t, h), (t′, h′))2 ≤ Cγ1

∥∥∥∥ t− t′h

∥∥∥∥2

2

+

∥∥∥∥h− h′h

∥∥∥∥2

2

+

(√
h′•
h•
− 1

)2
 .

2. [Proksch et al. (2016)] Suppose that (AHC) holds for the class F , then

νf ((t, h), (t′, h′))2 ≤ C

 d∑
j=1

∣∣∣∣ tj − t′jhj

∣∣∣∣2γ2 +

d∑
j=1

∣∣∣∣∣∣hj − h
′
j√

hjh′j

∣∣∣∣∣∣
2

+

d∑
j=1

∣∣∣∣∣∣hj − h
′
j√

hjh′j

∣∣∣∣∣∣
2γ2 .

Lemma 6.1 is proven using the fact that the metric νf is the canonical metric for Stfh convolved
with the Wiener process. Then by a strategic use of integration by parts we can bound the variance
form of νf . It is immediately clear that we can use this result to prove that Dβ,α forms an ε-net of
the space (D, νf ).

Theorem 7 Suppose that either one of (TVC) or (AHC) holds. Let ε > 0, then there exists a
β > 1, α > 0 depending on d, ε such that for any (t, h) ∈ D, there exists (t′, h′) ∈ Dβ,α (the ε-net)
with νf ((t, h), (t′, h′)) ≤ ε.

Proof Throughout, let γ mean either γ1, γ2 depending on context. By the triangle inequality let us
bound,

νf ((t, h), (t′, h′)) ≤ νf ((t, h′), (t′, h′)) + νf ((t, h), (t, h′)).

In our construction, notice that for any t there is a grid point in Tα,h′ that is within αh′j from it in
dimension j. Hence,

d∑
j=1

∣∣∣∣∣ tj − t′jh′j

∣∣∣∣∣
2γ2

≤ dα2γ2 ;
d∑
j=1

∣∣∣∣∣ tj − t′jh′j

∣∣∣∣∣
2

≤ dα2.

Furthermore, by the ε-net construction, there exists an h′j such that | log hj/h
′
j | ≤ log β for every j.

Thus, ∣∣∣∣∣∣hj − h
′
j√

hjh′j

∣∣∣∣∣∣ ≤ β − 1;

∣∣∣∣∣
√
h′•
h•
− 1

∣∣∣∣∣ ≤ β d
2 − 1.

10



LEARNING PATTERNS FOR DETECTION

Thus there is a constant, C, depending on γ, such that for ε small enough α = Cε1/γ2 and β =
C(1 + ε)2/d is sufficient.

Suppose that we are under the alternative hypothesis, H1, so that there is some embedded signal
f in each image and that the noise is a standard Wiener process. Consider evaluating the scan at
the true location and scale, (ti, hi) for a given field Xi, then (fhi ? dXi)(ti) is normally distributed
with mean µ and variance 1. In the event that we scan over an ε-net, then by arguments in Section 2,
there is an element in the approximate scan with mean µ(1− ε2/2). Hence, we have the following
type 1 error bound, by summing the resulting n normal random variables.

Proposition 8 Suppose that {Xi}ni=1 are drawn fromH1 (with possibly different location and scale
parameters) where the noise random field, W i, is a standard Wiener process in d dimensions. Then
define Vn =

∑
i v

2
hi

and Mn =
∑

i vhi ,

P

{
En(X;F)− 1√

n

(
µ ·
(

1− ε2

2

)
Mn − Vn

)
< u

√
Vn
n

}
≤ Φ(u)

where Φ is the standard Normal CDF. The above display is also true if we let ε = 0 and substitute
En ← Sn.

In order to have diminishing type 1 error probability, we set a threshold for Sn at Fn(δ)·log logL
for δ → 0. Assume that ε→ 0 (however slowly) then to have the type 2 error probability to decrease
as well, we require that

µMn − Vn√
n

− Fn(δ) log logL = ω

(√
Vn
n

)
.

