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Abstract
We propose a Riemannian version of Nesterov’s Accelerated Gradient algorithm (RAGD), and show
that for geodesically smooth and strongly convex problems, within a neighborhood of the minimizer
whose radius depends on the condition number as well as the sectional curvature of the manifold,
RAGD converges to the minimizer with acceleration. Unlike the algorithm in (Liu et al., 2017) that
requires the exact solution to a nonlinear equation which in turn may be intractable, our algorithm
is constructive and computationally tractable1. Our proof exploits a new estimate sequence and a
novel bound on the nonlinear metric distortion, both ideas may be of independent interest.
Keywords: Riemannian optimization; geodesically convex optimization; Nesterov’s accelerated
gradient method; nonlinear optimization

1. Introduction

Convex optimization theory has been a fruitful area of research for decades, with classic work such
as the ellipsoid algorithm (Khachiyan, 1980) and the interior point methods (Karmarkar, 1984).
However, with the rise of machine learning and data science, growing problem sizes have shifted the
community’s focus to first-order methods such as gradient descent and stochastic gradient descent.
Over the years, impressive theoretical progress has also been made here, helping elucidate problem
characteristics and bringing insights that drive the discovery of provably faster algorithms, notably
Nesterov’s accelerated gradient descent (Nesterov, 1983) and variance reduced incremental gradient
methods (e.g., Johnson and Zhang, 2013; Schmidt et al., 2013; Defazio et al., 2014).

Outside convex optimization, however, despite some recent progress on nonconvex optimization
our theoretical understanding remains limited. Nonetheless, nonconvexity pervades machine learning
applications and motivates identification and study of specialized structure that enables sharper
theoretical analysis, e.g., optimality bounds, global complexity, or faster algorithms. Some examples
include, problems with low-rank structure (Boumal et al., 2016b; Ge et al., 2017; Sun et al., 2017;
Kawaguchi, 2016); local convergence rates (Ghadimi and Lan, 2013; Reddi et al., 2016; Agarwal et al.,
2016; Carmon et al., 2016); growth conditions that enable fast convergence (Polyak, 1963; Zhang
et al., 2016; Attouch et al., 2013; Shamir, 2015); and nonlinear constraints based on Riemannian
manifolds (Boumal et al., 2016a; Zhang and Sra, 2016; Zhang et al., 2016; Mishra and Sepulchre,
2016), or more general metric spaces (Ambrosio et al., 2014; Bacák, 2014).

In this paper, we focus on nonconvexity from a Riemannian viewpoint and consider gradient
based optimization. In particular, we are motivated by Nesterov’s accelerated gradient method (Nes-

1. as long as Riemannian gradient, exponential map and its inverse are computationally tractable, which is the case for
many matrix manifolds (Absil et al., 2009).
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terov, 1983), a landmark result in the theory of first-order optimization. By introducing an ingenious
“estimate sequence” technique, Nesterov (1983) devised a first-order algorithm that provably outper-
forms gradient descent, and is optimal (in a first-order oracle model) up to constant factors. This
result bridges the gap between the lower and upper complexity bounds in smooth first-order convex
optimization (Nemirovsky and Yudin, 1983; Nesterov, 2004).

Following this seminal work, other researchers also developed different analyses to explain the
phenomenon of acceleration. However, both the original proof of Nesterov and all other existing
analyses rely heavily on the linear structure of vector spaces. Therefore, our central question is:

Is linear space structure necessary to achieve acceleration?

Given that the iteration complexity theory of gradient descent generalizes to Riemannian mani-
folds (Zhang and Sra, 2016), it is tempting to hypothesize that a Riemannian generalization of
accelerated gradient methods also works. However, the nonlinear nature of Riemannian geometry
poses significant obstructions to either verify or refute such a hypothesis. The aim of this paper is to
study existence of accelerated gradient methods on Riemannian manifolds, while identifying and
tackling key obstructions and obtaining new tools for global analysis of optimization on Riemannian
manifolds as a byproduct.

It is important to note that in a recent work (Liu et al., 2017), the authors claimed to have
developed Nesterov-style methods on Riemannian manifolds and analyzed their convergence rates.
Unfortunately, this is not the case, since their algorithm requires the exact solution to a nonlinear
equation (Liu et al., 2017, (4) and (5)) on the manifold at every iteration. In fact, solving this
nonlinear equation itself can be as difficult as solving the original optimization problem.

1.1. Related work

The first accelerated gradient method in vector space along with the concept of estimate sequence is
proposed by Nesterov (1983); (Nesterov, 2004, Chapter 2.2.1) contains an expository introduction. In
recent years, there has been a surging interest to either develop new analysis for Nesterov’s algorithm
or invent new accelerated gradient methods. In particular, Su et al. (2014); Flammarion and Bach
(2015); Wibisono et al. (2016) take a dynamical system viewpoint, modeling the continuous time limit
of Nesterov’s algorithm as a second-order ordinary differential equation. Allen-Zhu and Orecchia
(2014) reinterpret Nesterov’s algorithm as the linear coupling of a gradient step and a mirror descent
step, which also leads to accelerated gradient methods for smoothness defined with non-Euclidean
norms. Arjevani et al. (2015) reinvent Nesterov’s algorithm by considering optimal methods for
optimizing polynomials. Bubeck et al. (2015) develop an alternative accelerated method with a
geometric explanation. Lessard et al. (2016) use theory from robust control to derive convergence
rates for Nesterov’s algorithm.

