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Abstract
We prove that the ordinary least-squares (OLS) estimator attains nearly minimax optimal per-

formance for the identification of linear dynamical systems from a single observed trajectory. Our
upper bound relies on a generalization of Mendelson’s small-ball method to dependent data, es-
chewing the use of standard mixing-time arguments. Our lower bounds reveal that these upper
bounds match up to logarithmic factors. In particular, we capture the correct signal-to-noise behav-
ior of the problem, showing that more unstable linear systems are easier to estimate. This behavior
is qualitatively different from arguments which rely on mixing-time calculations that suggest that
unstable systems are more difficult to estimate. We generalize our technique to provide bounds for
a more general class of linear response time-series.
Keywords: Linear dynamical systems, autoregressive processes, time series, system identification,
empirical process theory

1. Introduction

System identification—the problem of estimating the parameters of a dynamical system given a time
series of its trajectories— is a fundamental problem in time-series analysis, control theory, robotics,
and reinforcement learning. Despite its importance, sharp, non-asymptotic analyses for the sample
complexity of system identification are rare. In particular, it is not known how many trajectories
are required to identify the parameters of an unknown linear system. Properly characterizing this
sample complexity would have profound implications, since accurate error bounds are indispensable
for designing robust and high-performing control systems. It is important that the bounds be sharp,
in the sense that they do not drastically overestimate the number of required measurements from
system trajectories, which are often time-consuming and prohibitively expensive to collect. More
broadly, a deeper understanding of system identification would inform other statistical problems
where one wishes to learn from non-i.i.d. or time-correlated data.

We focus on the problem of identifying a discrete-time linear dynamical system from an ob-
served trajectory. Such systems are described by two parameter matrices A∗ and B∗, and the dy-
namics evolve according to the law Xt+1 = A∗Xt + B∗ut + ηt, where Xt ∈ Rd is the state of the
system, ut is the input of the system, and ηt ∈ Rd denotes unobserved process noise. Linear sys-
tems are fundamental in control theory, since they are able to capture the behavior of many natural
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systems and also able to accurately describe the evolution of an even broader class of systems near
their equilibria. Despite the importance of understanding the statistical properties of system iden-
tification, the relationship between the matrix A∗ and the statistical rate for estimating this matrix
remains poorly understood. We note that the larger the state vectors Xt are in comparison to the
process noise, the larger the signal-to-noise ratio for estimating A∗ is. As a result, larger matrices
A∗ (larger in an appropriate sense, discussed later) lead to states Xt of larger norm, which in turn
should make the estimation of A∗ easier. However, it is difficult to theoretically formalize this intu-
ition because the sequence of measurements X0, X1, . . . , XT−1 used for estimation is not i.i.d. and
it is dependent on the noise η0, η1, . . . , ηT−2. Even the computationally straightforward ordinary
least-squares (OLS) estimator is difficult to analyze. Standard analyses for OLS on random design
linear regression (Hsu et al., 2014) cannot be used due to the dependency between the covariates Xt

and the process noise ηt.
In the statistics and machine learning literature, correlated data is usually dealt with using

mixing-time arguments (Yu, 1994), which relies on fast convergence to a stationary distribution
that allows correlated samples to be treated roughly as if they were independent. While this ap-
proach has been successfully used to develop generalization bounds for time-series data (Mohri and
Rostamizadeh, 2007a), a fundamental limitation of mixing-time arguments is that the bounds dete-
riorate when the underlying process is slower to mix. In the case of linear systems, this behavior is
qualitatively incorrect. For linear systems, the rate of mixing is intimately tied to the eigenvalues
of the matrix A∗, specifically the spectral radius ρ(A∗). When ρ(A∗) < 1 (i.e. when the system is
stable), the process mixes to a stationary distribution at a rate that deteriorates as ρ(A∗) approaches
the boundary of one. However, as discussed above, as ρ(A∗) increases we expect estimation to
become easier due to better signal-to-noise ratio, and not harder as mixing-time arguments suggest.
We note that recent work by Faradonbeh et al. (2017a) studying the estimation problem for linear
systems relies in the stable case on concentration of measure arguments which also degrade as the
mixing-time of the system grows.

We address these difficulties and offer a new statistical analysis of the ordinary least-squares
(OLS) estimator of the dynamics Xt+1 = A∗Xt + ηt with no inputs, when the spectral radius of
A∗ is at most one (ρ(A∗) ≤ 1, a regime known as marginal stability). Our results, detailed in
Section 2, show that the statistical performance of OLS is determined by the minimum eigenvalue
of the (finite-time) controllability Gramian ΓT =

∑T−1
s=0 A

s
∗(A

>
∗ )s. The controllability Gramian is a

fundamental quantity in the theory of linear systems; the eigenvalues of the Gramian quantify how
much white process noise ηt

i.i.d∼ N (0, σ2I) can excite the system. We show that a larger λmin(ΓT )
leads to faster estimation of A∗ in operator norm, and we also prove that up to log factors the OLS
estimator is minimax optimal. Furthermore, in Section 2.3 we offer similar statistical guarantees for
a more general class of linear response time-series.

1.1. Related Work

Most directly related to our work is a recent series of papers by Faradonbeh et al. (2017a,b), who
study the linear system identification problem by proving a non-asymptotic rate on the convergence
of the OLS estimator to the true system matrices. In the regime where A∗ is stable, Faradonbeh
et al. recover a similar rate as our result. The major difference is that the dependence of their
analysis on the spectral properties of A∗ are qualitatively suboptimal, and difficult to interpret pre-
cisely. Their analysis is based on separately establishing concentration of the sample covariance
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matrix
∑T

t=1XtX
>
t to the stationary covariance matrix and bounding the martingale difference

term
∑T

t=1Xtηt. This decoupled analysis inevitably picks up a dependence on the condition num-
ber of the stationary covariance matrix, which means that as the system becomes more unstable,
their bound deteriorates. Indeed, such a strategy is unable to provide any insight into the behavior
of OLS when, for example, A∗ is a scaled orthogonal matrix. On the other hand, our analysis does
not decouple the two terms, and as a result our bounds only degrade in the logarithm of the condi-
tion number of the finite-time controllability Gramian ΓT . Faradonbeh et al. (2017a) also provide
a bound in the unstable regime, which we believe can be sharpened using our analysis techniques
which couple the covariate- and noise-processes. We leave this to future work. Moreover, our
analysis of one-dimensional, unstable systems corroborates the linear convergence behavior that
Faradonbeh et al. (2017a) obtain for “explosive” systems, which are systems where all eigenvalues
of A∗ lie outside the complex unit disk.

Another closely related work is the scalar analysis by Rantzer (2018). In fact, our proof tech-
nique for scalar systems can be seen as an extension of his technique. The main difference is that
by more carefully tracking the terms that appear in the moment generating function of the noise
and covariate processes, we are able to discriminate behaviors that arise when A∗ is stable versus
unstable, and uncover a linear rate of convergence in the unstable regime.

Our result qualitatively matches the behavior of the rate given in Dean et al. (2017), in that the
key spectral quantity governing the rate of convergence is the minimum eigenvalue of the finite-time
controllability Gramian. The major difference is that the analysis in Dean et al. uses multiple inde-
pendent trajectories, and discards all but the last state-transition in each trajectory. This decouples
the covariates, and reduces the analysis to that of random design linear regression with independent
covariates. We note, however, that the analysis in Dean et al. applies even when A∗ is unstable.

More broadly, there has been recent interest in non-asymptotic analysis of linear system iden-
tification problems. Some of the earlier non-asymptotic literature in system identification include
Campi and Weyer (2002) and Vidyasagar and Karandikar (2008). The results provided in this line
of work are often quite conservative, featuring quantities which are exponential in the degree of
the system. Furthermore, the rates given are often difficult to interpret. More recently, Shah et al.
(2012) pose the problem of recovering a single-input, single-output (SISO) LTI system from linear
measurements in the frequency domain as a sparse recovery problem, proving polynomial sample
complexity for recovery in the H2-norm. Hardt et al. (2016) show that under fairly restrictive as-
sumptions on the A∗ matrix, projected gradient descent recovers the state-space representation of
an LTI system with only a polynomial number of samples. The analysis from both Shah et al. and
Hardt et al. both degrade polynomially in 1

1−ρ(A∗)
, where ρ(A∗) is the spectral radius of underlying

A∗. On the other hand, Hazan et al. (2017) propose a new spectral filtering algorithm for online
prediction of linear systems where the rates do not degenerate as ρ(A∗) → 1, with the caveat that
the analysis only applies to symmetric A∗ matrices. Hazan et al. (2018) extends the analysis to
diagonalizable matrices, but the obtained error rates are polynomial in problem parameters. Both
works also consider the more general setting where Xt is observed indirectly via Yt = CXt for an
unknown observation matrix C. Moreover, the main metric of interest in both Hardt et al. (2016)
and Hazan et al. (2017, 2018) is the prediction error. It is not clear how prediction error guarantees
can be used in downstream robust control synthesis, whereas the operator norm bounds we provide
can be used as direct inputs into robust synthesis for optimal control problems (Dean et al., 2017).

The most well-established technique in the statistics literature for dealing with non-independent,
time-series data is the use of mixing-time arguments (Yu, 1994). In the machine learning literature,
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mixing arguments have been used to develop generalization bounds (Mohri and Rostamizadeh,
2007a,b; Kuznetsov and Mohri, 2017; McDonald et al., 2017) which are analogous to the clas-
sical generalization bounds for i.i.d. data. As mentioned previously, a fundamental limitation of
mixing-time arguments is that the bounds all degrade as the mixing-time increases. This has two
implications for linear system identification: (a) none of these existing results can correctly capture
the qualitative behavior as the A∗ matrix reaches instability, and (b) these techniques cannot be ap-
plied to the regime where A∗ is unstable, for which estimation is not only well-posed, but should be
quite easy. It is for these reasons we do not pursue such arguments in this work.

2. Results

In this work, we consider both the specific problem of estimating linear dynamical systems, and a
more general problem of linear estimation in time series. In both cases we measure the estimation
error in the operator norm ‖ · ‖op. In Section 2.1 we present upper bounds on the estimation error
of the parameters A∗ of a linear dynamical system, which hold for any A∗ with ρ(A∗) ≤ 1. In
Section 2.2 we show that these upper bounds are nearly optimal in many regimes of interest. Finally,
Section 2.3 states a general result, which applies to covariate processes with linear responses.

Notation: We let Sd−1 denote the unit sphere in Rd. Given a matrix M we denote by M †

its pseudoinverse. For a symmetric matrix M ∈ Rd×d, we let λmax(M) and λmin(M) denote its
largest and smallest eigenvalues. If M ∈ Rd×d and M � 0, we denote by SM the set of all points
x ∈ Rd such that ‖M−1/2x‖2 = 1.