For comparison purposes, let’s derive other conditions for the PAMSS to be asymptotically powerful
(diminishing type 1 and 2 error). Suppose that n = 1 and |F| = 1 (the standard multiscale scan
setting), then this would require

µ− vh1 −
K

vh1
log

1

δ
· log logL→∞,

which is consistent up to constant K and lower order additive terms with previously known rates,
Proksch et al. (2016). Critically, the dependence on δ is logarithmic, and this provides the first
such exponential finite sample bound (Dumbgen and Spokoiny (2001) provided only an almost sure
bound; Proksch et al. (2016) gave a polynomial bound).

We can see that if |F| = 1 and n → ∞ then Fn(δ) = O(1); if in addition, hij ≤ Lc for some
0 ≤ c < 1, then Vn/n = Ω(logL) and log logL is lower order. Then if these conditions hold, then
a condition for the PAMSS to be asymptotically powerful is µ−Vn/Mn →∞. We find that we can
make a similar conclusion even if |F| grows in n.

Corollary 9 Suppose that log |F| = o(n), and recall that under the alternative hypothesis, H1,
Xi has an embedded pattern f at scale hi and v2

hi
=
∑

j log(L/hij), and the noise is a standard

11
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Wiener process. Suppose also that hij ≤ Lc for some 0 ≤ c < 1 for all i, j, then the PAMSS is
asymptotically powerful (has diminishing probability of type 1 and type 2 error) if

µ−
√

2 ·
∑n

i=1 v
2
hi∑n

i=1 vhi
→∞. (10)

We take this result to mean that as long as the function class, |F|, does not grow exponentially in n,
we achieve asymptotic power under the same conditions as if |F| = 1.

Proof We can see this because, under the assumptions, Vn ≥ Cn logL for some C > 0 and√
Vn/Mn → 0. Furthermore, Fn(δ) = o(

√
n) and so Mn/

√
n = ω(Fn(δ) log logL) making the

term involving |F| lower order. Evaluating Mn, Vn gives us the result.

Let us conclude with a remark about the restrictiveness of the assumption that we have a finite
function class F . It is known that functions of bounded variation have Haar wavelet coefficients
that are bounded in a weak `1 norm, Cohen et al. (2003). It is reasonable to discretize the allowed
coefficient values and then restrict our function class to functions with k-sparse wavelet coefficients
of m then the log-size of the class scales like k logm which is very manageable. One advantage
with this approach is that the sparse Haar wavelets will naturally satisfy condition (TVC). It is
outside of the scope of this work to extend the result to infinite function classes, but this would
present a very interesting and important extension.

6. Conclusions

We have addressed learning and detecting patterns from a function class, F , using multiscale scan
statistics. We have introduced the multiscale scan statistic and proved a subexponential concentra-
tion bound for it, which relied on a novel chaining result for standardized suprema of subGaussian
random fields (a result that may be of independent interest). We introduced the pattern adapted mul-
tiscale scan statistic, that can learn patterns in a database of tensors (when the locations and scales
vary). This result allowed us to prove Bernstein-type concentration for the PAMSS, meaning that
we can learn finite function classes that grow exponentially with the sample size, n. With evidence
that representation learning and detection are not incompatible, we anticipate that efficient methods
for learning functions in this setting will emerge, by using modern tools from deep learning and
multiscale methods.
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Appendix A. Proof of Theorem 2

Proof We will follow the construction of generic chains as in Talagrand (2006), but will be signifi-
cantly more careful about the details of the construction. This proof is similar in spirit to Dumbgen
and Spokoiny (2001), but we will get probabilistic bounds and prefer this proof because it uses only
first principles. Throughout this proof we will call variables that dependent only on ρ, constants,
and some likeC may change from line to line. Variables from the main body of the paper, other than
those defined in Theorem 2, may appear in this proof and mean something different (we suppose
that they are in a different scope).

Let’s begin by defining G = Γ1/ρ and

a = (1− log−1G)−1 > 1.

Let an admissible partition, Ak, be any partition of I of size at most aa
k
. Let Ak(ι) be the element

of the partition containing ι and let the center of this element be

τn(ι) := inf
τ∈An(ι)

sup
ι′∈An(t)

dZ(τ, ι′),

and ∆(Ak(t)) = supι∈Ak(t) dZ(τk(ι), ι) be its radius. Let k0 = 1, . . . ,∞ then Z(ι) ≤ Z(τk0(ι)) +∑∞
k=k0

|Z(τk+1(ι))− Z(τk(ι))|. By the union bound and (4),

P
{
∃ι ∈ I : Z(τk0(ι)) >

√
2 log a · ak0 + u2

}
≤ aak0 exp

(
−1

2

(
2 log a · ak0 + u2

))
= e−

u2

2 .