The design and analysis of Riemannian optimization algorithms as well as some historical
perspectives were covered in details in (Absil et al., 2009), although the analysis only focused on
local convergence. The first global convergence result was derived in (Udriste, 1994) under the
assumption that the Riemannian Hessian is positive definite. Zhang and Sra (2016) established the
globally convergence rate of Riemannian gradient descent algorithm for optimizing geodesically
convex functions on Riemannian manifolds. Other nonlocal analyses of Riemannian optimization
algorithms include stochastic gradient algorithm (Zhang and Sra, 2016), fast incremental algorithm
(Zhang et al., 2016; Kasai et al., 2016), proximal point algorithm (Ferreira and Oliveira, 2002) and
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trust-region algorithm (Boumal et al., 2016a). Absil et al. (2009, Chapter 2) also surveyed some
important applications of Riemannian optimization.

1.2. Summary of results

In this paper, we make the following contributions:

1. We propose the first computationally tractable accelerated gradient algorithm that, within
a radius from the minimizer that depends on the condition number and sectional curvature
bounds, is provably faster than gradient descent methods on Riemannian manifolds with
bounded sectional curvatures. (Algorithm 2, Theorem 11)

2. We analyze the convergence of this algorithm using a new estimate sequence, which relaxes
Nesterov’s original assumption and also generalizes to Riemannian optimization. (Lemma 4)

3. We develop a novel bound related to the bi-Lipschitz property of exponential maps on Rieman-
nian manifolds. This fundamental geometric result is essential for our convergence analysis,
but should also have other interesting applications. (Theorem 10)

2. Background

We briefly review concepts in Riemannian geometry that are related to our analysis; for a thorough
introduction one standard text is (e.g. Jost, 2011). A Riemannian manifold (M, g) is a real smooth
manifoldM equipped with a Riemannain metric g. The metric g induces an inner product structure on
each tangent space TxM associated with every x ∈M. We denote the inner product of u, v ∈ TxM
as 〈u, v〉 , gx(u, v); and the norm of u ∈ TxM is defined as ‖u‖x ,

√
gx(u, u); we omit the

index x for brevity wherever it is obvious from the context. The angle between u, v is defined
as arccos 〈u,v〉‖u‖‖v‖ . A geodesic is a constant speed curve γ : [0, 1] → M that is locally distance
minimizing. An exponential map Expx : TxM→M maps v in TxM to y onM, such that there
is a geodesic γ with γ(0) = x, γ(1) = y and γ̇(0) , d

dtγ(0) = v. If between any two points in
X ⊂ M there is a unique geodesic, the exponential map has an inverse Exp−1x : X → TxM and
the geodesic is the unique shortest path with ‖Exp−1x (y)‖ = ‖Exp−1y (x)‖ the geodesic distance
between x, y ∈ X . Parallel transport is the Riemannian analogy of vector translation, induced by the
Riemannian metric.

Let u, v ∈ TxM be linearly independent, so that they span a two dimensional subspace of TxM.
Under the exponential map, this subspace is mapped to a two dimensional submanifold of U ⊂M.
The sectional curvature κ(x,U) is defined as the Gauss curvature of U at x, and is a critical concept
in the comparison theorems involving geodesic triangles (Burago et al., 2001).

The notion of geodesically convex sets, geodesically (strongly) convex functions and geodesically
smooth functions are defined as straightforward generalizations of the corresponding vector space
objects to Riemannian manifolds. In particular,
• A set X is called geodesically convex if for any x, y ∈ X , there is a geodesic γ with γ(0) =
x, γ(1) = y and γ(t) ∈ X for t ∈ [0, 1].
• We call a function f : X → R geodesically convex (g-convex) if for any x, y ∈ X and any

geodesic γ such that γ(0) = x, γ(1) = y and γ(t) ∈ X for all t ∈ [0, 1], it holds that

f(γ(t)) ≤ (1− t)f(x) + tf(y).
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It can be shown that if the inverse exponential map is well-defined, an equivalent definition
is that for any x, y ∈ X , f(y) ≥ f(x) + 〈gx,Exp−1x (y)〉, where gx is the gradient of f at x
(in this work we assume f is differentiable). A function f : X → R is called geodesically
µ-strongly convex (µ-strongly g-convex) if for any x, y ∈ X and gradient gx, it holds that

f(y) ≥ f(x) + 〈gx,Exp−1x (y)〉+ µ
2‖Exp−1x (y)‖2.

• We call a vector field g : X → Rd geodesically L-Lipschitz (L-g-Lipschitz) if for any
x, y ∈ X ,

‖g(x)− Γxyg(y)‖ ≤ L‖Exp−1x (y)‖,

where Γxy is the parallel transport from y to x. We call a differentiable function f : X → R
geodesically L-smooth (L-g-smooth) if its gradient is L-g-Lipschitz, in which case we have

f(y) ≤ f(x) + 〈gx,Exp−1x (y)〉+ L
2 ‖Exp−1x (y)‖2.

Throughout our analysis, for simplicity, we make the following standing assumptions:

Assumption 1 X ⊂M is a geodesically convex set where the exponential map Exp and its inverse
Exp−1 are well defined.
Assumption 2 The sectional curvature in X is bounded, i.e. |κ(x, ·)| ≤ K,∀x ∈ X .

Assumption 3 f is geodesically L-smooth, µ-strongly convex, and assumes its minimum inside X .

Assumption 4 All the iterates remain in X .

With these assumptions, the problem being solved can be stated formally as minx∈X⊂M f(x).