2.1. Linear Dynamical Systems

We analyze the statistical performance of the OLS estimator of the parameter A∗ from a single ob-
served trajectoryX1, . . . , XT+1 satisfyingXt+1 = A∗Xt+ηt, whereX0 = 0 and ηt

i.i.d.∼ N (0, σ2Id):

Â(T ) := arg min
A∈Rd×d

T∑
t=1

1

2
‖Xt+1 −AXt‖22 . (2.1)

Our bounds are stated in terms of the finite-time controllability Gramian of the system, denoted by
Γt :=

∑t−1
s=0(As∗)(A

s
∗)
>, which captures the magnitude of the excitations induced by the process

noise. Indeed, we can write Xt explicitly as

Xt =
t∑

s=1

At−s∗ ηs−1 which implies that E[XtX
>
t ] = σ2Γt . (2.2)

Hence, the expected covariance can be expressed in terms of the Gramians via E[
∑T

t=1XtX
>
t ] =

σ2 ·
∑T

t=1 Γt. As is standard in analyses of least-squares, “larger” covariates/covariance matrices
correspond to faster rates of learning. We are ready to state our first result, proved in Section 3:

Theorem 2.1 Fix δ ∈ (0, 1/2) and consider the linear dynamical system Xt+1 = A∗Xt + ηt,
where A∗ is a marginally stable matrix in Rd×d (i.e. ρ(A∗) ≤ 1), X0 = 0, and ηt

i.i.d.∼ N (0, σ2I).
Then there exist universal constants c, C > 0 such that

P

[∥∥∥Â(T )−A∗
∥∥∥

op
>

C√
Tλmin (Γk)

√
d log

d

δ
+ log det(ΓTΓ−1

k )

]
≤ δ, (2.3)
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for any k ≥ 1 such that Tk ≥ c(d log(d/δ) + log det(ΓTΓ−1
k )) holds.

Note that σ2 does not appear in the bound from Theorem 2.1 because scaling the noise also rescales
the covariates. In Appendix A, we show that for any marginally stable A∗, we can always choose a
k ≥ 1 provided T is sufficiently large. Therefore, even when ρ(A∗) = 1 and the system does not
mix, we obtain finite-sample estimation guarantees which also guarantees consistency of estimation.
In many cases, these rates are qualitatively no-worse than random-design linear regression with
independent covariates (Theorem A.2 and Remark A).

In general, λmin (Γk) is a nondecreasing function of the block length k. The intuition for this is
that larger k takes into account more long-term excitations to lower bound the size of our covariance
matrix. However, as we use longer blocks, our high probability bounds degrade. Thus, the optimal
block length is the maximal value k which satisfies the condition in Theorem 2.1.

The dependence on the minimum eigenvalue of the Gramian λmin (Γk) has two interpretations.
From a statistical perspective, we have 1

2k·σ2E[
∑2k

t=1XtX
>
t ] = 1

2k

∑2k
t=1 Γt � 1

2λmin (Γk)·I . Thus,
λmin (Γk) gives a lower bound on the smallest eigenvalue value of the covariance matrix associated
with the first 2k covariates. In fact, one can also show (see (3.12)) that for any t0 ≥ 0, we still have

1
2k·σ2E[

∑t0+2k
t=t0+1XtX

>
t |Xt0 ] � 1

2λmin (Γk) ·I . Theorem 2.1 thus states that the larger the expected
covariance matrix, the faster A∗ is estimated. Note that Γk � I for all k ≥ 1.

The second interpretation is dynamical. The term λmin (Γk) corresponds to the “excitability” of
the system, which is the extent to which the process noise ηt influences future covariates. This can
be seen from (2.2), where the slower (At0∗ )(At0∗ )> decays as t0 grows, the larger the contribution
of ηt−t0−1 is. This is precisely the reason why linear systems with larger spectral radii mix slowly,
and do not mix when ρ(A∗) ≥ 1. In this light, Theorem 2.1 shows that with high-probability, the
more a linear system is excited by the noise ηt, the easier it is to estimate the parameter matrix A∗.
For stable systems with ρ(A∗) < 1, the following corollary removes the explicit dependence on the
block length k for large values of T :

Corollary 2.2 Suppose that ρ(A∗) < 1. Then the limit Γ∞ := limt→∞ Γt exists, and there is a
time T0 depending on A∗ and δ such that the following holds w.p. 1− δ for all T > T0:

∥∥∥Â(T )−A∗
∥∥∥

op
≤ O

√ d · log
(
d
δ

)
Tλmin (Γ∞)

 . (2.4)

The above corollary uses the fact that limk→∞ ‖Ak∗‖
1/k
op = ρ(A∗), which implies that the limit

limt→∞ Γt is finite when ρ(A∗) < 1. The rate of the convergence of Γt to Γ∞ is related to the
H∞-norm of the linear system, a core concept in control theory. For an extended discussion on
this relationship, we direct the reader to Tu et al. (2017). Corollaries A.2 and A.3 in the appendix
give an analogue of Corollary 2.2 which holds even if ρ(A∗) = 1. We now explicitly describe the
consequences of Theorem 2.1 for three illustrative classes of linear systems:

1. Scalar linear system. In this case the statesXt and the parameterA∗ are scalars, and denoted
a∗ = A∗. For |a∗| ≤ 1, we can apply Theorem 2.1 with block length k = O(T/ log(1/δ)).

This then guarantees that |â−a∗| ≤ O
(√

log(1/δ)/
(
T
∑k∗

t=1 a
2t
∗

))
with probability 1−δ.

In Appendix B, we show this statistical rate is minimax optimal (Theorem B.2). Moreover, we
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offer a specialized analysis for the scalar case (Theorem B.1) which yields sharper constants
and also applies to the unstable case |a∗| > 1, matching the lower bounds of Theorem B.2.
Stated succinctly, our results in Appendix B imply that the OLS estimator satisfies with prob-
ability 1− δ error guarantees which can be categorized into three regimes:

|â− a∗| =


Θ

(√
log(1/δ)(1−|a∗|)

T

)
if |a∗| ≤ 1− c log(1/δ)

T ,

Θ
(

log(1/δ)
T

)
if 1− c log(1/δ)

T < |a∗| ≤ 1 + 1
T

Θ
(

log(1/δ)
|a∗|T

)
if 1 + 1

T ≤ |a∗|.

White (1958) showed the same dependence on |a∗| of the estimation error by characterizing
the asymptotic distribution of â − a∗ when appropriately scaled. However, our results offer
finite sample guarantees.

2. Scaled orthogonal systems. Let us assume A∗ = ρ ·O for an orthogonal d× d matrix O and
|ρ| ≤ 1. Then, one can verify that Γt = I ·

∑t−1
s=0 ρ

2s and that we can choose the block length

k = O
(

T
d log(d/δ)

)
. Therefore, Theorem 2.1 guarantees that with probability 1− δ:

‖Â−A∗‖op ≤

O
(√

(1− |ρ|) · d log(d/δ)
T

)
if |ρ| ≤ 1− cd log(d/δ)

T ,

O
(
d log(d/δ)

T

)
if 1− cd log(d/δ)

T < |ρ|.
(2.5)

3. Diagonalizable linear systems. LetA∗ = SDS−1 define a diagonalizable linear system. We
denote by ρ the smallest magnitude of an eigenvalue of A∗. In Appendix A, we show that we
can choose the block length k such that k ≥ T

cd log
(
d cond(S)

δ

) . With this choice of k the OLS

estimator satisfies (Corollary A.3)

P

‖Â−A∗‖op ≤ O

√√√√ d log(d cond(S)/δ)

T
(

1 + cond(S)−2
∑k−1

s=0 ρ
2s
)

 ≥ 1− δ

which could once again be split into a slow and fast rate, as in the examples presented above,
depending on the size ρ of the least excitable mode of the system defined by A∗. Note that
up to a factor of log(d cond(S)/δ), the above bound is no worse than the worst-case rate for
standard random-design least-squares in the operator norm (see Appendix G).

Remark 1 (Noise dependence) As mentioned before, the estimation guarantee provided by Theo-
rem 2.1 does not depend on the variance σ2 of the noise ηt. For Gaussian noise with a general
identity covariance ηt ∼ N (0,Σ), one can rederive rates from our more general Theorem 2.4
to get a more precise dependence on Γt and Σ. Note that if the covariance Σ is known, an
alternative estimator would be to choose Â to minimize a loss which takes Σ into account in
the same way that one would for non-dynamic linear regression with heteroskedastic noise, e.g.
ÂΣ(T ) := arg minA∈Rd×d

∑T
t=1

1
2

∥∥Σ−1/2 (Xt+1 −AXt)
∥∥2

2
.
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Remark 2 (Learning with input sequences) We can also consider the case where the linear sys-
tem Xt+1 = A∗Xt + B∗ut + ηt is driven by a known sequence of inputs u0, u1, . . . , with known
B∗. Defining the control Gramian ΓB∗t :=

∑t
s=1A

t−s
∗ B∗B

>
∗ A

t−s
∗ , the proof of Theorem 2.1 can

be modified to show that, if the inputs are white noise ut
i.i.d∼ N (0, σ2

uI), then there exist universal
constants c, C > 0 such that, with probability 1− δ,

‖Â(T )−A∗‖op ≤
Cσ2√

Tλmin

(
σ2Γk + σ2

uΓB∗k )
)
√√√√√d log

1

δ

tr
(
σ2ΓT + σ2

uΓB∗T )
)

λmin

(
σ2Γk + σ2

uΓB∗k

)


for any k such that Tk ≥ cd log

(
tr(σ2ΓT+σ2

uΓB∗T )

δλmin(σ2Γk+σ2
uΓB∗k )

)
. Process noise with covariance not equal to

a multiple of the identity can be absorbed into B∗.

2.2. Lower Bounds for Linear System Identification

We have seen in Theorem 2.1 and in the subsequent examples that the estimation of linear dynamical
systems is easier for systems which are easily excitable. It is natural to ask what is the best possible
estimation rate one can hope to achieve. To make explicit the dependence of the lower bounds
on the spectrum of Γt, we consider the minimax rate of estimation over the set ρ · O(d), where
ρ ∈ R and O(d) denotes the orthogonal group. In this case, we can define an scalar Gramian
γt(ρ) :=

∑t−1
s=0 |ρ|2s, so that Γt := γt(ρ) · I . We now show that the estimation rate of the OLS

provided in Theorem 2.1 is optimal up to log factors for |ρ| ≤ 1− Õ (d/T ):

Theorem 2.3 Fix d ≥ 2, ρ ∈ R, δ ∈ (0, 1/4), and ε ≤ ρ
2048 . Then, there exists a universal constant

c0 such for any estimator Â,

sup
O∈O(d)

PρO
[∥∥∥Â(T )− ρO

∥∥∥
op
≥ ε
]
≥ δ for any T such that TγT (ρ) ≤ c0 (d+ log (1/δ))

ε2
,

where O(d) is the orthogonal group of d× d real matrices.

This result is proved in Appendix F.1. We can interpret it by considering the following regimes:

‖Â−A∗‖op ≥



Ω

(√
(d+log(1/δ))·(1−|ρ|)

T

)
if |ρ| ≤ 1− 1

T ,

Ω

(√
d+log(1/δ)

T

)
if 1− 1

T < |ρ| < 1 + 1
T

Ω

(√
d+log(1/δ)

T |ρ|T

)
if 1 + 1

T ≤ |ρ|.

Comparing to (2.5), we see that for |ρ| ≤ 1 − Õ (d/T ), our upper and lower bounds coincide up
to logarithmic factors. In the regime ρ ∈ [1− Õ (d/T ) , 1], our upper and lower bounds differ by a
factor of Õ

(√
d+ log(1/δ)

)
.
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2.3. General Time Series with Linear Responses

In this section, we consider a sequence of covariate-response pairs (Xt, Yt)t≥1, where Yt = A∗Xt+
ηt, with Yt, ηt ∈ Rn, Xt ∈ Rd, and A∗ ∈ Rn×d. The least squares estimator is then

Â(T ) := arg minA∈Rd×d
∑T

t=1
1
2‖Yt −AXt‖22 . (2.6)

We let Ft := σ(η0, η1, . . . , ηt, X1, . . . , Xt) denote the filtration generated by the covariates and
noise process. Note then that Yt ∈ Ft, but Yt /∈ Ft−1. Further, we assume ηt|Ft−1 is mean-zero,
and σ2-sub-Gaussian (i.e., E[exp(ληt)|Ft] ≤ eσ

2λ2/2). The linear dynamical systems sub-case is
recovered from this general setting when Yt = Xt+1.