Let

εk = G · a−
ak

ρ , (11)

then there exists an admissible partition where the radius of the balls are εk satisfy N (I, dZ , εk) ≤
aa

k
. Hence,

P
{
∃ι ∈ I : |Z(τk+1(ι))− Z(τk(ι))| > εk

√
2 log a · ak+1 + dku2

}
≤ 2aa

k+1
exp

(
−1

2

(
2 log a · ak+1 + dku

2
))

= 2e−
dku

2

2 ,

where
dk = e

1
2

(1+log a)·(k−k0). (12)

Define the quantities,

Ak0 =
√

2 log a · ak0 + u2 +
∞∑

k=k0

εk
√

2 log a · ak+1 + dku2,

Bk0 = exp

(
−u

2

2

)
+

∞∑
k=k0

exp

(
−dk

u2

2

)
,
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so that
P{sup

ι∈I
Z(ι) > Ak0} ≤ 2Bk0 . (13)

Because
√
b1 + b2 ≤

√
b1 + b2/(2

√
b1) for b1, b2 > 0 we have

Ak0 ≤ a0a
k0/2 +

a−k0/2

2a0
u2 +

∞∑
k=k0

(
a0εka

k+1
2 +

a−
k+1
2

2a0
εkdku

2

)
(14)

for a0 =
√

2 log a. Let k0 satisfy

ak0 ≤ ρ(logaG+ k0) ≤ ak0+1, (15)

such that
k0 log a ≤ C ′ log logG

for some constant C ′ possibly depending on ρ, which is guaranteed by Lemma 10 for Γ large
enough. Then we have that

a0a
k0
2 ≤

√
2 log Γ + 2ρk0 log a ≤

√
2 log Γ +

ρk0 log a√
2 log Γ

≤
√

2 log Γ +
C ′ log log Γ√

2 log Γ
(16)

Furthermore, by (11) and (15)

∞∑
k=k0

a
k+1
2 εk ≤ G

∞∑
k=k0

a
−a

k

ρ
+ k+1

2 = Ga
k0+1

2

∞∑
j=0

a
−ak0 a

j

ρ
+ j

2

≤ Ga
k0+1

2

∞∑
j=0

a−(logaG+k0)aj−1+ j
2 = a

1−k0
2

∞∑
j=0

a(logaG+k0)(1−aj−1)+ j
2

= a
1−k0

2

(Gak0)1−a−1

+
√
a

∞∑
j=0

a(logaG+k0)(1−aj)+ j
2

 .

The first term is

a
1−k0

2

(
Gak0

)1−a−1

= e · a
1−k0

2 a
k0

logG .

Furthermore, for any C < 1 there exists a G0 > 0 such that log a ≥ C/ logG for all G ≥ G0, thus

a
k0

logG ≤ (ρ(logaG+ k0))
1

logG ≤
(
ρ(C log2G+ k0)

) 1
logG → 1,

as G→∞. Considering the second term,

∞∑
j=0

a(logaG+k0)(1−aj)+ j
2 ≤ 1 +

∞∑
j=1

a(logaG)(1−aj)+ j
2 .

Using the first order approximation,

aj − 1 =

(
1− 1

logG

)−j
− 1 ≥ j

logG
.
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So we may bound the series,

∞∑
j=0

a(logaG)(1−aj)+ j
2 ≤

∞∑
j=0

exp

((
log a

2
− 1

)
j

)
≤
(

1− exp

(
log a

2
− 1

))−1

→ 1

1− e−1
,

as G→∞. Hence, there are constants C,G0 > 0 depending on ρ such that for G > G0,

∞∑
k=k0

a0εka
k+1
2 ≤ Ca0a

− k0
2 ≤ C

√
2a log a

ρ(logaG+ k0)
≤ C
√

2a log a√
2ρ logG

. (17)

Also,
a−

k0
2

a0
≤ C√

2ρ logG
. (18)

