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Abstract
Solving linear programs by using entropic penalization has recently attracted new interest in the
optimization community, since this strategy forms the basis for the fastest-known algorithms for
the optimal transport problem, with many applications in modern large-scale machine learning.
Crucial to these applications has been an analysis of how quickly solutions to the penalized pro-
gram approach true optima to the original linear program. More than 20 years ago, Cominetti and
San Martín showed that this convergence is exponentially fast; however, their proof is asymptotic
and does not give any indication of how accurately the entropic program approximates the original
program for any particular choice of the penalization parameter. We close this long-standing gap
in the literature regarding entropic penalization by giving a new proof of the exponential conver-
gence, valid for any linear program. Our proof is non-asymptotic, yields explicit constants, and has
the virtue of being extremely simple. We provide matching lower bounds and show that the en-
tropic approach does not lead to a near-linear time approximation scheme for the linear assignment
problem.
Keywords: Entropic penalization, optimal transport, assignment problem, Sinkhorn algorithm.

1. Introduction

In 1992, Fang initiated the study of the entropic penalty for linear programs. Given a basic linear
program of the form

min c>x
subject to Ax = b

x ≥ 0 ,
(LP)

he proposed to solve instead the penalized program

min c>x− η−1H(x)
subject to Ax = b ,

(Pen)

where H(x) :=
∑

i xi log 1
xi

is the Shannon entropy of x viewed as a probability vector and η > 0

is a penalization parameter. The term −η−1H(x) plays the role of a strongly convex regularizer,
which also enforces the constraint x ≥ 0. As η → ∞, we recover (LP); however, one hopes that
solving (Pen) is significantly easier.

Solving linear programs via entropic penalization does not initially seem like an especially
attractive choice. Unlike the well known logarithmic penalty, the entropic penalty is not self-
concordant, which makes it a poor barrier function for interior point methods (Boyd and Vanden-
berghe, 2004). Nevertheless, the entropic penalty has been applied to various linear and nonlinear
problems with empirical success (Fang et al., 1997). It is also notable for its connection to other
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fields. In statistics, it has been used as a tool for model selection and aggregation (Juditsky et al.,
2008; Rigollet and Tsybakov, 2011) and is intimately related to the maximum entropy principle
for statistical inference (Jaynes, 1982) and to maximum likelihood estimation (Chrétien and Hero,
2000). The entropic penalty is also closely connected to first-order optimization methods such
as mirror descent (Bubeck, 2015) and to online learning algorithms for combinatorially structured
problems (Freund and Schapire, 1997; Cesa-Bianchi and Lugosi, 2006; Helmbold and Warmuth,
2009; Koolen et al., 2010; Audibert et al., 2013).

The recent resurgence of interest in the entropic penalty in the machine-learning community
has been driven by the fact that it can be used to obtain state-of-the-art methods for the optimal
transport problem (Cuturi, 2013; Cuturi and Doucet, 2014; Solomon et al., 2015; Genevay et al.,
2016; Benamou et al., 2016; Altschuler et al., 2017). The use of the entropic penalty for such
problems dates back to Schrödinger (1931) (see Léonard, 2014) and to Brègman (1967), who noted
the connection between the entropic penalty and the computation of a projection onto the feasible
set {x : Ax = b, x ≥ 0} with respect to the generalized Kullbeck-Leibler divergence.

What makes this penalty especially useful for transport problems is that the solution to (Pen)
can be computed quickly by a simple iterative algorithm known as the Sinkhorn or RAS algo-
rithm (Sinkhorn, 1967). This fact was popularized by Cuturi (2013), and his work led to widespread
adoption of the entropic penalty for computing optimal transport. The introduction of the entropic
penalty makes an enormous difference in practice: since optimal transport can be formulated as
a linear program, it can, of course, be solved in polynomial time, but the numerical experiments
conducted by Cuturi (2013) indicate that the same linear program with an entropic penalty can be
solved up to 10,000 times faster, as long as η is not too large. On the other hand, those experiments
also showed that solving the penalized program becomes costly as η increases.