To capture the excitation behavior observed in the case of linear systems we introduce a general
martingale small-ball condition which quantifies the growth of the covariates Xt.

Definition 2.1 (Martingale Small-Ball) Let (Zt)t≥1 be an {Ft}t≥1-adapted random process tak-
ing values inR. We say (Zt)t≥1 satisfies the (k, ν, p)-block martingale small-ball (BMSB) condition
if, for any j ≥ 0, one has 1

k

∑k
i=1 P(|Zj+i| ≥ ν|Fj) ≥ p almost surely. Given a process (Xt)t≥1

taking values in Rd, we say that it satisfies the (k,Γsb, p)-BMSB condition for Γsb � 0 if, for any
fixed w ∈ Sd−1, the process Zt := 〈w,Xt〉 satisfies (k,

√
w>Γsbw, p)-BMSB.

Such a small-ball condition is necessary for establishing a high-probability lower bound on
λmin(

∑T
t=1XtX

>
t ) = minw∈Sd−1

∑T
t=1〈Xt, w〉2. The parameter Γsb plays the role of the Grami-

ans Γt considered in the case of linear systems, and measures how excitable the covariates Xt are.
As expected, the next result shows that a higher λmin(Γsb) leads to faster statistical estimation.

Theorem 2.4 Fix ε, δ ∈ (0, 1), T ∈ N and 0 ≺ Γsb � Γ. Then if (Xt, Yt)t≥1 ∈ (Rd × Rn)T is a
random sequence such that (a) Yt = A∗Xt + ηt, where ηt|Ft is σ2-sub-Gaussian and mean zero,
(b) X1, . . . , XT satisfies the (k,Γsb, p)-small ball condition, and (c) such that
P[
∑T

t=1XtX
>
t � TΓ] ≤ δ. Then if

T ≥ 10k

p2

(
log

(
1

δ

)
+ 2d log(10/p) + log det(ΓΓ−1

sb )

)
, (2.7)

we have

P

∥∥∥Â(T )−A∗
∥∥∥

op
>

90σ

p

√
n+ d log 10

p + log det ΓΓ−1
sb + log

(
1
δ

)
Tλmin(Γsb)

 ≤ 3δ. (2.8)

The proof of Theorem 2.4 is outlined in Section 4, and technical details are deferred to Appendix D.
We remark that the conclusion of Theorem 2.4 still holds if one replaces the (k,Γsb, p) small-ball
condition with any high probability lower bound of the form P

(∑T
t=1XtX

>
t % TΓsb

)
≤ δ.

2.4. Analysis Techniques

Let Â = Â(T ), let X ∈ RT×d denote the matrix whose rows are Xt, and E ∈ RT×n denote the
matrix whose rows are ηt. Consider the compact SVD of X and X = UΣV>, where Σ,V ∈ Rd×d
and U ∈ RT×d. Note then that we have Â−A∗ = (X†E)> which implies that

‖Â−A?‖op = ‖X†E‖op ≤ σd(X)−1‖U>E‖op. (2.9)

8
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Here σd((X)−1) denotes the d-th largest singalue value of X, which is precisely
√

1/λmin(X>X).
The technical challenge arises from the fact that the singular space U> and E are correlated, and that
the rows Xt of X are also dependent. We upper bound ‖U>E‖op with Lemma 4.14, a martingale-
Chernoff bound that gives precise control on the deviations of sub-Gaussian martingale sequences in
terms of random variance proxies. We explain this argument in more detail at the end of Section 4.

Our lower bound on σmin(X) =
√
λmin(

∑T
t=1XtX>t ) eschews mixing-time arguments in

favor of a careful modification of Mendelson’s small-ball method (Mendelson, 2014). We divide our
covariates into size-k blocks {X(`−1)k+1, . . . , X`k}, such that for any fixed w ∈ Sd−1, the quantity∑k

`=1〈X(`−1)k+1, w〉2 can be lower bounded by the (k,Γsb, p)-BMSB condition. Proposition 2.5
below (proved in Appendix E.1) then implies that we have

∑T
t=1〈Xt, w〉2 & Tw>Γsbw with

probability at least 1− exp(−cT/k) for some constant c:

Proposition 2.5 Let {Zt}t≥1 be a scalar process that satisfies the (k, ν, p)-BMSB condition. Then

P

[
T∑
i=1

Z2
i ≤

ν2p2

8
kbT/kc

]
≤ e−

bT/kcp2
8 . (2.10)

Once T is large enough, these high-probability bounds can be used to derive a uniform bound over
w ∈ Sd−1 via a discretization argument (Lemma 4.1). In general there is a trade-off between the
size of the blocks k and the probability guarantee obtained: a larger block size leads to a larger
parameter ν and a faster rate, but it degrades the probability guarantee.

3. Theorem 2.1 as a corollary of Theorem 2.4

In this section, we show how to obtain Theorem 2.1 as a fairly straightforward consequence of our
meta-theorem, Theorem 2.4. By assumption, our noise process satisfies the σ2-sub-Gaussian tail
condition. Moreover, we see that

P
[
X>X �

σ2d

δ
TΓT

]
= P

[
λmax((TΓT )−1/2X>X(TΓT )−1/2) ≥ σ2d

δ

]
≤ δ

σ2d
· E[λmax((TΓT )−1/2X>X(TΓT )−1/2)]

≤ δ

dσ2
· E[tr((TΓT )−1/2X>X(TΓT )−1/2)] ≤ δ

where the last inequality follows because E[X>X] = σ2
∑T

t=1 Γt � σ2TΓT . Hence, we can set
Γ = σ2d

δ ΓT . Noting log det((dδσ
2ΓT ))(σ2Γbk/2c)

−1) = d log d/δ + log det(ΓTΓ−1
bk/2c), it suffices

to verify that (Xt)t≥1 satisfies the
(
k, σ2Γbk/2c,

3
20

)
-BMSB condition.

Proposition 3.1 Consider the linear dynamical system Xt+1 = AXt + ηt, where X0 ∈ Rd and
ηt

i.i.d.∼ N (0, σ2I), and let Γt :=
∑t−1

s=0(As)(As)>. Then, for 1 ≤ k ≤ T , the process (Xt)t≥1

satisfies the (
k, σ2Γbk/2c,

3

20

)
-block martingale small-ball condition. (3.11)

9
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Proof Let 1 ≤ k′ ≤ k. Note that, for t ≥ 1, Xs+t

∣∣Fs ∼ N (〈w,AtX0〉, σ2w>Γtw). Hence, for
t ≥ k′, one has

P
(
|〈w,Xs+t〉| ≥ σ

√
w>Γk′w

∣∣Fs) (i)

≥ P
(
|〈w,Xt〉| ≥ σ

√
w>Γtw

∣∣Fs) (ii)

≥ 3

10
,

where (i) uses the fact that Γt � Γk′ for t ≥ k′, and (ii) follows from the Paley-Zygmund lower
bound,

∀t ∈ R, PZ∼N (0,σ2)[|t+ Z| ≥ σ] ≥ P[|Z| ≥ σ] ≥ 3/10 . (3.12)

Therefore, we have

1

k

k∑
t=1

P
(
|〈w,Xt〉| ≥ σ

√
w>Γk′w

)
≥ 1

k

k∑
t=k′

P
(
|〈w,Xt〉| ≥ σ

√
w>Γk′w

)
≥ 3

10

k − k′ + 1

k
.

Finally, choosing k′ = bk/2c yields the desired conclusion.

4. Proof of Theorem 2.4

Again, we let X ∈ RT×d denote the matrix whose rows are Xt, and E ∈ RT×n denote the matrix
whose rows are ηt, and consider the compact SVD of X and X = UΣV>, where Σ,V ∈ Rd×d
and U ∈ RT×d. Recalling (2.9), we have ‖Â(T ) − A?‖op ≤ σd(X)−1‖U>E‖op. Let K denote
a threshold parameter to be chosen later. Then ‖Â(T ) − A?‖op ≤ σd(X)−1‖U>E‖op implies the
following set-theoretic inclusions,{

‖X†E‖op ≥
4K

p
√
kbT/kcλmin(Γsb)

}
∩
{

XX> � kbT/kcp2Γsb

16

}

⊆

{
‖U>E‖op ≥

4K

p
√
kbT/kcλmin(Γsb)

σmin(X)

}
∩
{

XX> � kbT/kcp2Γsb

16

}
⊆
{
‖U>E‖op ≥ K

}
∩
{

XX> � kbT/kcp2Γsb

16

}
.

Now define the following events

E1 :=
{
‖U>E‖op ≥ K

}
, E2 :=

{
X>X � kbT/kcp2Γsb

16

}
, E3 :=

{
X>X � Γ

}
.

Then we have

P

[
‖Â(T )−A?‖op ≥

4K

p
√
kbT/kcλmin(Γsb)

]
≤ P

[{
‖X†E‖op ≥

4K

p
√
kbT/kcλmin(Γsb)

}]

≤ P

[{
‖X†E‖op ≥

4K

p
√
kbT/kcλmin(Γsb)

}
∩ Ec3

]
+ P[E3]

≤ P

[{
‖X†E‖op ≥

4K

p
√
kbT/kcλmin(Γsb)

}
∩ E2 ∩ Ec3

]
+ P[Ec2 ∩ Ec3] + P[E3]

≤ P [E1 ∩ E2 ∩ Ec3] + P[Ec2 ∩ Ec3] + P[E3] .

10



LEARNING WITHOUT MIXING

By assumption P[E3] ≤ δ. Our task is to show that both P [E1 ∩ E2 ∩ Ec3] and P[Ec2 ∩ Ec3] are upper

bounded by δ for the choice of K = 20σ
√
n+ d log(10/p) + log det(ΓΓ−1

sb ) + log(1/δ). Both
bounds are proven in detail in Appendix D, but here we state the main technical arguments required
for their proof. All supplementary technical results (Lemma 4.1, Lemma 4.2 and Proposition 2.5)
are proven in Appendix E.

Our bound on P[Ec2∩Ec3] comes directly from the BMSB assumption. Applying Proposition 2.5,

we have that for any fixed w ∈ Sd−1, P
[∑T

t=1〈w,Xt〉2 ≤ w>Γsbwp
2

8 kbT/kc
]
≤ e−

bT/kcp2
8 . To

obtain a Lowner lower-bound X>X, we need to strengthen the above pointwise bound into a lower
bound on infw∈Sd−1

∑T
t=1〈w,Xt〉2. This is achieved through the following covering lemma, proved

in Appendix E.3.1:

Lemma 4.1 Let Q ∈ RT×d and consider matrices 0 ≺ Γmin � Γmax ∈ Rd×d. Let T be a 1/4-net
of SΓmin in the metric ‖Γ1/2

max(·)‖2. Then, if infw∈T w
>Q>Qw ≥ 1 and Q>Q � Γmax, we have

Q>Q � Γmin/2 . (4.13)

Choosing Q = XX>, this lemma gives us a bound on the granularity at which we need to cover
Sd−1 in terms of a uniform Lowner upper bound Γmax = TΓ, and pointwise Lowner lower bound
with Γmin = Γsbp

2

8 kbT/kc. The details are worked through in Appendix D.1. The larger Γmax is
compared to Γmin in a Lowner sense, the larger the cardinality of the net T must be. Crucially, this
term enters logarithmically into our final bound via the relative volume log det(ΓmaxΓ

−1
min) of the

ellipsoids induced by Γmax and Γmin.
Lastly, we bound the probability of E1 ∩ E2 ∩ Ec3 , which is the event that

{
‖U>E‖op ≥ K

}
when the spectrum of X>X is bounded in some desired range. U is difficult to control directly.
Instead, we work with quantities in terms of X, namely ‖U>E‖op = supv∈Sn−1,w∈Rd

w>XEv
‖Xw‖ .