3. Proposed algorithm: RAGD

Algorithm 1: Riemannian-Nesterov(x0, γ0, {hk}T−1k=0 , {βk}
T−1
k=0 )

Parameters: initial point x0 ∈ X , γ0 > 0, step sizes {hk ≤ 1
L}, shrinkage parameters {βk > 0}

initialize v0 = x0
for k = 0, 1, . . . , T − 1 do

Compute αk ∈ (0, 1) from the equation α2
k = hk · ((1− αk)γk + αkµ)

Set γk+1 = (1− αk)γk + αkµ

1 Choose yk = Expxk

(
αkγk

γk+αkµ
Exp−1xk (vk)

)
Compute f(yk) and gradf(yk)

2 Set xk+1 = Expyk (−hkgradf(yk))

3 Set vk+1 = Expyk

(
(1−αk)γk
γk+1

Exp−1yk (vk)− αk
γk+1

gradf(yk)
)

Set γk+1 = 1
1+βk

γk+1

end
Output: xT

Our proposed optimization procedure is shown in Algorithm 1. We assume the algorithm is
granted access to oracles that can efficiently compute the exponential map and its inverse, as well as
the Riemannian gradient of function f . In comparison with Nesterov’s accelerated gradient method
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vk
yk
xk

x∗

vk+1
yk+1 xk+1

Exp−1yk (xk)

Exp−1yk (vk)

gradf(yk)

Exp−1yk (xk+1)

Exp−1yk (vk+1)

TykM

Figure 1: Illustration of the geometric quantities in Algorithm 1. Left: iterates and minimizer x∗

with yk’s tangent space shown schematically. Right: the inverse exponential maps of
relevant iterates in yk’s tangent space. Note that yk is on the geodesic from xk to vk
(Algorithm 1, Line 1); Exp−1yk (xk+1) is in the opposite direction of gradf(yk) (Algorithm
1, Line 2); also note how Exp−1yk (vk+1) is constructed (Algorithm 1, Line 3).

in vector space (Nesterov, 2004, p.76), we note two important differences: first, instead of linearly
combining vectors, the update for iterates is computed via exponential maps; second, we introduce a
paired sequence of parameters {(γk, γk)}T−1k=0 , for reasons that will become clear when we analyze
the convergence of the algorithm.

Algorithm 1 provides a general scheme for Nesterov-style algorithms on Riemannian manifolds,
leaving the choice of many parameters to users’ preference. To further simplify the parameter choice
as well as the analysis, we note that the following specific choice of parameters

γ0 ≡ γ =

√
β2 + 4(1 + β)µh− β√
β2 + 4(1 + β)µh+ β

· µ, hk ≡ h,∀k ≥ 0, βk ≡ β > 0, ∀k ≥ 0,

which leads to Algorithm 2, a constant step instantiation of the general scheme. We leave the proof
of this claim as a lemma in the Appendix.

Algorithm 2: Constant Step Riemannian-Nesterov(x0, h, β)
Parameters: initial point x0 ∈ X , step size h ≤ 1

L , shrinkage parameter β > 0
initialize v0 = x0

set α =

√
β2+4(1+β)µh−β

2 , γ =

√
β2+4(1+β)µh−β√
β2+4(1+β)µh+β

· µ, γ = (1 + β)γ

for k = 0, 1, . . . , T − 1 do
Choose yk = Expxk

(
αγ

γ+αµExp−1xk (vk)
)

Set xk+1 = Expyk (−hgradf(yk))

Set vk+1 = Expyk

(
(1−α)γ

γ Exp−1yk (vk)− α
γ gradf(yk)

)
end
Output: xT

We move forward to analyzing the convergence properties of these two algorithms in the fol-
lowing two sections. In Section 4, we first provide a novel generalization of Nesterov’s estimate
sequence to Riemannian manifolds, then show that if a specific tangent space distance comparison
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inequality (8) always holds, then Algorithm 1 converges similarly as its vector space counterpart. In
Section 5, we establish sufficient conditions for this tangent space distance comparison inequality
to hold, specifically for Algorithm 2, and show that under these conditions Algorithm 2 converges
in O

(√
L
µ log(1/ε)

)
iterations, a faster rate than the O

(
L
µ log(1/ε)

)
complexity of Riemannian

gradient descent.

4. Analysis of a new estimate sequence

First introduced in (Nesterov, 1983), estimate sequences are central tools in establishing the accelera-
tion of Nesterov’s method. We first note a weaker notion of estimate sequences for functions whose
domain is not necessarily a vector space.

Definition 1 A pair of sequences {Φk(x) : X → R}∞k=0 and {λk}∞k=0 is called a (weak) estimate
sequence of a function f(x) : X → R, if λk → 0 and for all k ≥ 0 we have:

Φk(x
∗) ≤ (1− λk)f(x∗) + λkΦ0(x

∗). (1)

This definition relaxes the original definition proposed by Nesterov (2004, def. 2.2.1), in that the
latter requires Φk(x) ≤ (1 − λk)f(x) + λkΦ0(x) to hold for all x ∈ X , whereas our definition
only assumes it holds at the minimizer x∗. We note that similar observations have been made, e.g.,
in (Carmon et al., 2017). This relaxation is essential for sparing us from fiddling with the global
geometry of Riemannian manifolds.

However, there is one major obstacle in the analysis – Nesterov’s construction of quadratic
function sequence critically relies on the linear metric and does not generalize to nonlinear space.
An example is given in Figure 2, where we illustrate the distortion of distance (hence quadratic
functions) in tangent spaces. The key novelty in our construction is inequality (4) which allows
a broader family of estimate sequences, as well as inequality (8) which handles nonlinear metric
distortion and fulfills inequality (4). Before delving into the analysis of our specific construction, we
recall how to construct estimate sequences and note their use in the following two lemmas.

Lemma 2 Let us assume that:

1. f is geodesically L-smooth and µ-strongly geodesically convex on domain X .

2. Φ0(x) is an arbitrary function on X .

3. {yk}∞k=0 is an arbitrary sequence in X .

4. {αk}∞k=0: αk ∈ (0, 1),
∑∞

k=0 αk =∞.

5. λ0 = 1.

Then the pair of sequences {Φk(x)}∞k=0, {λk}∞k=0 which satisfy the following recursive rules:

λk+1 = (1− αk)λk, (2)

Φk+1(x) = (1− αk)Φk(x) + αk

[
f(yk) + 〈gradf(yk),Exp−1yk (x)〉+

µ

2
‖Exp−1yk (x)‖2

]
, (3)

Φk+1(x
∗) ≤ Φk+1(x

∗), (4)

is a (weak) estimate sequence.
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The proof is similar to (Nesterov, 2004, Lemma 2.2.2) which we include in Appendix B.