Consider the fourth term in Ak0 ,

∞∑
k=k0

a−
k+1
2 εkdk = G

∞∑
k=k0

a−
k+1
2 a
−a

k

ρ e
1
2

(1+log a)·(k−k0)

≤ Ga−
1
2

(k0+1)
∞∑
j=0

a−
j
2a−(logaG+k0)aj−1

e
1
2

(1+log a)·j

≤ a−
3
2
k0− 1

2

∞∑
j=0

a−
j
2a(logaG+k0)·(1−aj−1)e

1
2

(1+log a)·j

Isolating the summation,

∞∑
j=1

a(logaG+k0)·(1−aj−1)e
j
2 ≤
√
e

∞∑
j=0

exp

((
1

2
− logG+ k0 log a

logG

)
· j
)

≤
√
e

1− 1/
√
e
≤ 4.2.

Furthermore,

a(logaG+k0)·(1−a−1) ≤ e−
(

1+
k0

loga G

)
≤ 1

e
< 0.4.

Hence, there exists a G0 > 0 such that

u2

a0

∞∑
k=k0

a−
k+1
2 εkdk ≤ u2 4.6√

2 log a
· a−

3
2
k0− 1

2 ≤ u2

√
ρ logG

, (19)

for G ≥ G0. Hence, by (14) combined with (16), (17), (18), and (19) yields

Ak0 ≤
√

2 log Γ +
a0 log log Γ + u2/2√

c0 log Γ
,
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for constants C0, C1, G0 with G ≥ G0. Consider Bk0 ,

exp

(
u2

2

)
·
∞∑

k=k0

exp

(
−dk

u2

2

)
=
∞∑
j=0

exp

((
1− exp

(
1

2
(1 + log a) · j

))
· u

2

2

)
(20)

≤
√
e
∞∑
j=0

exp

(
−1

2
exp

(
1

2
j

))
=
√
e
∞∑
j=0

b−b
j ≤ 2.4, (21)

(22)

where b =
√
e. Hence,

Bk0 ≤ C · e−
1
2
u2 .

Recalling (13) gives us our result.

Lemma 10 Let ρ > 0, and define the function

a(G) =

(
1− 1

logG

)−1

. (23)

There exists a constant G0 depending on ρ alone such that if G > G0 then there exists an integer
k0 satisfying

ak0 ≤ ρ(logaG+ k0) ≤ ak0+1, (24)

and there is a constant C depending on ρ such that k0 log a ≤ C log logG.

Proof Set G > 0 and a = a(G). Let κ1 be the root of the following function,

f(κ) := aκ − ρ(logaG+ κ).

Notice that f is strictly convex and so let κ0 be its unique minimizer.

κ1 = loga (ρ(logaG+ κ1)) ≥ loga (ρ logaG) ,

Notice that log a ≤ 1/ logG, hence,

logaG =
logG

log a
≥ log2G,

and
κ1 ≥

log ρ

log a
+ 2

log logG

log a
≥ logG · (log ρ+ 2 log logG) =: x1.

Moreover, κ0 satisfies κ0a
κ0 = ρ,

(κ1 − 1)aκ1−1 =
ρ

a
(κ1 − 1)(logaG+ κ1) ≥ ρ

a
(x1 − 1)(log2G+ x1).

The limit of the right hand side approaches +∞ as G increases. Hence, there exists an G0 > 0
depending on ρ only such that for any G ≥ G0,

(κ1 − 1)aκ1−1 ≥ ρ = κ0a
κ0 .
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Because κaκ is a monotone increasing function of κ > 0, this implies that κ1 − 1 ≥ κ0.
Let k0 = bκ1c. We know that f is increasing and convex over [κ0,∞). Let G ≥ G0. Because

κ0 ≤ k0 ≤ κ1 ≤ k0 + 1 we have that f(k0) ≤ 0 ≤ f(k0 + 1). Hence,

ak0 − ρ(logaG+ k0) ≤ 0 ≤ ak0+1 − ρ(logaG+ k0 + 1) ≤ ak0+1 − ρ(logaG+ k0),

which proves the first result. Finally,

log(a2k0) ≤ log
(
ak0 − ρk0

)
≤ log(ρ logaG)

for some G (k0) large enough. Notice that logaG ≤ C(logG)2 by the limit of log a → 1/ logG,
demonstrating the second result.