The key idea here now is to use a martingale-Chernoff bound to show that, for any fix w ∈ Sd−1

and v ∈ Sn−1, either w>X>Ev concentrates like a σ2‖Xw‖22-sub-Gaussian random variable, or
w>X>Ev is much smaller than the lower bound on σmin(X) under E2 ∩ Ec3 .

We emphasize that our bound controls w>X>Ev in terms of σ2‖Xw‖22, which is a proxy for
variance. This is subtle yet powerful because it yields an immediate cancellation between the nu-
merator and denominator of w

>XEv
‖Xw‖ . In particular, this implies that P({w>XEv

‖Xw‖ & log(1/δ)}∩E2 ∩
Ec3) . δ. This lets us reduce our problem to finding an appropriate discretization (see Lemma D.2).
We stress that an approach which boundsw>XEv and ‖Xw‖ separately would be considerably less
sharp, and would degrade for slower-mixing systems. Our data-dependent concentration bound is a
consequence of the following technical lemma, which we apply with Zt := w>Xt and Wt = η>t v.

Lemma 4.2 Let {Ft}t≥0 be a filtration, and {Zt}t≥1 and {Wt}t≥1 be real-valued processes
adapted to Ft and Ft+1 respectively. Moreover, assume Wt|Ft is mean zero and σ2-sub-Gaussian.
Then, for any positive real numbers α, β, β−, β+ we have

(a) P

[{
T∑
t=1

ZtWt ≥ α

}
∩

{
T∑
t=1

Z2
t ≤ β

}]
≤ exp

(
− α2

2σ2β

)
. (4.14)

(b) P


∑T

t=1 ZtWt√∑T
t=1 Z

2
t

> α

 ∩
{

T∑
t=1

Z2
t ∈ [β−, β+]

} ≤ log

⌈
β+

β−

⌉
exp

(
−α2

6σ2

)
.(4.15)

11
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5. Discussion and future work

In this paper, we analyzed the the performance of the OLS estimator for the estimation of linear
dynamics Xt+1 = A∗Xt + ηt from a single trajectory X0, X1, . . . , XT , as a special case of linear
estimation in time series. We show that, up to logarithmic factors, the OLS estimator attains an
information-theoretic lower bound for ρ(A∗) < 1, provided that T & d

1−ρ(A∗)
. Moreover, we

present an analysis that eschews both mixing and concentration arguments for estimation in time
series. We believe that there are several promising directions for future work:

• Our lower and upper bounds do not perfectly match, even when ρ(A∗) < 1. We believe
resolving these discrepancies may shed greater insight into learning in dynamical systems.

• While our guarantees are stated in the operator norm, control applications may require more
granular notions of error which vary for different modes of A∗. Developing error bounds
which capture the error rate at each mode may result in more applicable bounds for control
applications downstream.

• While our analysis can accomodate an unknown B∗ as a consequence of Theorem 2.4, the
resulting rates do not distinguish between the error in the estimation of A∗ and that of B∗. In
future, we hope to develop sharp error rates for A∗ and B∗ individually, similar to Dean et al.
(2017) in the independent covariates setting.

• Our convergences rates degrade for systems with ρ(A∗) > 1, whereas we know from Faradon-
beh et al. (2017a) that a large class of these systems are still identifiable with OLS. Is there a
unified analysis for systems with stable and unstable modes?

• In many systems, we do not observe Xt directly, but only view CXt for a matrix C ∈ Rno×n,
where n0 ≤ n. Hazan et al. (2017, 2018) provide filtering techniques to minimize regret
for diagonalizable matrices; it would be interesting to understand the sample complexity for
estimating arbitrary matrices with these limited observations.

• Ultimately, we would like to understand what sequences of control inputs ut yield the most
accurate estimation of the system (A∗, B∗). This would inform adaptive algorithms which
adjust the sequence ut in a sequential fashion, and online algorithms which ensure low regret
relative to a given cost functional over time.
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Appendix A. Existence of k for ρ(A∗) ≤ 1

Proposition A.1 Let A∗ = SJS−1 and T ≥ d, where J has block sizes b1, . . . , bL. Then,

log det(ΓTΓ−1
k ) ≤ 2d log cond(S) + d log

T

k
+ 4 log T

∑
`:b`≥2

b2` (1.16)

where cond(S) denotes the complex condition number of S, namely
√
λmax(S∗S)/λmin(S∗S).

The above proposition directly implies consistency for whenever ρ(A∗) ≤ 1:

Corollary A.2 [Consistency of Least Squares] There exists a universal constants C, c > 0 such
that for any time horizon T , δ ∈ (0, 1/2), and any A∗ with ρ(A∗) ≤ 1 and Jordan decomposition
A∗ = SJS−1, where J has block sizes b1, . . . , bL, k ∈ N satisfies the conditions of Theorem 2.1
provided that

T

k
≥ c

d log

(
dcond(S)T

kδ

)
+ log T

∑
`:b`≥

b2`

 , (1.17)

Taking k = 1, implies a minimax-rate of estimation of

‖A−A∗‖op ≤ C

√
log(dT cond(S)/δ) + log T

∑
`:b`≥2 b

2
`

T
(1.18)

which holds as long as T ≥ c(d log(cond(S) dkδ +
∑

`:b`≥1 b
2
` log(

∑
`:b`≥1 b

2
` ))

Remark Observe that if the Jordan decomposition is such that
∑

`:b`≥1 b
2
` . d, then our minimax

rate coincides with the minimax rate of linear regression with isotropic covariates up to logarithmic
factors. Moreover, we above that

For diagonalizable matrices, the rates can be made more explicit:

Corollary A.3 There exists a universal constants C, c > 0 such that the following holds. Fix any
time horizon T , δ ∈ (0, 1/2), let A∗ = SDS−1 be diagonalizable with ρ(A∗) ≤ 1 and minimum
eigenvalue-magnitude ρ. Then, k ∈ N satisfies the conditions of Theorem 2.1 provided that

T

k
≥ cd log(cond(S)/δ) (1.19)

This implies that for T ≥ cd log(cond(S)/δ)

‖A−A∗‖op ≤ C

√
d log(cond(S)/δ)

TΓbT/cd log(cond(S)/δ)c
(1.20)

≤
√

d log(cond(S)/δ)

T (1 + cond(S)−2
∑bT/cd log(cond(S)/δ)c−1

s=1 ρ2s
(1.21)

15



LEARNING WITHOUT MIXING

A.1. Proof of Corrollary A.2

By Theorem 2.1, T and k must satisfy the inequality

T/k ≥ c(d log
d

δ
+ log det ΓTΓ−1

k ) (1.22)

Equation (1.17) follows directly from Proposition A.1. Specializing to k = 1, Proposition A.1 and
Theorem 2.1 immediately imply (1.18). To upper bound the burn-in time for T , we note that by
Proposition A.1, the condition (1.22) holds as soon as

T ≥ c′(d log
dcond(S)

δ
) and T ≥ c′ log T (d+

∑
`:b`≥2

b2` ) (1.23)

for a universal constant c′. We can bound d+
∑

`:b`≥2 b
2
` ≤

∑
` b

2
` , where the latter sum is over all

Jordan blocks. We now invoke the following lemma, which we prove shortly:

Lemma A.4 Let α ≥ 1. Then for any T ∈ N, T ≥ α log T as soon as T ≥ 2α log 4α

The lemma implies that it is enough to ensure T ≥ c′(d log dcond(S)
δ ) and that T ≥ 2c′ log T (4

∑
` b

2
` ),

both of which can be ensured by choosing the constant c in Corollary A.2 to be sufficiently large.
Proof [Proof of Lemma A.4] Taking derivatives, T 7→ T −α log T is increasing in T for all T ≥ α.
Hence, it suffices to show that for T = 2α log 4α, T ≥ α log T . Observe that for this choice of α,

α log T = α log(2α log(4α))

≤ α log((2 log 4) · α+ 2α2)

≤ α log((2 log 4 + 2))α2) since α ≥ 1

= 2α log
√

2 log 4 + 2 ≤ 2α log 4 .

A.2. Proof of Corrollary A.3

By Theorem 2.1, T and k must satisfy the inequality

T/k ≥ c(d log
d

δ
+ log det ΓTΓ−1

k )

Using the upper bound on log det ΓTΓ−1
k from Proposition A.1, it is enough to ensure that

T

k
≥ c′(d log

dcond(S)

δ
) and

T

k
≥ c′d log

T

k
(1.24)

for some universal constant c′ (note that the term
∑

`:b`≥2 b
2
` vanishes for diagonalizable A∗). By

inflating c′, we may assume c′ ≥ 1. Appling Lemma A.4 with change of variables T ← T/k, (1.24)
holds as long as as long as T/k ≥ 2c′d log(4c′d), and T/k ≥ c′(d log dcond(S)

δ ), which holds as
long as

T/k ≥ c′′′(d log
dcond(S)

δ
))
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for some constant c′′′. This proves (1.19). We then see that that (1.20) in Corollary A.3 is an
immediate consequence of A.3, and (1.20) follows from the Lowner Lower bound, with A∗ =
SDS−1:

ΓT = I +
T−1∑
t=1

(At∗)(A
t
∗)
∗

= I +
T−1∑
t=1

(SDtS−1)(SDtS−1)∗

= I + S
T−1∑
t=1

SDtS−1S−∗Dt∗S∗

� I + λmin(S−1S−∗)
T−1∑
t=1

SDtDt∗S∗

� I + λmin(S−1S−∗)SS∗(
T−1∑
t=1

ρ2t)

� I + λmin(S−1S−∗)λmax(SS∗)(
T−1∑
t=1

ρ2t)I

= I(1 + cond(S)−2(

T−1∑
t=1

ρ2t))

A.3. Proof of Proposition A.1

Let A∗ = SJS−1, where J is a Jordan-Block matrices with blocks J1, . . . , JL of sizes b1, . . . , bL.
Note that even those A∗ is real, S and J may be complex valued, so we shall use adjoints instead of
transposes. We can compute

Γt = S

t−1∑
s=0

(Js)S−1S−∗Js∗S>

Hence,

log det(ΓTΓ−1
k )

= log det{S
T−1∑
s=0

JsS−1S−∗Js∗S>(S
k−1∑
s=0

JsS−1S−∗Js∗S∗)−1}

= log det{S
T−1∑
s=0

JsS−1S−∗Js∗(
k−1∑
s=0

(Js)S−1S−∗Js∗)−1S−1}

= log det{
T−1∑
s=0

JsS−1S−∗Js∗(

k−1∑
s=0

(Js)S−1S−∗Js∗)−1}
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Lower bounding S−1S−∗ . σmin(S)−1 and S−1S−∗ & 1/σmax(S)2, we can upper bound the
above by

log det(ΓTΓ−1
k ) ≤ log det{cond(S)2

T−1∑
s=0

JsJs∗(
k−1∑
s=0

(Js)Js∗)−1}

= 2d log cond(S) + log det{
T−1∑
s=0

(Js)Js∗(

k−1∑
s=0

JsJs∗)−1}

To continue the bound, write the Jordan matrices J = block(J1, . . . , JL) as block diagonal matri-
ces. Then

log det(ΓTΓ−1
k ) ≤ log det{cond(S)2

T−1∑
s=0

(Js)Js∗(

k−1∑
s=0

JsJs∗)−1}

= 2d log cond(S)

B∑
b=1

log det{
T−1∑
s=0

Js` J
s∗
` (

k−1∑
s=0

Js` J
s∗
` )−1}

If J` = a` is a Jordan matrix with block size equal to 1, then

log det{
T−1∑
s=0

(Js` )Js∗` (
k−1∑
s=0

Js` J
s∗
` )−1} = log

∑T−1
s=0 |a`|2s∑k−1
s=0 |a`|2s

≤ log
dT/ke

∑k−1
s=0 |a`|2s∑k−1

s=0 a
2s
`

= log(dT/ke)

where the inequality uses the fact that a2s
` is decreasing. If dim(J`) > 1, we shall use the following

lemma:

Lemma A.5 Let A � 0 be a d × d Complex Hermitian matrix. Then A � dDiag(A), where
Diag(A) is the diagonal matrices whose diagonal entries are those of A.