Lemma 3 If for a (weak) estimate sequence {Φk(x) : X → R}∞k=0 and {λk}∞k=0 we can find a
sequence of iterates {xk}, such that

f(xk) ≤ Φ∗k ≡ min
x∈X

Φk(x),

then f(xk)− f(x∗) ≤ λk(Φ0(x
∗)− f(x∗))→ 0.

Proof By Definition 1 we have f(xk) ≤ Φ∗k ≤ Φk(x
∗) ≤ (1 − λk)f(x∗) + λkΦ0(x

∗). Hence
f(xk)− f(x∗) ≤ λk(Φ0(x

∗)− f(x∗))→ 0.

Lemma 3 immediately suggest the use of (weak) estimate sequences in establishing the convergence
and analyzing the convergence rate of certain iterative algorithms. The following lemma shows that a
weak estimate sequence exists for Algorithm 1. Later in Lemma 6, we prove that the sequence {xk}
in Algorithm 1 satisfies the requirements in Lemma 3 for our estimate sequence.

Lemma 4 Let Φ0(x) = Φ∗0 + γ0
2 ‖Exp−1y0 (x)‖2. Assume for all k ≥ 0, the sequences {γk}, {γk},

{vk}, {Φ∗k} and {αk} satisfy

γk+1 = (1− αk)γk + αkµ, (5)

vk+1 = Expyk

(
(1− αk)γk
γk+1

Exp−1yk (vk)−
αk
γk+1

gradf(yk)

)
(6)

Φ∗k+1 = (1− αk) Φ∗k + αkf(yk)−
α2
k

2γk+1

‖gradf(yk)‖2

+
αk(1− αk)γk

γk+1

(µ
2
‖Exp−1yk (vk)‖2 + 〈gradf(yk),Exp−1yk (vk)〉

)
, (7)

γk+1‖Exp−1yk+1
(x∗)− Exp−1yk+1

(vk+1)‖2 ≤ γk+1‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2, (8)

αk ∈ (0, 1),

∞∑
k=0

αk =∞, (9)

then the pair of sequence {Φk(x)}∞k=0 and {λk}∞k=0, defined by

Φk+1(x) = Φ∗k+1 +
γk+1

2
‖Exp−1yk+1

(x)− Exp−1yk+1
(vk+1)‖2, (10)

λ0 = 1, λk+1 = (1− αk)λk. (11)

is a (weak) estimate sequence.

Proof Recall the definition of Φk+1(x) in Equation (3). We claim that if Φk(x) = Φ∗k+
γk
2 ‖Exp−1yk (x)−

Exp−1yk (vk)‖2, then we have Φk+1(x) ≡ Φ∗k+1 +
γk+1

2 ‖Exp−1yk (x) − Exp−1yk (vk+1)‖2. The proof
of this claim requires a simple algebraic manipulation as is noted as Lemma 5. Now using the
assumption (8) we immediately get Φk+1(x

∗) ≤ Φk+1(x
∗). By Lemma 2 the proof is complete.

We verify the specific form of Φk+1(x) in Lemma 5, whose proof can be found in the Appendix C.
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Lemma 5 For all k ≥ 0, if Φk(x) = Φ∗k + γk
2 ‖Exp−1yk (x) − Exp−1yk (vk)‖2, then with Φk+1

defined as in (3), γk+1 as in (5), vk+1 as in Algorithm 1 and Φ∗k+1 as in (7) we have Φk+1(x) ≡
Φ∗k+1 +

γk+1

2 ‖Exp−1yk (x)− Exp−1yk (vk+1)‖2.

The next lemma asserts that the iterates {xk} of Algorithm 1 satisfy the requirement that the function
values f(xk) are upper bounded by Φ∗k defined in our estimate sequence.

Lemma 6 Assume Φ∗0 = f(x0), and {Φ∗k} be defined as in (7) with {xk} and other terms defined
as in Algorithm 1. Then we have Φ∗k ≥ f(xk) for all k ≥ 0.

The proof is standard. We include it in Appendix D for completeness. Finally, we are ready to state
the following theorem on the convergence rate of Algorithm 1.

Theorem 7 (Convergence of Algorithm 1) For any given T ≥ 0, assume (8) is satisfied for all
0 ≤ k ≤ T , then Algorithm 1 generates a sequence {xk}∞k=0 such that

f(xT )− f(x∗) ≤ λT
(
f(x0)− f(x∗) +

γ0
2
‖Exp−1x0 (x∗)‖2

)
(12)

where λ0 = 1 and λk =
∏k−1
i=0 (1− αi).

Proof The proof is similar to (Nesterov, 2004, Theorem 2.2.1). We choose Φ0(x) = f(x0) +
γ0
2 ‖Exp−1y0 (x)‖2, hence Φ∗0 = f(x0). By Lemma 4 and Lemma 6, the assumptions in Lemma 3 hold.

It remains to use Lemma 3.

5. Local fast rate with a constant step scheme

By now we see that almost all the analysis of Nesterov’s generalizes, except that the assumption
in (8) is not necessarily satisfied. In vector space, the two expressions both reduce to x∗ − vk+1

and hence (8) trivially holds with γ = γ. On Riemannian manifolds, however, due to the nonlinear
Riemannian metric and the associated exponential maps, ‖Exp−1yk+1

(x∗) − Exp−1yk+1
(vk+1)‖ and

‖Exp−1yk (x∗) − Exp−1yk (vk+1)‖ in general do not equal (illustrated in Figure 2). Bounding the
difference between these two quantities points the way forward for our analysis, which is also our
main contribution in this section. We start with two lemmas comparing a geodesic triangle and the
triangle formed by the preimage of its vertices in the tangent space, in two constant curvature spaces:
hyperbolic space and the hypersphere.