This same phenomenon is present in theory as well as in practice. A recent theoretical anal-
ysis (Altschuler et al., 2017) of the method of Cuturi (2013) suggests that the time required to
solve the optimal transport problem via entropic regularization scales linearly with η. Even the
guarantees of the most recent algorithms for solving (Pen) decay as η grows. For example, when
{Ax = b, x ≥ 0} defines the Birkhoff polytope (Brualdi, 2006) of n×n doubly stochastic matrices,
an approximate solution to (Pen) can be found in time1 Õ(n2‖c‖∞η) (Cohen et al., 2017; Allen-Zhu
et al., 2017). In particular, when η = Õ(1), the algorithms of Cohen et al. (2017) and Allen-Zhu
et al. (2017) run in time which is nearly linear in the size of the input.

Nevertheless, if we wish to obtain a good approximation to the solution of (LP), η cannot be
taken too small. In the η → 0 limit, the solution to (Pen) converges to the maximum-entropy point
in the feasible set, which may be far from the optimum. If the goal is to approximately solve (LP),
then η must be large enough that the solution of (Pen) is still close to an optimum of (LP).

To summarize: the choice of η is essential. Too large, and the computational benefits of using
the regularizer disappear; too small, and the entropic term induces significant bias and (Pen) is a
poor approximation to the original problem. The chief aim of this work is to quantify this trade-off.

1. The notation Õ(·) hides polylogarithmic factors.
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1.1. Prior work

The question of how well (Pen) approximates (LP) as a function of η was studied by Cominetti
and San Martín (1994).2 They showed that, under mild conditions, the optimal solution xη to (Pen)
approaches an optimal solution x∗ to (LP) exponentially fast, in the sense that

lim
η→∞

‖xη − x∗‖
exp(−Mη)

= 0 (1)

for some M > 0. However, their proof does not make it easy to determine the order of magnitude
of M—and, in particular, its dependence on problem-specific quantities such as the dimension and
size of the feasible set {x : Ax = b, x ≥ 0}. This result is nevertheless tantalizing, insofar as it
suggests that xη will be close to x∗ even for relatively small values of η. Of course, knowing the
size of M is crucial to making this idea precise. Prior to this work, theirs was the most general
analysis of (Pen) available.

1.2. Our contribution

In this work, motivated by the recent popularity of entropic penalization for optimal transport, we
prove a version of (1) with easy-to-understand constants. Our analysis applies to any linear program
of the form (LP). We show (Section 2) that the quality of the penalized solution xη satisfies

c>xη −min
x∈P

c>x ≤ ∆ exp

(
−η ∆

R1
+
R1 +RH

R1

)
,

where ∆ is the gap in objective value between an optimal vertex and any suboptimal vertex, and R1

and RH are the radius of the feasible set with respect to the `1 norm and the entropy, respectively.
As a corollary, we obtain that the result (1) obtained by Cominetti and San Martín (1994) holds
for any M < ∆/R1. In addition to making explicit their result, our proof has the virtue of being
very simple, requiring only elementary facts about entropy. Moreover, we show (Section 3) that no
general improvement in the dependence on ∆, R1, or RH is possible, even for the simplest possible
example, where the feasible set is the probability simplex.

Finally, specializing to the Birkhoff polytope (Section 4), we obtain nearly matching upper and
lower bounds on the quality of the solution as a function of η. In particular, these imply that η
cannot be taken to be Õ(1), so that the entropic penalty is not a magic bullet for the assignment
problem.

1.3. Assumptions

We assume throughout that P := {x : Ax = b, x ≥ 0} is bounded. To ensure that (LP) is nontrivial,
we assume that P is nonempty and that c>x is not constant over P .

2. In fact, the main object of study of Cominetti and San Martín (1994) is the program
maxy

{
b>y − η−1∑

i e
−η(ci−(A>y)i)

}
, which is the dual of (Pen) with the entropy replaced by the similar

function H̄(x) :=
∑
i xi

(
log 1

xi
+ 1
)

. They refer to the penalty appearing in this dual program as the exponential
penalty. Our analysis applies equally well to their setting, but we focus on the vanilla entropic penalty for clarity.
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1.4. Quantities of interest

For convenience, we collect here definitions of the three quantities ∆, R1, and RH appearing in our
bounds.

Definition 1 Let V be the set of vertices of P . The suboptimality gap ∆ is

min
v∈S

c>(v − v∗) ,

where v∗ ∈ argminv∈V c
>v and S := {v ∈ V : c>v > c>v∗}.