Proof We can write

dDiag(A)−A = (d− 1)Diag(A) +
∑

1≤i 6=j≤d
Aijeie

>
j +Aijeje

>
i

=
∑

1≤i 6=j≤d
Aiieie

∗
i +Aij(eie

>
j + eje

>
i ) +Ajjeje

>
j � 0

18
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We can then bound

log det{
T−1∑
s=0

Js` J
s∗
` (

T−1∑
s=0

(Js` )Js∗` )−1}
(i)

≤ log det{
T−1∑
s=0

Js` J
s∗
` }

(ii)

≤ log det{dim(J`)Diag(

T−1∑
s=0

(Js` )Js∗` )}

= dim(J`) log dim(J`) +

dim(J`)∑
i=1

log(
T−1∑
s=0

(Js` J
s∗
` )ii)

= dim(J`) log dim(J`) +

dim(J`)∑
i=1

log(
T−1∑
s=0

∑
j

(Js` )2
ij)

where (i) uses that
∑T−1

s=0 J
s
` J

s∗
` � I , and (ii) uses Lemma A.5. We can then compute that if J`

has diagonals a`,

(Js` )i,j =

{(
s
j−i
)
a
s−(j−i)∨0
` i ≤ j

0 otherwise

So that ∑
j

(Js` )2
ij =

∑
j≥1

(

(
s

j − i

)
)2|a`|2(T−(j−i)∨0)

= dim(J`)
2s2(dim(J`)−i)

Hence,

dim(J`)∑
i=1

log(

T−1∑
s=0

∑
j

(Js` )2
ij) ≤

dim(J`)∑
i=1

log(dim(J`)
2
T−1∑
s=0

s2(dim(J`)−i))

≤
dim(J`)∑
i=1

log(dim(J`)
2T 2(dim(J`)−i)+1)

= 2 dim(J`) log(dim(J`)) +

dim(J`)∑
i=1

2(dim(Jb)− i) + 1 log(T )

= 2 dim(J`) log(dim(J`)) + log(T ) ·
dim(J`)∑
i=1

i

≤ 2 dim(J`) log(dim(J`)) + dim(J`)
2 log T

≤ 4 dim(J`)
2 log T

where the last line uses that T ≥ d ≥ dim(J`), and that dim(J`) ≥ 2.
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Appendix B. Specialized Analysis in Scalar Linear Systems

In this appendix, we present specialized upper and lower bounds in the case of scalar systems.
Specifically, we consider xt+1 = a∗xt + ηt, where ηt ∼ N (0, σ2), and x0 = 0. Our upper
bound has sharp, explicit constants, and captures the correct qualitative behavior for unstable scalar
systems:

Theorem B.1 Let ε ∈ (0, 1) and δ ∈ (0, 1/2). Then P[|â(T )− a∗| ≤ ε] ≥ 1− δ as long as

T ≥


8
ε log

(
2
δ

)
+ 4

ε2
(1− (|a∗| − ε)2) log

(
2
δ

)
a∗ ≤ 1 + ε

max
{

8
(|a∗|−ε)2−1

log
(

2
δ

)
,

4 log( 1
ε
)

log(|a∗|−ε) + 8 log
(

2
δ

)}
a∗ > 1 + ε .

We match the upper bound with a lower bound which shows that our rates are optimal. Unlike
the d-dimension case, our lower bound considers “local alternatives” rather than scaled orthogonal
matrices1:

Theorem B.2 (1-D Lower Bound) Fix an a∗ ∈ R, and define ΓT :=
∑T

t=1 a
2t
∗ . Fix an alternative

a′ ∈ {a∗ − 2ε, a∗ + 2ε}, and δ ∈ (0, 1/4). Then for any estimator â,

sup
a∈{a∗,a′}

Pa [|â(T )− a∗| ≥ ε] ≥ δ for any T such that TΓT ≤
log(1/2δ)

8ε2
.

Theorem B.1 is proven in Section C below, and Theorem B.2 is proven in Section F.1.

Appendix C. Proof of Theorem B.1

To prove Theorem B.1, we write the error E = â − a =
∑T−1
t=0 xtηt∑T−1
t=0 x2t

. Since are interested in upper

bounding the probability that |E| > ε it suffices to to show that the following two probabilities are
small:

P

(
ε
T−1∑
t=0

x2
t −

T−1∑
t=0

xtηt < 0

)
and P

(
ε
T−1∑
t=0

x2
t +

T−1∑
t0

xtηt < 0

)
.

These probabilities are upper bounded by a standard Chernoff bound

P

(
ε
T−1∑
t=0

x2
t ±

T−1∑
t=0

xtηt < 0

)
≤ inf

λ≤0
E exp

(
λε

T−1∑
t=0

x2
t ± λ

T−1∑
t=0

xtηt

)
. (3.25)

We will apply this equation with λ = −ε, controlling its magnitude with following lemma, proved
in Section C.1 below:

Lemma 3 Let a, ν, µ, and x be real numbers with ν < 1 and let η ∼ N (0, 1). Then

Eη exp
(
ν
2 (ax+ η)2 + µxη

)
=

exp

(
x2 νa

2+2νaµ+µ2

2(1−ν)

)
√

1−ν .

1. In one dimension, the orthogonal matrices are just the set {−1, 1}, and this precludes packing ‘nearby’ orthogonal
matrices as in the d-dimensional case
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With this lemma in hand, we can construct a recursive sequence which upper bounds |a − â| with
high probability:

Proposition C.1 Let a be a real number and for α ∈ R+ and ε ∈ (0, 1) define recursively the
sequence ρt by ρT−1 = 1 and

ρt =

{
1 + rρt+1 ρt+1 ≤ α/ε2,
α/ε2 ρt+1 > α/ε2.

where r =
(|a| − ε)2

1 + α
.

With this notation, P (|â− a| ≤ ε) ≤ 2 exp
(
− ε2

2(1+α)

∑T−1
t=1 ρt

)
.

Proof The proof of this result is similar to the proof of the Azuma-Hoeffding inequality. It re-
quires upper-bounding the MGF introduced in (3.25) by inductively applying the tower property of
conditional expectation. We detail the proof in Section C.3.

The proof of Theorem B.1 is concluded in Section C.2, where we upper bound the sum
∑T−1

t=1 ρt,
and solve for T .

C.1. Proof of Lemma 3

Eη exp
(ν

2
(ax+ η)2 + µxη

)
= e

ν
2
a2x2Eηe

ν
2
η2+ηx(νa+µ)

=
e
ν
2
a2x2

√
2π

∫ ∞
−∞

e
ν−1
2
η2+ηx(νa+µ)dη = e

ν
2
a2x2 e

x2
(νa+µ)2

2(1−ν)
√

1− ν
=

exp
(
x2 νa2+2νaµ+µ2

2(1−ν)

)
√

1− ν
.

C.2. Proof of Theorem B.1

Once again we let a ≥ 0 for simplicity and recall from Proposition C.1 that we denote r =
(a − ε)2/(1 + α). We study the case a ≤ 1 first. Let us consider the sequence ρt introduced
in Proposition C.1 with α = 2ε and note that

1 + r + . . .+ rt ≤ 1 + (1 + 2ε)−1 + . . .+ (1 + 2ε)−t ≤ 1

1− (1 + 2ε)−1
≤ 2

ε
,

which shows that for all t we have ρT−1−t = 1 + r+ . . .+ rt and hence
∑T−1

t=1 ρt =
∑T−1

t=1
1−rt
1−r =

T
1−r −

∑T−1
t=0 rt

1−r . Since T/2 ≥ 1 + r + r2 + . . .+ rT−1 when T ≥ 6/ε, we obtain that
∑T−1

T=1 ρt ≥
T

2(1−r) ,, which, together with Proposition C.1, it implies that

P(|â− a| ≤ ε) ≤ 2 exp

(
− ε2T

4(1 + 2ε)(1− r)

)
= 2 exp

(
− ε2T

4(1 + 2ε− (a− ε)2)

)
.

The first part of the corollary follows immediately.
We turn to the case |a| > 1 + ε. Once again we assume a > 0 for simplicity. Recall that

we have the freedom to choose any α ∈ R+ for defining the sequence ρt. Since a > 1 + ε,
if we choose α < (a − ε)2 − 1 we guarantee that r > 1. To satisfy this inequality we choose
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α = ((a − ε)2 − 1)/2. Then, with this choice of α, the sequence ρt grows exponentially to α/ε2.
More precisely, by construction, since[

(a− ε)2

1 + α

]T−2

=

[
2(a− ε)2

1 + (a− ε)2

]T−2

≥ (a− ε)T−2,

ρ1 is guaranteed to be equal to α/ε2 as long as (a− ε)T−2 ≥ α/ε2. This last inequality holds when

T ≥
log

(
(a−ε)2−1

2ε2

)
log(a−ε) + 2. In particular, if we choose T to be at least double the right-hand side of the

previous expression, then at least half of the terms ρt are equal to α/ε2, implying

P(|â− a| ≤ ε) ≤ 2 exp

(
− αT

4(1 + α)

)
.

The conclusion now follows easily.

C.3. Proof of Proposition C.1

We restrict ourselves to the case a ≥ 0 (the case a < 0 can be analyzed analogously), and hence
r = (a− ε)2/(1 + α). We upper bound the MGF (3.25) when λ = −ε. Note that

E exp

(
−ε2

T−1∑
t=0

x2
t ± ε

T−1∑
t=0

xtηt

)
= E

[
e−ε

2
∑T−1
t=0 x2t±ε

∑T−2
t=0 xtηtEηT−1

[
e±εxT−1ηT−1 |FT−1

]]
= E

[
e−ε

2
∑T−2
t=0 x2t±ε

∑T−3
t=0 xtηtE

[
e−

ε2

2
x2T−1±εxT−2ηT−2 |FT−2

]]
.