Lemma 8 (bi-Lipschitzness of the exponential map in hyperbolic space) Let a, b, c be the side
lengths of a geodesic triangle in a hyperbolic space with constant sectional curvature −1, and A is
the angle between sides b and c. Furthermore, assume b ≤ 1

4 , c ≥ 0. Let4āb̄c̄ be the comparison
triangle in Euclidean space, with b̄ = b, c̄ = c, Ā = A, then

ā2 ≤ a2 ≤ (1 + 2b2)ā2. (13)

Proof The proof of this lemma contains technical details that deviate from our main focus; so we
defer them to the appendix. The first inequality is well known. To show the second inequality, we
have Lemma 13 and Lemma 14 (in Appendix) which in combination complete the proof.

We also state without proof that by the same techniques one can show the following result holds.
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Exp−1yk (vk+1)

T
y
kM

yk

Exp−1yk (x∗)

x∗

vk+1

yk+1

vk+1

Exp−1yk+1
(vk+1)

yk+1 yk

Tyk+1M x∗

Exp−1yk+1
(x∗)

Figure 2: A schematic illustration of the geometric quantities in Theorem 10. Tangent spaces
of yk and yk+1 are shown in separate figures to reduce cluttering. Note that even on
a sphere (which has constant positive sectional curvature), d(x∗, vk+1), ‖Exp−1yk (x∗) −
Exp−1yk (vk+1)‖ and ‖Exp−1yk+1

(x∗)− Exp−1yk+1
(vk+1)‖ generally do not equal.

Lemma 9 (bi-Lipschitzness of the exponential map on hypersphere) Let a, b, c be the side lengths
of a geodesic triangle in a hypersphere with constant sectional curvature 1, and A is the angle
between sides b and c. Furthermore, assume b ≤ 1

4 , c ∈ [0, π2 ]. Let4āb̄c̄ be the comparison triangle
in Euclidean space, with b̄ = b, c̄ = c, Ā = A, then

a2 ≤ ā2 ≤ (1 + 2b2)a2. (14)

Albeit very much simplified, spaces of constant curvature are important objects to study, because
often their properties can be generalized to general Riemannian manifolds with bounded curvature,
specifically via the use of powerful comparison theorems in metric geometry (Burago et al., 2001).
In our case, we use these two lemmas to derive a tangent space distance comparison theorem for
Riemannian manifolds with bounded sectional curvature.

Theorem 10 (Multiplicative distortion of squared distance on Riemannian manifold)
Let x∗, vk+1, yk, yk+1 ∈ X be four points in a g-convex, uniquely geodesic set X where the
sectional curvature is bounded within [−K,K], for some nonnegative number K. Define bk+1 =

max
{
‖Exp−1yk (x∗)‖, ‖Exp−1yk+1

(x∗)‖
}

. Assume bk+1 ≤ 1
4
√
K

for K > 0 (otherwise bk+1 < ∞),
then we have

‖Exp−1yk+1
(x∗)− Exp−1yk+1

(vk+1)‖2 ≤ (1 + 5Kb2k+1)‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2. (15)

Proof The high level idea is to think of the tangent space distance distortion on Riemannian manifolds
of bounded curvature as a consequence of bi-Lipschitzness of the exponential map. Specifically,
note that4ykx∗vk+1 and4yk+1x

∗vk+1 are two geodesic triangles in X , whereas ‖Exp−1yk (x∗)−
Exp−1yk (vk+1)‖ and ‖Exp−1yk+1

(x∗)− Exp−1yk+1
(vk+1)‖ are side lengths of two comparison triangles

in vector space. Since X is of bounded sectional curvature, we can apply comparison theorems.
First, we consider bound on the distortion of squared distance in a Riemannian manifold with

constant curvature −K. Note that in this case, the hyperbolic law of cosines becomes

cosh(
√
Ka) = cosh(

√
Kb) cosh(

√
Kc)− sinh(

√
Kb) sinh(

√
Kc) cos(A),
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which corresponds to the geodesic triangle in hyperbolic space with side lengths
√
Ka,
√
Kb,
√
Kc,

with the corresponding comparison triangle in Euclidean space having lengths
√
Kā,
√
Kb̄,
√
Kc̄.

Apply Lemma 8 we have (
√
Ka)2 ≤ (1+2(

√
Kb)2)(

√
Kā)2, i.e. a2 ≤ (1+2Kb2)ā2. Now consider

the geodesic triangle 4ykx∗vk+1. Let ã = ‖Exp−1vk+1
(x∗)‖, b = ‖Exp−1yk (vk+1)‖ ≤ bk+1, c =

‖Exp−1yk (x∗)‖, A = ∠x∗ykvk+1, so that ‖Exp−1yk (x∗) − Exp−1yk (vk+1)‖2 = b2 + c2 − 2bc cos(A).
By Toponogov’s comparison theorem (Burago et al., 2001), we have ã ≤ a hence

‖Exp−1vk+1
(x∗)‖2 ≤

(
1 + 2Kb2k+1

)
‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2. (16)

Similarly, using the spherical law of cosines for a space of constant curvature K

cos(
√
Ka) = cos(

√
Kb) cos(

√
Kc) + sin(

√
Kb) sin(

√
Kc) cos(A)

and Lemma 9 we can show ā2 ≤ (1 + 2Kb2)a2, where ā is the side length in Euclidean space
corresponding to a. Hence by our uniquely geodesic assumption and (Meyer, 1989, Theorem
2.2, Remark 7), with similar reasoning for the geodesic triangle 4yk+1x

∗vk+1, we have a ≤
‖Exp−1vk+1

(x∗)‖, so that

‖Exp−1yk+1
(x∗)− Exp−1yk+1

(vk+1)‖2 ≤
(
1 + 2Kb2k+1

)
a2 ≤

(
1 + 2Kb2k+1

)
‖Exp−1vk+1

(x∗)‖2. (17)

Finally, combining inequalities (16) and (17), and noting that (1 + 2Kb2k+1)
2 = 1 + 4Kb2k+1 +

(4Kb2k+1)Kb
2 ≤ 1 + 5Kb2k+1, the proof is complete.