Definition 2 The `1 radius R1 of P is maxx∈P ‖x‖1.

Definition 3 The entropic radius RH of P is maxx,y∈P H(x)−H(y).

2. Upper bound

In this section, we prove our main bound on the quality of the solution of (Pen). Our proof recovers
the result of Cominetti and San Martín (1994) that the penalized solution approaches an optimal
solution exponentially fast. Before doing so, however, we first prove a much simpler and weaker
bound, which we call the slow rate (see Fang and Tsao, 1993; Altschuler et al., 2017, where this
analysis also appeared):

Proposition 4 (Slow rate) For all η > 0,

c>xη −min
x∈P

c>x ≤ η−1(H(xη)−H(x∗)) ≤ η−1RH .

Proof Denote by x∗ an optimal solution to (LP). Since x∗ and xη both lie in P and xη is an optimal
solution to (Pen),

c>xη − η−1H(xη) ≤ c>x∗ − η−1H(x∗) .

The claim follows.

Note that the slow rate is much worse than the fast rate we hope to prove; however, Rigollet
(2017) noted that the slow rate is actually tight for an infinite-dimensional analogue of (LP). This
indicates that the reason that a fast rate obtains for (LP) is that the finite-dimensional problem
exhibits a suboptimality gap (known as an energy gap in the statistical physics literature; see Mézard
and Montanari, 2009). Intuitively, the slow rate dominates the convergence until η is large enough
that xη is concentrated near enough to the optimal solution; after this point, convergence occurs
exponentially fast. We will return to this point in Section 3.

We now turn to the main result.

Theorem 5 (Fast rate) If η ≥ R1+RH
∆ , then the optimal solution xη of (Pen) satisfies

c>xη −min
x∈P

c>x ≤ ∆ exp
(
− η ∆

R1
+
R1 +RH

R1

)
.
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Theorem 5 implies a bound on the size of η required to obtain a solution of desired accuracy: to
obtain a solution xη satisfying c>xη − minx∈P c

>x ≤ ε, it suffices to take η =
(
R1
∆ log ∆

ε

)
+

+
R1+RH

∆ , where (x)+ := max{x, 0}.
Note that Theorem 5 only holds for η sufficiently large. The requirement that η ≥ R1+RH

∆
corresponds exactly to the requirement that the exponent appearing on the right side of the above
equation is nonpositive. In Section 3, we show that this restriction is necessary, in the sense that
there are penalized linear programs for which xη does not make appreciable progress towards the
minimizer until η = Ω(R1+RH

∆ ).
The proof of Theorem 5 is elementary and relies on three simple lemmas about the entropy

function, which we now state. These lemmas are easy to verify; proofs appear in Section 6. Recall
the definition of the binary entropy function:

h(λ) = λ log
1

λ
+ (1− λ) log

1

1− λ
∀λ ∈ [0, 1] .

Lemma 6 If x and y are nonnegative vectors and λ ∈ [0, 1], then

H(λx+ (1− λ)y) ≤ λH(x) + (1− λ)H(y) + max{‖x‖1, ‖y‖1} · h(λ) .

Lemma 7 The function f(λ) := αh(λ) + βλ is increasing on the interval [0, β
α+β ].

Lemma 8 If 0 ≤ ρ ≤ 1, then
h(ρ)

ρ
≤ log

1

ρ
+ 1 .

Proof [Proof of Theorem 5] Let V be the vertices of P . Write O := {v∗ ∈ V : c>v∗ =
minv∈V c

>v} for the set of optimal vertex solutions for (LP), and let S := V \ O be the set of
suboptimal vertices. Since xη ∈ P = conv(V ), we can write

xη =
∑
v∈O

λvv +
∑
w∈S

λww

for some nonnegative vector λ satisfying
∑

v∈V λv = 1. If we let γ =
∑

w∈S λw, then xη =
(1 − γ)x∗ + γx̃, where x∗ ∈ conv(O) and x̃ ∈ conv(S). Since x∗ is a convex combination of
elements ofO, it lies on the optimal face of P and is an optimal solution to (LP). On the other hand,
since x̃ is a convex combination of suboptimal vertices, c>(x̃− x∗) ≥ ∆.