Then, from Lemma 3 we can upper bound the MGF by induction on k by

E
[
e−ε

2
∑T−k−1
t=0 x2t−ε

∑T−k−2
t=0 xtηtE

[
e−

ε2βT−k
2

x2T−k−εxT−k−1ηT−k−1 |FT−k−1

]] T−1∏
j=T−k+1

(1 + ε2βj)
−1/2,

where βt is any positive sequence such that βT−1 = 1 and for 1 ≤ t < T − 1 it satisfies βt ≤
1+βt+1(a−ε)2

1+ε2βt+1
. It is straightforward to check that the sequence ρt defined in the proposition statement

above satisfies this recursive inequality for any α ∈ (0, 1). Therefore, we obtain the upper bound

E exp

(
−ε2

T−1∑
t=0

x2
t − ε

T−1∑
t=0

xtηt

)
≤

T−1∏
t=1

(1 + ε2ρt)
−1/2 = exp

(
T−1∑
t=1

−1

2
log(1 + ε2ρt)

)

≤ exp

(
T−1∑
t=1

− ε2ρt
2(1 + ε2ρt)

)
≤ exp

(
− ε2

2(1 + α)

T−1∑
t=1

ρt

)
.

Appendix D. Proof of Theorem 2.4

In this section, we conclude the technical aspects of the proof of Theorem 2.4. Recall the definition
of the events

E1 :=
{
‖U>E‖op ≥ K

}
, E2 :=

{
X>X � kbT/kcp2Γsb

16

}
, E3 :=

{
X>X � Γ

}
.
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As we recall from Section 4, if we can show that P[Ec2 ∩ Ec3] and P [E1 ∩ E2 ∩ Ec3] where bounded
above by δ, we have

P

[
‖X†E‖op ≥

4K

p
√
kbT/kcλmin(Γsb)

]
≤ 3δ (4.26)

Observe that our condition on k implies that necessarily k ≤ T/10 , so that kbT/kc ≥ T − k ≥
9/10T . Hence, we will have established

P

[
‖X†E‖op ≥

10

9
· 4K

p
√
Tλmin(Γsb)

]
≤ 3δ , (4.27)

and substiting in

K = 20σ

√
n+ d log

10

p
+ log det(ΓΓ−1

sb ) + log(1/δ) . (4.28)

proves the theorem.

D.1. Bounding P[Ec2 ∩ Ec3]

Substituting the definitions of E2 and E3,

P[Ec2 ∩ Ec3] = P
[{

X>X �
kbT/kcp2ν2

16

}
∩ {X>X � Γmax}

]
.

Proposition 2.5 and Equation (2.7) imply

∀w ∈ Rd, P
[
‖Xw‖2 ≤ kbT/kcp2w>Γsbw

8

]
≤ exp

(
−bT/kcp

2

8

)
(4.29)

We apply Lemma 4.1 with Q = X, with Γmax ← TΓ, Γmin ← kbT/kcp2Γsb/8, and T a net
1/4-net of SΓmin in the norm ‖Γ1/2

max(·)‖2. We shall use the following estimate of |T |:

Lemma D.1 Let 0 ≺ Γmin � Γmax, and let T be a minimal ε ≤ 1/2-net of SΓmin in the norm
‖Γ1/2

max(·)‖2. Then, log |T | ≤ d log(1 + 2
ε ) + log det(ΓmaxΓ

−1
min).

Proof The covering number of SΓmin in the norm ‖Γ1/2
max(·)‖2 is the same as the covering number of

the shell of the ellipsoid E := {w : w>Γ
−1/2
min ΓmaxΓ

−1/2
min w} in the norm ‖(·)‖2. Consider a maximal

ε-separated set of bd(E). Letting B denote the unit ball in Rd, a standard volumetric argument
shows

|T | ≤
vol(2

εB + E)

vol(2
ε )

(i)

≤
vol((2

ε + 1)E)

vol(B)
=

(
2

ε
+ 1

)d vol(E)

vol(B)

=

(
2

ε
+ 1

)d
det(Γ

−1/2
min ΓmaxΓ

−1/2
min )

=

(
2

ε
+ 1

)d
det(ΓmaxΓ

−1
min)
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where (i) uses the inclusion E ⊂ E .

For ε = 1/4 and our choise of Γmin, we have

log |T | = d log(1 +
2

ε
) + log det(ΓmaxΓ

−1
min) (4.30)

= d log(9) + d log(8T/(bT/kck)p2) + log det(ΓΓ−1
sb )

≤ d log(9) + d log(72/10p2) + log det(ΓΓ−1
sb ) since k ≤ T/2

≤ 2d log(10/p) + log det(ΓΓ−1
sb ) . (4.31)

Hence, we conclude that

P[Ec2 ∩ Ec3] = P
[{

X>X �
kbT/kcp2ν2

16

}
∩ {X>X � Γmax}

]
≤ P

[{
∃w ∈ T : ‖Xw‖2 < kbT/kcTp2w>Γsbw

8

}
∩ {X>X � Γmax}

]
≤ exp

(
−bT/kcp

2

8
+ 2d log(10/p) + log det(ΓΓ−1

sb )

)
≤ exp

(
−Tp

2

10k
+ 2d log(10/p) + log det(ΓΓ−1

sb )

)
D.2. Bounding P [E1 ∩ E2 ∩ Ec3]

We shall need the following discretization lemma, proved in Appendix E.3.2:

Lemma D.2 Let Q ∈ Rn×m have full column rank, q ∈ Rn, let 0 ≺ Γmin � QTQ � Γmax, and
let T be a 1/4-net of SΓmin in the norm ‖Γ1/2

max(·)‖2. Then,

sup
w∈Sm−1

〈Qw, q〉
‖Qw‖

≤ 2 max
w∈T

〈Qw, q〉
‖Qw‖

(4.32)

To control the size of ‖U>E‖op we use a variational formulation of the operator norm and two
coverings. Lett Rd∗ := Rd − {0}. Note that if T1 is a 1/2-net of Sn−1 (over the v), then,

‖U>E‖op ≤ sup
v∈Sn−1,w∈Rd∗

w>U>Ev

‖w‖

≤ 2 max
v∈T1

(
sup
w∈Rd∗

w>U>Ev

‖w‖

)
since T1 is a 1/2-net

= 2 max
v∈T1

(
sup
w∈Rd∗

w>VΣU>Ev

‖ΣV>w‖

)
since ΣV> is full rank on E2

= 2 max
v∈T1

(
sup
w∈Rd∗

w>X>Ev

‖Xw‖

)
= 2 max

v∈T1

(
sup

w∈Sd−1

w>X>Ev

‖Xw‖

)
,
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where the second-to-last equation uses X = UΣV> and ‖ΣV>w‖ = ‖UΣV>w‖ = ‖Xw‖.
Define Eg := E2 ∩ Ec3 . We see then that on Eg, we have

kbT/kcp2Γ2
sb

16
� X>X � TΓmax .

We now apply Lemma D.2 with Q = X, with

Γmax ← TΓ and Γmin ← kbT/kcp2Γsb/16 (4.33)

and T2 a net 1/4-net of SΓmin in the norm ‖Γ1/2
max(·)‖2. This yields

P
[{
‖U>E‖op > K

}
∩ Eg

]
≤ P

[{
max
v∈T1

sup
w∈Sd−1

w>X>Ev

‖Xw‖
> K/2

}
∩ Eg

]

≤ P
[{

max
v∈T1

max
w∈T2

w>X>Ev

‖Xw‖
> K/4

}
∩ Eg

]
≤ |T1||T2| sup

v∈T1,w∈T2
P
[{

w>X>Ev

‖Xw‖
> K/4

}
∩ Eg

]
.

To obtain a pointwise bound on P
[{

w>X>Ev
‖Xw‖ > K/4

}
∩ Eg

]
we use Lemma 4.2, with Zt =

〈Xt, w〉, Wt = 〈ηt, v〉, and the bounds β− = w>Γminw, and β+ = w>Γmaxw, Γmin, Γmax are
as in Equation (4.33). We can then bound

|T1||T2| sup
v∈Sd−1,w∈Sd−1

P
[{

w>X>Ev

‖Xw‖
> K/4

}
∩ Eg

]
≤ |T1||T2| sup

v∈Sd−1,w∈Sd−1

P
[{

w>X>Ev

‖Xw‖
> K/4

}
∩
{
‖Xw‖2 ∈

[
kbT/kcν2p2

16
, λ+

]}]
≤ |T1||T2| log+d

β+

β−
e exp(−K2/96σ2)

(i)

≤ exp(n log 5 + d log 9 + log det(
32

p2
ΓmaxΓ

−1
min)) log+d

β+

β−
e exp(−K2/96σ2) .

where (i) uses the standard metric entropy bound for the sphere(see, e.g. Vershynin (2011)), and an
analogous computation to (4.31). Now since w 6= 0, bound logdxe ≤ log 1+x ≤ x, and computing
as in (4.31) yields the bound

logdβ+

β−
e ≤ β+

β−
≤ sup

w∈Rd−{0}

w>Γmaxw

w>Γminw

= ‖Γ−1/2
min ΓmaxΓ

−1/2
min ‖ = λmax(ΓmaxΓ

−1
min)

= λmax(
32

p2
ΓΓ−1

sb ))

≤ exp(log λmax(
32

p2
ΓΓ−1

sb )) )

(i)
= exp(log det(

32

p2
ΓΓ−1

sb ))) .
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where (i) uses the fact that 32
p2

ΓΓ−1
sb has the same eigenvalues as 32

p2
Γ
−1/2
sb ΓΓ

−1/2
sb � 32

p2
� I . All

together, we have

P
[{
‖U>E‖op > K

}
∩ Eg

]
≤ exp(n log 5 + d log 9 + 2 log det(

32

p2
ΓΓ−1

sb )) exp(−K2/96σ2)

≤ exp(n log 5 + 2d log
96

p2
+ 2 log det(ΓΓ−1

sb )) exp(−K2/96σ2)

≤ exp(4(n+ d log
10

p
+ log det(ΓΓ−1

sb ))) exp(−(K/10σ)2)

Hence, we guarantee that P [E1 ∩ E2 ∩ Ec3] ≤ δ if we choose

K = 20σ

√
n log +d log

10

p
+ log det(ΓΓ−1

sb ) + log(1/δ) .

Appendix E. Proof of Technical Results

E.1. Proof of Proposition 2.5

To exploit the (k, ν, p) block martingale small-ball condition we partition the sequence of random
variables Z1, Z2, . . . , ZT into bT/kc blocks of size k (we discard the remainder terms). For sim-
plicity we denote S = bT/kc. We consider the random variables

Bj = I

(
k∑
i=1

Z2
jk+i ≥

ν2pk

2

)
for 0 ≤ j ≤ S − 1.

Given this notation, we can use the Chernoff bound to obtain

P

[
T∑
i=1

Z2
i ≤

ν2p2

8
kS

]
≤ P

S−1∑
j=0

Bj ≤
p

4
S

 ≤ inf
λ≤0

e−
p
4
SEeλ

∑S−1
j=0 Bj . (5.34)

The first inequality above uses the trivial inequality
∑k

i=1 Z
2
jk+i ≥

ν2pk
2 Bj .