Theorem 10 suggests that if bk+1 ≤ 1
4
√
K

, we could choose β ≥ 5Kb2k+1 and γ ≤ 1
1+βγ to

guarantee Φk+1(x
∗) ≤ Φk+1(x

∗). It then follows that the analysis holds for k-th step. Still, it is
unknown that under what conditions can we guarantee Φk+1(x

∗) ≤ Φk+1(x
∗) hold for all k ≥ 0,

which would lead to a convergence proof. We resolve this question in the next theorem.

Theorem 11 (Local fast convergence) With Assumptions 1, 2, 3, 4, denote D = 1
20
√
K

(µ
L

) 3
4 and

assume Bx∗,D := {x ∈ M : d(x, x∗) ≤ D} ⊆ X . If we set h = 1
L , β = 1

5

√
µ
L and x0 ∈ Bx∗,D,

then Algorithm 2 converges; moreover, we have

f(xk)− f(x∗) ≤
(

1− 9

10

√
µ

L

)k (
f(x0)− f(x∗) +

µ

2
‖Exp−1x0 (x∗)‖2

)
. (18)

Proof sketch. Recall that in Theorem 7 we already establish that if the tangent space distance
comparison inequality (8) holds, then the general Riemannian Nesterov iteration (Algorithm 1) and
hence its constant step size special case (Algorithm 2) converge with a guaranteed rate. By the
tangent space distance comparison theorem (Theorem 10), the comparison inequality should hold if
yk and x∗ are close enough. Indeed, we use induction to assert that with a good initialization, (8)
holds for each step. Specifically, for every k > 0, if yk is close to x∗ and the comparison inequality
holds until the (k − 1)-th step, then yk+1 is also close to x∗ and the comparison inequality holds
until the k-th step. We postpone the complete proof until Appendix F.

10
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6. Discussion

In this work, we proposed a Riemannian generalization of the accelerated gradient algorithm and
developed its convergence and complexity analysis. For the first time (to the best of our knowledge),
we show gradient based algorithms on Riemannian manifolds can be accelerated, at least in a
neighborhood of the minimizer. Central to our analysis are the two main technical contributions of
our work: a new estimate sequence (Lemma 4), which relaxes the assumption of Nesterov’s original
construction and handles metric distortion on Riemannian manifolds; a tangent space distance
comparison theorem (Theorem 10), which provides sufficient conditions for bounding the metric
distortion and could be of interest for a broader range of problems on Riemannian manifolds.

Despite not matching the standard convex results, our result exposes the key difficulty of analyzing
Nesterov-style algorithms on Riemannian manifolds, an aspect missing in previous work. Critically,
the convergence analysis relies on bounding a new distortion term per each step. Furthermore, we
observe that the side length sequence d(yk, vk+1) can grow much greater than d(yk, x

∗), even if we
reduce the “step size” hk in Algorithm 1, defeating any attempt to control the distortion globally
by modifying the algorithm parameters. This is a benign feature in vector space analysis, since (8)
trivially holds nonetheless; however it poses a great difficulty for analysis in nonlinear space. Note
the stark contrast to (stochastic) gradient descent, where the step length can be effectively controlled
by reducing the step size, hence bounding the distortion terms globally (Zhang and Sra, 2016).

A topic of future interest is to study whether assumption (8) can be further relaxed, while
maintaining that overall the algorithm still converges. By bounding the squared distance distortion
in every step, our analysis provides guarantee for the worst-case scenario, which seems unlikely to
happen in practice. It would be interesting to conduct experiments to see how often (8) is violated
versus how often it is loose. It would also be interesting to construct some adversarial problem case
(if any) and study the complexity lower bound of gradient based Riemannian optimization, to see if
geodesically convex optimization is strictly more difficult than convex optimization. Generalizing
the current analysis to non-strongly g-convex functions is another interesting direction.
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Appendix A. Constant step scheme

Lemma 12 Pick βk ≡ β > 0. If in Algorithm 1 we set

hk ≡ h,∀k ≥ 0, γ0 ≡ γ =

√
β2 + 4(1 + β)µh− β√
β2 + 4(1 + β)µh+ β

· µ,

then we have

αk ≡ α =

√
β2 + 4(1 + β)µh− β

2
, γk+1 ≡ (1 + β)γ, γk+1 ≡ γ, ∀k ≥ 0. (19)

Proof Suppose that γk = γ, then from Algorithm 1 we have αk is the positive root of

α2
k − (µ− γ)hαk − γh = 0.

Also note

µ− γ =
βα

(1 + β)h
, and γ =

α2

(1 + β)h
, (20)

hence

αk =
(µ− γ)h+

√
(µ− γ)2h2 + 4γh

2

=
βα

2(1 + β)
+

1

2

√
β2α2

(1 + β)2
+

4α2

1 + β

= α

Furthermore, we have

γk+1 = (1− αk)γk + αkµ = (1− α)γ + αµ

= γ + (µ− γ)α = γ + β
α2

(1 + β)h

= (1 + β)γ

and γk+1 = 1
1+βγk+1 = γ. Since γk = γ holds for k = 0, by induction the proof is complete.