Let g(η) := c>(xη − x∗). We first prove two simple bounds on this quantity. First, we have a
trivial lower bound:

g(η) = c>(xη − x∗) = γc>(x̃− x∗) ≥ ∆γ . (2)

On the other hand, Proposition 4 implies

g(η) ≤ η−1(H(xη)−H(x∗)) . (3)

By Lemma 6,

H(xη)−H(x∗) ≤ ((1− γ)H(x∗) + γH(x̃) +R1h(γ))−H(x∗)

= R1h(γ) + γ(H(x̃)−H(x∗))

≤ R1h(γ) +RHγ . (4)
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By assumption, η ≥ R1+RH
∆ , so using (2) and (3) yields

γ ≤ g(η)

∆
≤ η−1RH

∆
≤ RH
R1 +RH

< 1 .

Lemma 7 then implies that R1h(γ) +RHγ ≤ R1h
(
g(η)
∆

)
+RH

g(η)
∆ . We can combine this obser-

vation with (4) to obtain

ηg(η) ≤ H(xη)−H(x∗) ≤ R1h
(g(η)

∆

)
+RH

g(η)

∆
.

Writing ρ = g(η)
∆ yields the fixed-point equation

(η∆−RH)ρ ≤ R1h(ρ) .

By Lemma 8, h(ρ)
ρ ≤ log 1

ρ + 1 for all ρ ≤ 1. We obtain

η∆−RH
R1

− 1 ≤ log
1

ρ
,

and hence
g(η) = ∆ρ ≤ ∆ exp

(
− η ∆

R1
+
R1 +RH

R1

)
,

as desired.

We also obtain a corollary which establishes the distance of xη to the optimal face, which
reproduces the result of Cominetti and San Martín (1994). Let F := conv{O} be the optimal face
of P with respect to the objective c>x, and denote by d1(x, F ) the `1 distance of the point x to F .

Corollary 9 If η ≥ R1+RH
∆ , then

d1(xη, F ) ≤ 2R1 exp
(
− η ∆

R1
+
R1 +RH

R1

)
.

In particular,

lim
η→∞

d1(x, F )

exp(−Mη)
= 0

for any M < ∆/R1.

Proof Using the notation of Theorem 5, we have that there exist points x∗, x̃ ∈ P such that x∗ is
optimal and

xη = (1− γ)x∗ + γx̃ ,

for γ ≤ g(η)
∆ ≤ exp

(
−η ∆

R1
+ R1+RH

R1

)
. We obtain

d1(xη, F ) ≤ ‖xη − x∗‖1 ≤ γ‖x̃− x∗‖1 ≤ 2γR1 ,

and the claim follows.

The quantity ∆ is quite brittle, since it can be affected by the presence of even a single almost-
optimal vertex whose objective value is very close to that of the optimal vertex. However, the
definition of ∆ can be relaxed slightly to account for this case, as the following corollary shows.
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Corollary 10 For any τ > 0, denote by Oτ the set {v ∈ V : c>v − minx∈P c
>x ≤ τ}, and let

∆τ := minw∈Oτ ,v∈V \Oτ c
>(v − w). If η ≥ R1+RH

∆τ
, then the optimal solution xη of (Pen) satisfies

c>xη −min
x∈P

c>x ≤ ∆τ exp
(
− η∆τ

R1
+
R1 +RH

R1

)
+ τ .

Proof If c>xη −minx∈P c
>x ≤ τ , the claim is vacuous, so assume that c>xη −minx∈P c

>x > τ .
Let τ∗ := maxv∈Oτ c

>v − minx∈P c
>x, and note that τ∗ ≤ τ . Given an optimal solution x∗

to (LP), let Pτ := P ∩ {x : c>(x − x∗) ≥ τ∗}. We have minx∈Pτ c
>x −minx∈P c

>x = τ∗ ≤ τ .
Moreover, the suboptimality gap of Pτ is ∆τ .

By assumption, xη ∈ Pτ , and so xη is the solution to (Pen) over the smaller polytope Pτ .
Applying Theorem 5 to Pτ yields the claim.

While the quantities R1 and RH are easy to calculate, evaluating the suboptimality gap ∆ is not
easy in general. Nevertheless, as we noted above, intuition from statistical physics implies that some
dependence on ∆ is necessary to obtain exponential convergence, a point which we substantiate in
Section 3. We note the obvious fact that this dependence can be removed for integral polytopes,
which are a core object of study in combinatorial optimization (Schrijver, 2003).