For upper bounding the MGF on the right hand side we will use the tower property with respect
to the filtration Fjk for j from S − 1 to 0. Before turning to that computation it is valuable to lower
bound the conditional expectations E [Bj |Fjk]:

E [Bj |Fjk] = P

[
k∑
i=1

Z2
jk+1 ≥

ν2pk

2
|Fjk

]
(a)

≥ P

[
1

k

k∑
i=1

I (|Zjk+1| ≥ ν) ≥ p

2
|Fjk

]
(b)

≥ (p/2)

1− (p/2)
≥ p

2
,

where (a) uses the trivial inequality 1
ν2
Z2
jk+1 ≥ I (|Zjk+1| ≥ ν), and (b) uses inequality follows

from the (k, ν, p)-BMSB condition and the following claim is straightforward.
Claim: Let Z be a random variable supported in [0, 1] almost surely such that E[Z] ≥ p for

some p ∈ (0, 1). Then, for all t ∈ [0, p], P[Z ≥ t] ≥ p−t
1−t .
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From this lower bound on E [Bj |Fjk], using λ ≤ 0, we get

E
[
eλBj |Fjk

]
= eλP [Bj = 1|Fjk] + P [Bj = 0] = (eλ − 1)E [Bj |Fjk] + 1

≤ (eλ − 1)
p

2
+ 1.

Now, by inductively conditioning on Fjk, we can upper bound

Eeλ
∑S−1
j=0 Bj = E

[
eλ
∑S−2
j=0 BjE

[
eλBS−1

∣∣F(S−1)k

]]
≤
(

(eλ − 1)
p

2
+ 1
)
E
[
eλ
∑S−2
j=0 Bj

]
≤
(

(eλ − 1)
p

2
+ 1
)S

.

We now plug in this upper bound in Equation 5.34 and optimize for λ. From the first order
optimality condition it is easy to see that the optimal choice of λ is

λ? = log

(
1− p/2
2− p/2

)
.

Plugging in λ? back in Equation 5.34, after some elementary calculus and algebraic manipulations,
we find the desired conclusion.

E.2. Proof of Martingale Concentration (Lemma 4.2)

For ease of notation we denote St =
∑t

s=1 ZsWs and Rt =
∑t

s=1 Z
2
s .

(a) Using a Chernoff argument, we have

P [{ST ≥ α} ∩ {RT ≤ β}] = inf
λ>0

P
[
{eλST ≥ eλα} ∩ {RT ≤ β}

]
= inf

λ>0
P
[
eλST I(RT ≤ β) ≥ eλα

]
≤ inf

λ>0
e−λαE[eλST I(RT ≤ β)]

= inf
λ>0

e−λα · eλ2σ2β/2E[eλST−λ
2σ2β/2I(RT ≤ β)]

≤ inf
λ>0

e−λα · eλ2σ2β/2E[eλST−λ
2σ2RT /2].

Now, we claim that E[eλST−λ
2σ2RT /2] ≤ 1. Indeed, by the tower rule and the assumption that

Wt|Ft is a zero mean σ-sub-Gaussian r.v., we have

E[exp(λST − λ2σ2RT /2)] = E[E[exp(λST − λ2σ2RT /2)
∣∣FT ]]

≤ E[exp(λST−1 − λ2σ2RT−1/2)E[eλZTWT−λ2σ2Z2
T /2|FT ]]]

≤ E[exp(λST−1 − λ2σ2RT−1/2)]

...

≤ E[exp(λS1 − λ2σ2R1/2)] ≤ 1. (5.35)

27



LEARNING WITHOUT MIXING

Hence,

P[{St ≥ α} ∩ {RT ≤ β}] ≤ inf
λ>0

e−λαeλ
2σ2β/2 = e−α

2/2σ2β.

(b) Let B := logdβ+β− e. Then

P
[
{ST > α

√
RT } ∩ {β− ≤ RT ≤ β+}

]
≤ P

[
{ST > α

√
RT } ∩

{
β− ≤ RT ≤ eBβ−

}]
=

B−1∑
i=0

P[{ST > α
√
RT } ∩ {eiβ− ≤ RT ≤ ei+1β−}]

≤
B−1∑
i=0

P[{ST > α
√
eiβ−} ∩ {eiβ− ≤ RT ≤ ei+1β−}]

≤
B−1∑
i=0

P[{ST > α
√
eiβ−} ∩ {RT ≤ ei+1β−}]

(i)

≤
B−1∑
i=0

exp

(
−α2eiβ−

2ei+1σ2β−

)
= B exp

(
−α2

2eσ2

)
≤ log

⌈
β+

β−

⌉
exp

(
−α2

6σ2

)
.

Above, (i) follows from part (a) of the claim.

E.3. Proofs of Covering Results

E.3.1. PROOF OF LEMMA 4.1

Consider the transformed matrix Γ
−1/2
min QΓ

−1/2
min . It suffices to show that under the assumptions of

Lemma 4.1,

inf
w∈SΓmin

‖Qw‖ ≥ 3/4 , (5.36)

since then QTQ � (3/4)2Γmin � Γmin/2. Now w, v ∈ Rd, we can bound

‖QΓ−1/2
max (w − w)‖ ≤ ‖Γ1/2

max(w − w)‖

since Q>Q � Γmax. In particular, if T is a 1/2-net of SΓmin in ‖Γ1/2
max(·)‖2, then

inf
w∈SΓmin

‖Qw‖ ≥ inf
w∈T
‖Qw‖ − 1

4
≥ 1

4
.

where the last step follows from the assumption that infw∈T ‖Qw‖ ≥ 1.
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E.3.2. PROOF OF LEMMA D.2

Define the map φ(w) := Qw
‖Qw‖ . We shall prove that for all v, w ∈ Sm−1, one has that

‖φ(w)− φ(v)‖ ≤ 2‖Q(v − w)‖
‖Qv‖

(5.37)

Note observe that, if 0 ≺ Γmin � Q>Q � Γmax. Hence, each w ∈ SΓmin can be written as Γ−1/2
min w′

for w′ ∈ Sd−1, we have that

inf
w∈SΓmin

‖Qw‖2 = inf
w′∈SΓmin

(w′)>Γ
−1/2
min Q>QΓ

−1/2
min w′ ≥ ‖w′‖22 = 1

and that

‖Qw‖ = w>Q>Qw ≤ w>Γmaxw = ‖Γ1/2
maxw‖2 (5.38)

Thus, for all all v, w ∈ Sm−1
Γmin

,

‖φ(w)− φ(v)‖ ≤ 2‖Q(v − w)‖
‖Qv‖

≤ 2‖Γ1/2
max(v − w)‖

Since Γ−1/2
min � 0 is full rank, we have

sup
w∈Sd−1

〈Qw, q〉
‖Qw‖

= sup
w∈Sd−1

Γmin

〈Qw, q〉
‖Qminw‖

and since T is a 1/4-net of Sd−1 in the norm ‖Γ1/2
max(·)‖2, (5.37) implies the above is at most

2 sup
w∈T

〈Qw, q〉
‖Qminw‖

.

It remains to check (5.37).

‖φ(v)− φ(w)‖ =

∣∣∣∣ Qv‖Qv‖ − Qw

‖Qw‖

∣∣∣∣
≤ +‖Qw‖

∣∣∣∣ 1

‖Qv‖
− 1

‖Qw‖

∣∣∣∣
≤ ‖Q(v − w)‖

‖Qv‖
+
|‖Qw‖ − ‖Qv‖|

‖Qv‖

≤ 2
‖Q(w − v)‖
‖Qv‖

.
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Appendix F. Lower Bounds

F.1. Proof of Information Theoretic Lower Bounds, Theorems B.2 and 2.3

In this section we prove Theorem B.2 and 2.3. We shall the P(T )
A denote the law of the iterates

Xt+1 = AXt + ηt, where ηt ∼ N (0, I), for t = 1, 2, . . . , T . We shall prove Theorems B.2 and 2.3
using Birge’s Inequality, a bound which is qualitatively similar to Fano’s inequality, but yields sharp
high-probability lower bounds in low-dimensional settings.

Lemma F.1 (Variant of Birge’s Inequality) Let E0, E1, . . . , EN be disjoint events, P0,P1, . . . ,PN
be probability laws, and let mini P(Eci ) ≤ 1/2. Then, for any δ ∈ (0, 1/2),

N∑
i=1

KL(Pi,P0) ≥ (1− 2δ) log(N/2δ) . (6.39)

In particular, fix an ε > 0 and δ ∈ (0, 1/2), and suppose that for a finite set N ⊂ Rn×n, all
A1 6= A2 ∈ N satisfy ‖A1 −A2‖op ≥ 2ε. Then if inf

Â
supA∈N PA[‖A− Â(T )‖op ≥ ε] ≤ δ, then

T , δ and |N | satisfy the following inequality for any A0 ∈ N :

sup
A∈N−{A0}

KL(P(T )
A ,P(T )

A0
) ≥ (1− 2δ) log

(
|N | − 1|

2δ

)
. (6.40)

We prove Lemma F.1 from a standard statment of Birge’s inequality from (Boucheron et al., 2013,
Theorem 4.20), in Section F.5. Lemma F.1 relates the probability of error to the KL-divergences be-
tween laws P(T )

A in 2ε-separated setN . Thus, our first step will be to compute the term KL(P(T )
A ,P(T )

A0
).

This amounts to a straightforward computation, carried out in Section F.4.2.

Lemma F.2 LetO,O′ ∈ O(d). Then, KL(P(T )
ρ ,P(T )

A ) = ‖ρO−A‖2F ·
∑T

t=1 γt(ρ), where we recall
γt(ρ) =

∑t−1
s=0 |ρ|2s.

We are now in a position to prove the lower bound in one-dimension:

F.2. 1-D Lower Bound: Proof of Theorem B.2

Proof Fix an ρ ∈ R, and let ρ′ ∈ {ρ − 2ε, ρ + 2ε}. Viewing ρ, ρ′ as matrices in R1×1, we have
Lemma F.2, implies KL(P(T )

ρ ,P(T )
ρ′ ) = 4ε2 ·

∑T
t=1 γt(ρ). Then, applying Lemma F.1 with A0 = ρ

and N = {ρ, ρ′}, we have for if supa∈ρ,ρ′ Pa[|â(T ) − a| < ε] ≤ δ, then, ε2 ·
∑T

t=1 γt(ρ) ≥
(1− 2δ) log

(
1
2δ

)
. Hence, we need TγT (ρ) ≥

∑T
t=1 γt(ρ) ≥ 1

4ε(1− 2δ) log
(

1
2δ

)
.

F.3. d-Dimensional Lower Bound

If we chose N to be a 2ε-packing of the set ρO(d), then Lemma F.1 and Lemma F.2 imply that, for
any estimate Â such that

supO∈O(d) PρO[‖Â(T )− ρO‖op ≥ ε] ≥ δ for any

T such that (1− 2δ) log |N |2δ ≥
(∑T

t=1 γt(ρ)
)
·maxρO,ρO′∈N ‖ρO − ρO′‖2F .
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In light of the above, our goal will be to construct a 2ε-packing N such that infρO,ρO′∈N ‖ρO −
ρO′‖2F is as small as possible. This is achieved by the following proposition, which lifts a 1/2-
packing of the unit ball in d− 1-dimensions to a packing N0 of O(d), proved in Section F.3:

Proposition F.3 Fix an ε0 ≤ 1/256, and let T be an 1/2-packing of Bd−1(1). Then, there exists a
set N ⊂ O(d) with |N0| = |T | and, for all A1 6= A2 ∈ N ,

‖A1 −A2‖op ≥ ε0/4 and ‖A1 −A2‖F ≤ 4ε0 . (6.41)

We now reparameterize the above proposition with ε0 = 8ε
ρ . Let T be a maximal 1/2-packing

of Bd−1(1); a standard fact shows that |T | ≥ 2d−1. Them, as long as ε ≤ ρ
2048 , N = ρN is a

2ε-packing of the set ρO(d), and for all ρO, ρO′ ∈ N , ‖A1 −A2‖F ≤ 32ε,

supO∈O(d) PρO[‖Â(T )− ρO‖op ≥ ε] ≥ δ for any

T such that (1− 2δ) log 2d

4δ ≥
(∑T

t=1 γt

)
· (32ε)2 .