Appendix B. Proof of Lemma 2

Proof The proof is similar to (Nesterov, 2004, Lemma 2.2.2) except that we introduce Φk+1 as
an intermediate step in constructing Φk+1(x). In fact, to start we have Φ0(x) ≤ (1 − λ0)f(x) +
λ0Φ0(x) ≡ Φ0(x). Moreover, assume (1) holds for some k ≥ 0, i.e. Φk(x

∗)−f(x∗) ≤ λk(Φ0(x
∗)−

f(x∗)), then

Φk+1(x
∗)− f(x∗) ≤ Φk+1(x

∗)− f(x∗)

≤ (1− αk)Φk(x
∗) + αkf(x∗)− f(x∗)

= (1− αk)(Φk(x
∗)− f(x∗))

≤ (1− αk)λk(Φ0(x
∗)− f(x∗))

= λk+1(Φ0(x
∗)− f(x∗)),

14
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where the first inequality is due to our construction of Φk+1(x) in (4), the second inequality due to
strong convexity of f . By induction we have Φk(x

∗) ≤ (1− λk)f(x∗) + λkΦ0(x
∗) for all k ≥ 0. It

remains to note that condition 4 ensures λk → 0.

Appendix C. Proof of Lemma 5

Proof We prove this lemma by completing the square:

Φk+1(x) = (1− αk)
(

Φ∗k +
γk
2
‖Exp−1yk (x)− Exp−1yk (vk)‖2

)
+ αk

(
f(yk) + 〈gradf(yk),Exp−1yk (x)〉+

µ

2
‖Exp−1yk (x)‖2

)
=
γk+1

2
‖Exp−1yk (x)‖2 +

〈
αkgradf(yk)− (1− αk) γkExp−1yk (vk),Exp−1yk (x)

〉
+ (1− αk)

(
Φ∗k +

γk
2
‖Exp−1yk (vk)‖2

)
+ αkf(yk)

=
γk+1

2

∥∥∥∥Exp−1yk (x)−
(

(1− αk)γk
γk+1

Exp−1yk (vk)−
αk
γk+1

gradf(yk)

)∥∥∥∥2 + Φ∗k+1

= Φ∗k+1 +
γk+1

2

∥∥Exp−1yk (x)− Exp−1yk (vk+1)
∥∥2

where the third equality is by completing the square with respect to Exp−1yk (x) and use the definition
of Φ∗k+1 in (7), the last equality is by the definition of yk in Algorithm 1, and Φk+1(x) is minimized

if and only if x = Expyk

(
(1−αk)γk
γk+1

Exp−1yk (vk)− αk
γk+1

gradf(yk)
)

= vk+1.

Appendix D. Proof of Lemma 6

Proof For k = 0, Φ∗k ≥ f(xk) trivially holds. Assume for iteration k we have Φ∗k ≥ f(xk), then
from definition (7) we have

Φ∗k+1 ≥ (1− αk) f(xk) + αkf(yk)−
α2
k

2γk+1

‖gradf(yk)‖2 +
αk(1− αk)γk

γk+1

〈gradf(yk),Exp−1yk (vk)〉

≥ f(yk)−
α2
k

2γk+1

‖gradf(yk)‖2 + (1− αk)
〈

gradf(yk),
αkγk
γk+1

Exp−1yk (vk) + Exp−1yk (xk)

〉
= f(yk)−

α2
k

2γk+1

‖gradf(yk)‖2

= f(yk)−
hk
2
‖gradf(yk)‖2,

15
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where the first inequality is due to Φ∗k ≥ f(xk), the second due to f(xk) ≥ f(yk)+〈gradf(yk),Exp−1yk (xk)〉
by g-convexity, and the equalities follow from Algorithm 1. On the other hand, we have the bound

f(xk+1) ≤ f(yk) + 〈gradf(yk),Exp−1yk (xk+1)〉+
L

2
‖Exp−1yk (xk+1)‖2

= f(yk)− hk
(

1− Lhk
2

)
‖gradf(yk)‖2

≤ f(yk)−
hk
2
‖gradf(yk)‖2 ≤ Φ∗k+1,

where the first inequality is by the L-smoothness assumption, the equality from the definition of
xk+1 in Algorithm 1 Line 2, and the second inequality from the assumption that hk ≤ 1

L . Hence by
induction, Φ∗k ≥ f(xk) for all k ≥ 0.

Appendix E. Proof of Lemma 8

Lemma 13 Let a, b, c be the side lengths of a geodesic triangle in a hyperbolic space with constant
sectional curvature−1, andA is the angle between sides b and c. Furthermore, assume b ≤ 1

4 , c ≥
1
2 .

Let4āb̄c̄ be the comparison triangle in Euclidean space, with b̄ = b, c̄ = c, Ā = A, then

a2 ≤ (1 + 2b2)ā2 (21)

Proof We first apply (Zhang and Sra, 2016, Lemma 5) with κ = −1 to get

a2 ≤ c

tanh(c)
b2 + c2 − 2bc cos(A).

We also have
ā2 = b2 + c2 − 2bc cos(A).

Hence we get

a2 − ā2 ≤
(

c

tanh(c)
− 1

)
b2.

It remains to note that for b ≤ 1
4 , c ≥

1
2 ,

2a2 ≥ 2(c− b)2 ≥ 2

(
c− 1

4

)
≥ c

tanh(1/2)
− 1 ≥ c

tanh(c)
− 1,

which implies a2 ≤ (1 + 2b2)ā2.

Lemma 14 Let a, b, c be the side lengths of a geodesic triangle in a hyperbolic space with constant
sectional curvature−1, andA is the angle between sides b and c. Furthermore, assume b ≤ 1

4 , c ≤
1
2 .