Corollary 11 If P is integral and the entries of c are integers, then

c>xη −min
x∈P

c>x ≤ exp
(
− η

R1
+
R1 +RH

R1

)
for all η ≥ R1 +RH .

Proof By definition, the vertices of P have integer coordinates, so for any vertex v, if c is an integer
vector then c>v ∈ Z. Therefore if v∗ is an optimal vertex and c>v > c>v∗, then c>(v − v∗) ≥ 1,
so ∆ ≥ 1.

3. Lower bound

In this section, we present an explicit example of a simple family of linear programs for which
our analysis is tight, up to constant factors. This example evinces the two phenomena present in
Theorem 5: the convergence of c>xη to the optimum is slow until η is of order R1+RH

∆ , and once
this threshold is reached convergence happens at precisely the speed indicated in the upper bound.
This example also validates the intuition presented above about the necessary dependence on the
suboptimality gap: exponentially fast convergence is obtained only when c>xη−minx∈P c

>x ≤ ∆.
Fix positive constants α and β and a dimension d ≥ 2. Let c ∈ Rd be given by

ci =

{
0 if i = 0,
α otherwise,

and consider the linear program
min c>x

subject to
∑

i xi = β
x ≥ 0 ,

(5)
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Note that the polytope P defined by the constraints of (5) is a rescaled version of the d-dimensional
probability simplex. We focus on the following penalized program:

min c>x− η−1H(x)
subject to

∑
i xi = β .

(6)

We make the following simple observations about (5) and (6):

• The unique optimal solution to (5) is x∗ = e1, the first elementary basis vector, and c>x∗ = 0.

• The maximum value of c>x over P is αβ, achieved at any vertex other than e1.

• For this polytope, ∆ = αβ, R1 = β, and RH = β log d.

The penalized program (6) has an explicit solution, which is given by a rescaled version of the
Gibbs distribution (Mézard and Montanari, 2009).

Proposition 12 The optimal solution xη to (6) is given by

xηi =
βe−ηci∑
j e
−ηcj .

The guarantee of Theorem 5 requires that η ≥ R1+RH
RH

= 1+log d
α . We now show that when η

is significantly smaller than this quantity, the solution to the penalized program is far from the true
optimum. Indeed, the following proposition establishes that we cannot even achieve a constant-
factor improvement over the maximum value of c>x over P until η is of order log d

α .

Proposition 13 For any ε > 0, if η ≤ log εd
α , then c>η ≥ (1− ε)αβ.

Proof We prove the contrapositive. Note that c>xη = α(β − xη0), so if c>xη < (1 − ε)αβ then
xη0 > εβ. By Proposition 12, we can write explicitly

xη0 =
β∑

j e
−ηcj =

β

1 + (d− 1)e−ηα
.

If xη0 > εβ, then de−ηα < 1 + (d− 1)e−ηα < 1
ε , so η > log εd

α , as claimed.

The next proposition shows that the Theorem 5 is tight up to a small constant factor.

Proposition 14 If η ≥ 1+log d
α = R1+RH

∆ , then

c>xη ≥ 1

9
αβe−ηα+1+log d =

1

9
∆ exp

(
− η ∆

R1
+
R1 +RH

R1

)
.

Proof If η ≥ log d+1
α , then

∑
j e
−ηcj = 1 + (d− 1)e−ηα ≤ 1 + d−1

3d . Using Proposition 12,

c>xη = (d− 1)α
βe−ηα∑
j e
−ηcj ≥

1

3
dαβe−ηα ≥ 1

9
αβe−ηα+1+log d ,

as claimed.
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4. Entropic penalization for the assignment problem

In this section, we given an application of Theorem 5 to the assignment problem, a fundamental
combinatorial optimization problem (Schrijver, 2003). Our motivation for analyzing this example
explicitly is twofold. First, this is a case where entropic penalization has already been proposed as
a good candidate algorithm (Kosowsky and Yuille, 1994; Sharify et al., 2011). Second, as noted in
the introduction, new fast algorithms for the matrix scaling problem (Cohen et al., 2017; Allen-Zhu
et al., 2017) show that a penalized version of the assignment problem with cost matrix C can be
solved in time Õ(n2‖C‖∞η). These fast algorithms raise the prospect that entropic penalization
could provide a near-linear time algorithm for the assignment problem, a major breakthrough (see,
e.g., Mądry, 2013).