Appendix B. Remaining proofs

A note on the derivation of Theorem 5. Notice that t2/nK < t/K when t < n, and that let

t =

√
nK

c3
log
|F|
δ
.

Then

|F| exp

(
−c3

t2

nK2

)
≤ δ

and t < n when
log |F| ≤ n

c3K
+ log δ.

In the other case, we define t so that the probabilistic bound holds, and absorb c3 into K.
Proof of Lemma 6. (2) is proven in Proksch et al. (2016) (pg. 32) so we will focus on (1). We
will partially follow the arguments in Dumbgen and Spokoiny (2001) (pg. 145). Let W denote a
standard Wiener process in d dimensions. Notice that we can define νf as,

νf ((t, h), (t′, h′))2 := V
(∫

ΩL

fh(t− z)dW (z)−
∫

ΩL

fh′(t
′ − z)dW (z)

)
.

Recall that
(fh ? dW )(t) =

1√
h•

∫
Ω
f(u)dW (t− hu).

By integration by parts,

1√
h•

∫
Ω
f(u)dW (t− hu) =

∫
Ω

W (t− hu)√
h•

· ∇f(u)du.
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Therefore,

(fh ? dW )(t)− (fh′ ? dW )(t′) =

∫
Ω

(
W (t− hu)√

h•
− W (t′ − h′u)√

h′•

)
· ∇f(u)du

≤
∫

Ω

∥∥∥∥∥W (t− hu)√
h•

− W (t′ − h′u)√
h′•

∥∥∥∥∥
2

· ‖∇f(u)‖2du

≤ sup
u∈Ω

∥∥∥∥∥W (t− hu)√
h•

− W (t′ − h′u)√
h′•

∥∥∥∥∥
2

·
∫

Ω
‖∇f(u)‖2du.

Hence,

νf ((t, h), (t′, h′))2 ≤ ‖f‖2TV · E sup
u∈Ω

∥∥∥∥∥W (t− hu)√
h•

− W (t′ − h′u)√
h′•

∥∥∥∥∥
2

2

.

Decompose the supremum term,

E sup
u∈Ω

∥∥∥∥∥W (t− hu)√
h•

− W (t′ − h′u)√
h′•

∥∥∥∥∥
2

≤ E sup
u∈Ω

(∥∥∥∥W (t− hu)−W (t′ − h′u)√
h•

∥∥∥∥
2

+ ‖W (t′ − h′u)‖2

∣∣∣∣∣ 1√
h•
− 1√

h′•

∣∣∣∣∣
)

By Brownian scaling, W (t − hu) −W (t′ − h′u))/
√
h•

d
= W

(
t
h − u

)
−W

(
t′

h −
h′

h u
)
. Hence,

the jth coordinate in the above LHS is a 1-dimensional Brownian motion equal in distribution to,

B
(
tj−t′j
hj
−
(

1− h′j
hj

)
uj

)
. By the reflection principle, we have that for some constant c′,

E sup
u∈Ω

B

(
tj − t′j
hj

−
(

1−
h′j
hj

)
uj

)2

≤ c′
(∣∣∣∣ tj − t′jhj

∣∣∣∣2 +

∣∣∣∣hj − h′jhj

∣∣∣∣2
)
.

Hence,

E sup
u∈Ω

∥∥∥∥W (t− hu)−W (t′ − h′u)√
h•

∥∥∥∥2

2

≤ c′
∑

j

∣∣∣∣hj − h′jhj

∣∣∣∣2 +

∣∣∣∣ tj − t′jhj

∣∣∣∣2
 .

Without loss of generality, we can select t = 0 by translation invariance of νf . Furthermore by a
similar argument, E supu ‖W (h′u)‖22 ≤ c′h′•, for another universal constant c′. Hence,

E sup
u∈Ω
‖W (t′ − h′u)‖2

∣∣∣∣∣ 1√
h•
− 1√

h′•

∣∣∣∣∣ ≤ c′
∣∣∣∣∣
√
h′•
h•
− 1

∣∣∣∣∣ .
Combining these bounds completes the proof.
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