In particular, for δ ≤ 1/4, we see that there exists a universal constant c0 such that (1−2δ) log 2d

4δ ≥
c0(d+ log(1/δ)), and hence for c = c0/322, we see that

sup
ρO∈O(d)

P[‖Â(T )− ρO‖op ≥ ε] ≥ δ for any T :
c0 (d+ log(1/δ))

ε2
≥

T∑
t=1

γt(ρ) .

Bounding
∑T

t=1 γt(ρ) ≤ TγT (ρ) concludes the proof.

F.4. Proof of Proposition F.3

We now construction of the packingN . If we define the set Skew(d) := {X ∈ Rd×d : X> = −X},
and recall the matrix exponential exp(X) =

∑∞
j=0X

j/j!, a well-known theorem in Lie Theory
ensures that exp(Skew(d)) ⊂ O(d) (see, e.g. Knapp (2016)). Moreover, exp is an approximate
isometry (in both ‖ · ‖op and ‖·‖F) from a small neighborhood of 0 ∈ Skew(d) to a small neighbor-
hood of the identity I ∈ O(d). Hence, our strategy will be to construct a packing in Skew(d), and
then push it to O(d) under the exp mapping.

Formally, given ε ≤ 1/256, and a 1/2 pcking of Bd−1(1) T , define for w ∈ T the matrix

M(w) := ε
(
e1(0, w)> + (0, w)e>1

)
∈ Skew(d) ,

where e1 denotes the first canonical basis vector in Rd. Observe that ‖M(w)‖F =
√

2‖w‖2 =√
2‖w‖ and, since the singular value of M(w) are paired, we have ‖M(w)‖op = ‖w‖. Hence, for

every w1 6= w2 ∈ Bd−1(1), we have

‖M(w1 − w2)‖op = ε‖w1 − w2‖2 ≥ ε/2 and

‖M(w1 − w2)‖F =
√

2ε‖w1 − w2‖2 ≤ 2
√

2ε .

Now, we define our packing N formally as

N := {exp(M(w)) : w ∈ T } .

We now introduce the following lemma, proved in Section F.4.1, which precisely describes the
extent to which exp() is an isometry:
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Lemma F.4 Let ‖‖ be a sub-multiplicative norm (e.g., ‖·‖op or ‖·‖F), and X,Y ∈ Rd×d. Then,

‖ exp(X + Y )− exp(X)− Y ‖ ≤ e2K − 1− 2K, where K = max{‖X‖, ‖Y ‖} . (6.42)

We apply the above with Y = M(w1)−M(w2) = M(w1−w2), andX = M(w2). Then,X+Y =
M(w1), max{‖X‖op, ‖Y ‖op} ≤ 2ε, and max{‖X‖F , ‖Y ‖F } ≤ 2

√
2ε. Hence, Lemma F.4 implies

that

‖ exp(M(w1))− exp(M(w2))−M(w1 − w2)‖op ≤ e8ε − 1− 8ε and

‖ exp(M(w1))− exp(M(w2))−M(w1 − w2)‖F ≤ e8
√

2ε − 1− 8
√

2ε .
(6.43)

We can upper bound both displays in (6.43) using the following short technical lemma:

Lemma F.5 Let t ∈ [0, log 2]. Then et − 1− t ≤ t2.

Proof Let f(t) = et − 1− t, and g(t) = t2. Then, f(0) = f ′(0) = g(0) = g′(0) = 0. Moreover,
f ′′(t) = et, and g′′(t) = 2. Hence, as long as 0 ≤ t ≤ log 2, f(t) =

∫ t
0

∫ u
0 f
′′(s)dsdu ≤∫ t

0

∫ u
0 g
′′(s)dsdu = g(t).

Hence for ε ≤ log 2/4
√

2 ≤ 1/256, (6.43) and Lemma F.5 combine to imply

‖exp(M(w1))− exp(M(w2))−M(w1 − w2)‖op ≤ 64ε2 and

‖exp(M(w1))− exp(M(w2))−M(w1 − w2)‖F ≤ 128ε2 .

Hence, by the triangle inequality, for ε ≤ 1/256

‖ exp(M(w1))− exp(M(w2))‖op ≥ ‖M(w1 − w2)‖op − 64ε2

= ‖w1 − w2‖ − 64ε2 ≥ ε/2− 64ε2 ≥ ε/4 ,

and, again, for ε ≤ 1/256

‖exp(M(w1))− exp(M(w2))‖F ≤ ‖M(w1 − w2)‖F + 128ε2

=
√

2‖w1 − w2‖+ 128ε2 ≤ 2
√

2ε+ ε/2 ≤ 4ε .

F.4.1. PROOF OF LEMMA F.4

Let Mi,j(X,Y ) denote the homogenous monomial of degree j such consisting of the
(
j
i

)
-products

of X i-times, and Y j − i-times. Note then that Mj,j(X,Y ) = Xj , so that (X + Y )j − Xj =

−Xj +
∑j

i=0Mi,j(X,Y ) =
∑j−1

i=0 Mi,j(X,Y ). Moreover, by the sub-multiplicativity of ‖ · ‖, we
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have ‖M(X,Y )‖ ≤
(
j
i

)
‖X‖i2‖Y ‖

j−i
2 =

(
j
i

)
Kj .

‖ exp(X + Y )− exp(X)− Y ‖ = ‖(j!)−1
∞∑
j=2

(X + Y )j −Xj‖op

= ‖
∞∑
j=2

(j!)−1
j∑
i=0

Mi,j(X,Y )‖

≤
∞∑
j=2

(j!)−1
j−1∑
i=0

‖Mi,j(X,Y )‖

≤
∞∑
j=2

(j!)−1
j−1∑
i=0

(
j

i

)
Kj

≤
∞∑
j=2

(j!)−1(2K)j = e2K − 1− 2K .

F.4.2. PROOF OF LEMMA F.2

For a matrix M , let Mi denote the i-th row of M , and let M⊗2 := M>M

KL(P(T )
ρO ,P

(T )
A ) = EρO

[
T∑
t=1

n∑
i=1

〈(ρO −A)i, Xt〉2
]

= Eε1,...,εT

 T∑
t=1

n∑
i=1

〈
(ρO −A)i,

t∑
s=1

ρt−sOt−sεs

〉2


=

T∑
t=1

n∑
i=1

〈
(ρO −A)i,Eε1,...,εT

( t∑
s=1

ρt−sOt−sεs

)⊗2
 (ρO −A)i

〉
.

We may now compute that, for any t ∈ [T ],

Eε1,...,εT

( t∑
s=1

ρt−sOt−sεs

)⊗2


=
t∑

s=1

E[ρ2(t−s)(O2(t−s))>O2(t−s)ε2s] +
∑

1=s 6=s′≤t
E[ρ2t−s−s′(O2(t−s))>O2(t−s′)εsεs′ ]

=
t∑

s=1

E[ρ2(t−s)(O2(t−s))>O2(t−s)] =
t∑

s=1

ρ2(t−s)I .
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Hence, we have,

KL(P(T )
ρO ,P

(T )
A ) =

T∑
t=1

n∑
i=1

〈
(ρO −A)i,

(
t∑

s=1

ρ2(t−s)

)
I · (ρO −A)i

〉

=
T∑
t=1

(
t∑

s=1

ρ2(t−s)

)
n∑
i=1

‖(ρO −A)i‖22

= ‖ρO −A‖2F
T∑
t=1

(
t∑

s=1

ρ2(t−s) = ‖ρO −A‖2F

(
T∑
t=1

t−1∑
s=0

ρ2s

)
.

F.5. Proof of Lemma F.1

Birge’s inequality states that
∑N

i=1 KL(Pi,P0) ≥ (1 − δ) log(N 1−δ
δ ) + δ log( δ

1−δ/N ) (Boucheron

et al., 2013). Observe that δ log( δ
1−δ/N ) ≥ δ log δ

N(1−δ) = −δ log N(1−δ)
δ . Hence

∑N
i=1 KL(Pi,P0) ≥

(1 − 2δ) log( (1−δ)N
δ ) ≥ (1 − 2δ) log N

2δ for δ < 1/2. For the second statement, choose EA :=

{‖A − Â(T )‖op < ε} for A ∈ N . Since N is 2ε-separated in ‖·‖op, all Ei are disjoint. Hence, for
any A0 ∈ N

(1− 2δ) log(|N |/2δ) ≤ 1

|N | − 1

N∑
A∈N−{A0}

KL(P(T )
A ,P(T )

A0
) ≤ N

sup
A∈N−{A0}

KL(P(T )
A ,P(T )

A0
) .(6.44)

Since A0 was arbitrary, we may pass to an inf over all A0 ∈ N .

Appendix G. Analysis of Standard LS

Here, we show that given a regression of the form Yt = A∗Xt + ηt for Yt, Xt ∈ Rd, A∗ ∈ Rd×d,

where ηt are an i.i.d. Gaussian noise sequence, then ‖Â − A∗‖op &
√
d/λmin(

∑T
t=1XtX>t ) is in

fact necessary. This is a consequence of the fact that the operator-norm error involves a supremum
over all directions in Sd−1. Formally,

Theorem G.1 Let X1, . . . , XT ∈ Rd be an arbitrary dynamical process, let η1, . . . , ηt
i.i.d.∼

N (0, Id), and independence of X1, . . . , XT . Then, given observations Yt = A∗Xt + ηt for A∗ ∈
Rd×d and t ∈ {1, . . . , T}, the least-squares estimator Â satisfies the lower bound

E
[
‖Â−A∗‖2op

∣∣X1, . . . , XT

]
≥ d

λmin

(∑T
t=1XtXt

)
Proof Conditioning on X1, . . . , XT , we may assume without loss of generality that X is determin-
istic. We let X ∈ RT×d denote the matrix whose rows are Xt, and E ∈ RT×d denote the matrix
whose rows are εt. Then, Â(T ) − A∗ = X†E. Moreover, if v∗ ∈ arg maxv:‖v‖2=1 ‖v>X†‖2, then
‖v>X†‖2 = λmin(

∑T
t=1XtXt)

−1/2. Moreover, v∗ depends only on X which by construction is
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independent of E. Hence, v>X†E ∼ N (0, λmin(
∑T

t=1XtXt)
−1 · Id). And hence,

E
[
‖Â(T )−A∗‖2op

]
= E

[∥∥∥X†E∥∥∥2

op

]
= E

[
sup

v∈Sd−1

∥∥∥v>X†E
∥∥∥2

2

]

≥ E
[∥∥∥v>∗ X†E

∥∥∥2

2

]

= E

[
‖w‖2

∣∣w ∼ N (0, λmin(
T∑
t=1

XtXt)
−1 · Id)

]
= dλmin

(
T∑
t=1

XtXt

)−1

.
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