Whether this breakthrough is possible depends crucially on the size of η required to solve the
problem accurately. The best bounds available from previous works on the problem (Kosowsky
and Yuille, 1994; Sharify et al., 2011) require η & n log n to achieve constant accuracy, which
is just the guarantee given by the slow rate (Proposition 4). An open question implicit in these
works is whether this is optimal, or whether η = Õ(1) suffices. (In particular, this would imply a
near-linear time algorithm for the assignment problem.) By applying Theorem 5 and exhibiting an
almost-matching lower bound, we show exactly what rates are attainable for the Birkhoff polytope.
In short, our hopes are dashed: η cannot be taken to be dimension free in general.

We first recall the problem. Given a bipartite graph with edge weights, the goal of the assignment
problem is to find a minimum-cost perfect matching in the graph. This problem also has a well
known linear programing formulation: given a matrix C ∈ Rn×n of edge weights, the assignment
problem is

min 〈C,X〉
subject to X1 = 1

X>1 = 1
X ≥ 0 ,

(7)

The polytope given by the constraints {X1 = 1, X>1 = 1, X ≥ 0} is known as the Birkhoff poly-
tope, and its vertices are the permutation matrices (Brualdi, 2006), a result known as the Birkhoff-
von Neumann Theorem.

We first give an upper bound on the quality of Xη as a function of the regularization parameter
η. We require a preliminary lemma, whose proof appears in Section 6.

Lemma 15 The Birkhoff polytope B has R1 = n and RH = n log n.

Lemma 15 combined with Theorem 5 yields the following guarantee for the entropic penalty
applied to the assignment problem. For normalization purposes, we assume that the entries of C are
nonnegative integers, as is common in the combinatorial optimization literature.

Proposition 16 An additive ε approximation to the assignment problem with cost matrixC ∈ Zn×n≥0

can be found by solving an entropy-penalized version of (7) with parameter η = O
(
n log n

ε

)
.

Proof Since the entries of C are integers and the Birkhoff polytope is integral (Schrijver, 2003),
Corollary 11 implies ∆ ≥ 1. Theorem 5 implies that as long as ε < 1, we can obtain a solution X̂
such that

〈C, X̂〉 − min
X∗∈B

〈C,X∗〉 ≤ ε

9
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by solving the penalized program with η = R1
∆ log ∆

ε + R1+RH
∆ ≤ n log 1

ε + n(1 + log n), which is
O
(
n log n

ε

)
.

Proposition 16 is disappointing: it guarantees exponential convergence of Xη to X∗ only when
η & n log n, a far cry from the hoped-for result that η could be taken Õ(1). We now show that,
up to logarithmic factors, this bound is tight. The following theorem implies that, even when C ∈
{0, 1}n×n, 〈C,Xη〉 can be bounded away from the optimal value if η � n.

Theorem 17 Let C ∈ {0, 1}n×n be the matrix given by

Cij :=

{
0 if j = i or j = i+ 1,
1 otherwise.

(8)

If η ≤ n log 1−ε
ε , then

〈C,Xη〉 − 〈C,X∗〉 ≥ ε

Proof The matrix defied in (8) admits the unique optimum solution X∗ = I , the identity matrix,
and optimal value 〈C, I〉 = 0. For any permutation Π 6= I , on the other hand, 〈C,Π〉 ≥ 1.

We prove the contrapositive. By the Birkhoff-von Neumann theorem, we can write Xη as a
convex combination of permutation matrices:

Xη = λII +
∑
Π 6=I

λΠΠ .

By assumption, 〈C,Xη〉 < ε, so λI > 1 − ε. This implies that Xη
ii > 1 − ε for 1 ≤ i ≤ n, and

therefore that Xη
i,i+1 < ε for 1 ≤ i ≤ n− 1.

Sinkhorn’s theorem (Sinkhorn, 1967) combined with first-order optimality conditions for the
penalized program guarantee that Xη = D1AD2 for positive diagonal matrices D1 and D2 and
Aij := exp(−ηCij). Write d for the vector of diagonal entries of D2. For 1 ≤ i ≤ n− 1, we have

di
di+1

=
Ai,i
Ai,i+1

di
di+1

=
Xη
i,i

Xη
i,i+1

>
1− ε
ε

. (9)

Finally, we note that
Xη
n,n

Xη
n,1

=
An,n
An,1

dn
d1

= exp(η)
dn
d1
,

and since Xη
n,1 < ε, we obtain

dn
d1

> exp(−η)
1− ε
ε

. (10)

Combining (9) for 1 ≤ i ≤ n− 1 with (10) yields

0 > n log
1− ε
ε
− η ,

which implies

η > n log
1− ε
ε

,

as claimed.
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5. Conclusions

Our focus in this work has been on making explicit the asymptotic analysis of Cominetti and
San Martín (1994). Their paper has been cited consistently in the computational optimal trans-
port community as giving the best account of the speed of convergence of the penalized program to
the original linear program (see Genevay et al., 2016; Benamou et al., 2015, 2016; Blondel et al.,
2017; Carlier et al., 2017; Denitiu et al., 2014; Dessein et al., 2016; Di Marino et al., 2017; Díaz
et al., 2015; Genevay et al., 2016; Schmitzer, 2016; Peyré and Cuturi, 2017; Luise et al., 2018). We
hope that the simple and explicit proof here will clarify the nature of the exponential rate proved
in Cominetti and San Martín (1994), and provide a framework for a more refined analysis of the
entropic penalty for linear programs of interest.

One puzzle that remains is to give theoretical justification to the observation of Cuturi (2013)
that small values of η achieve good accuracy on real-world optimal transport data. It is clear that
the analysis of Theorem 5 could be improved via a more refined understanding of the “energy
spectrum” of optimal transport (i.e., the size and structure of the set of nearly-optimal transports),
but obtaining this understanding even in the case where the costs are i.i.d. random variables is a
very deep question (Aldous, 2001). We leave obtaining a more sophisticated grasp on the behavior
of this trajectory for future work.

6. Proofs of Lemmas

Proof [Proof of Lemma 6] Write λ̄ = 1− λ, and let R = max{‖x‖1, ‖y‖1}.

H(λx+ λ̄y) =
∑
i

(λxi + λ̄yi)

(
log

1

λxi + λ̄yi

)
=
∑
i

λxi

(
log

1

λxi + λ̄yi

)
+
∑
i

λ̄yi

(
log

1

λxi + λ̄yi

)
≤
∑
i

λxi

(
log

1

λxi

)
+
∑
i

λ̄yi

(
log

1

λ̄yi

)
= λH(x) + λ̄H(y) + λ log

1

λ

∑
i

xi + λ̄ log
1

λ̄

∑
i

yi

≤ λH(x) + λ̄H(y) +Rh(λ) .

Proof [Proof of Lemma 7] The derivative of f satisfies

f ′(λ) = α log
1− λ
λ

+ β .

When λ ∈ (0, β
α+β ],

log
1− λ
λ
≥ − log

β

α
> −β

α
,

so f ′(λ) > 0. The claim follows.
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Proof [Proof of Lemma 8] By definition h(ρ) = ρ log 1
ρ + (1 − ρ) log 1

1−ρ , so it suffices to show
that

(1− ρ)

ρ
log

1

1− ρ
≤ 1 ∀ρ ∈ [0, 1] .

This inequality is easily verified by noting that the derivative of the left side is nonpositive on (0, 1)

and limρ→0+
(1−ρ)
ρ log 1

1−ρ = 1.

Proof [Proof of Lemma 15] It is trivial to see that all X ∈ B satisfy
∑

ij Xij = n, so R1 = n. For
any X ∈ B,

H(X) =
∑
ij

Xij log
1

Xij

=
∑
i

∑
j

Xij log
1

Xij

=
∑
i

H(Xi) ,

where Xi denotes the ith row of X . Since each row of X is a nonnegative vector of dimension
n whose entries sum to 1, for each 1 ≤ i ≤ n the bound 0 ≤ H(Xi) ≤ log n holds. Therefore
0 ≤ H(X) ≤ n log n for all X ∈ B, which proves that RH ≤ n log n.
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