Let4āb̄c̄ be the comparison triangle in Euclidean space, with b̄ = b, c̄ = c, Ā = A, then

a2 ≤ (1 + b2)ā2 (22)
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Proof Recall the law of cosines in Euclidean space and hyperbolic space:

ā2 = b̄2 + c̄2 − 2b̄c̄ cos Ā, (23)

cosh a = cosh b cosh c− sinh b sinh c cosA, (24)

and the Taylor series expansion:

coshx =

∞∑
n=0

1

(2n)!
x2n, sinhx =

∞∑
n=0

1

(2n+ 1)!
x2n+1. (25)

We let b̄ = b, c̄ = c, Ā = A, from Eq. (23) we have

cosh ā = cosh
(√

b2 + c2 − 2bc cosA
)

(26)

It is widely known that ā ≤ a. Now we use Eq. (25) to expand the RHS of Eq. (24) and Eq. (26),
and compare the coefficients for each corresponding term bicj in the two series. Without loss of
generality, we assume i ≥ j; the results for condition i < j can be easily obtained by the symmetry
of b, c. We expand Eq. (24) as

cosh a =

( ∞∑
n=0

1

(2n)!
b2n

)( ∞∑
n=0

1

(2n)!
c2n

)

−

( ∞∑
n=0

1

(2n+ 1)!
b2n+1

)( ∞∑
n=0

1

(2n+ 1)!
c2n+1

)
cosA

where the coefficient α(i, j) of bicj is

α(i, j) =


1

(2p)!(2q)! , if p, q ∈ N and i = 2p, j = 2q,
cosA

(2p+1)!(2q+1)! , if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.
(27)

Similarly, we expand Eq. (26) as

cosh ā =

∞∑
n=0

1

(2n)!

(
b2 + c2 − 2bc cosA

)n
where the coefficient ᾱ(i, j) of bicj is

ᾱ(i, j) =


∑q

k=0 ( p+q
p−k,q−k,2k)(2 cosA)

2k

(2p+2q)! , if p, q ∈ N and i = 2p, j = 2q,∑q
k=0 ( p+q+1

p−k,q−k,2k+1)(2 cosA)
2k+1

(2p+2q+2)! , if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.

(28)
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We hence calculate their absolute difference

|α(i, j)− ᾱ(i, j)|

=


∑q

k=0 ( p+q
p−k,q−k,2k)2

2k(1−(cosA)2k)
(2p+2q)! , if p, q ∈ N and i = 2p, j = 2q,∑q

k=0 ( p+q+1
p−k,q−k,2k+1)2

2k+1(1−(cosA)2k)| cosA|
(2p+2q+2)! , if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.

≤


∑q

k=0 ( p+q
p−k,q−k,2k)2

2kk

(2p+2q)! sin2A, if p, q ∈ N and i = 2p, j = 2q,∑q
k=0 ( p+q+1

p−k,q−k,2k+1)2
2k+1k

(2p+2q+2)! sin2A, if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.

≤


q
∑q

k=0 ( p+q
p−k,q−k,2k)2

2k

(2p+2q)! sin2A, if p, q ∈ N and i = 2p, j = 2q,
q
∑q

k=0 ( p+q+1
p−k,q−k,2k+1)2

2k+1

(2p+2q+2)! sin2A, if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.

=


q

(2p)!(2q)! sin2A, if p, q ∈ N and i = 2p, j = 2q,
q

(2p+1)!(2q+1)! sin2A, if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.
(29)

where the two equalities are due to Lemma 15, the first inequality due to the following fact

1− (cosA)2m =
(
1− (cosA)2

) (
1 + (cosA)2 + (cosA)4 + · · ·+ (cosA)2(m−1)

)
= sin2A

(
1 + (cosA)2 + (cosA)4 + · · ·+ (cosA)2(m−1)

)
≤ m sin2A

By setting q = 0, we see that in the Taylor series of cosh a− cosh ā, any term that does not include
a factor of c2 cancels out. By the symmetry of b, c, any term that does not include a factor of b2

also cancels out. The term with the lowest order of power is thus 1
4b

2c2 sin2A. Since we have
c ≤ 1

2 , b ≤
1
4 , the terms |α(i, j)− ᾱ(i, j)|bicj must satisfy

∑
i,j

|α(i, j)− ᾱ(i, j)|bicj ≤

1

4
+

∑
i+j=2k,
i,j≥2,k≥3

i+ j

2(i!)(j!)

1

22k−4

 b2c2 sin2A

≤

1

4
+
∑
k≥3

1

22k−3

 b2c2 sin2A ≤ 1

2
b2c2 sin2A

=
1

2
b2ā2 sin2C ≤ 1

2
ā2b2

where the first inequality follows from Eq. (29) and is due to min(p, q) ≤ i+j
2 , the second inequality

is due to
∑

i+j=2k
i≥2,j≥2

i+j
(i!)(j!) ≤

(2k)2

(k!)2
≤ 1 for k ≥ 3 and the last equality is due to Euclidean law of

sines. We thus get

cosh a− cosh ā ≤
∑
i,j

|α(i, j)− ᾱ(i, j)|bicj sin2A ≤ 1

2
b2ā2 (30)
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On the other hand, from the Taylor series of cosh we have

cosh a− cosh ā =
∞∑
n=0

a2n − ā2n

(2n)!
≥ 1

2
(a2 − ā2),

hence a2 ≤ (1 + b2)ā2.

Lemma 15 (Two multinomial identities) For p, q ∈ N, p ≥ q, we have

(2p+ 2q)!

(2p)!(2q)!
=

q∑
k=0

(
p+ q

p− k, q − k, 2k

)
22k (31)

(2p+ 2q + 2)!

(2p+ 1)!(2q + 1)!
=

q∑
k=0

(
p+ q + 1

p− k, q − k, 2k + 1

)
22k+1 (32)

Proof We prove the identities by showing that the LHS and RHS correspond to two equivalent ways
of counting the same quantity. For the first identity, consider a set of 2p + 2q balls bi each with a
unique index i = 1, . . . , 2p+ 2q, we count how many ways we can put them into boxes B1 and B2,
such that B1 has 2p balls and B2 has 2q balls. The LHS is obviously a correct count. To get the RHS,
note that we can first put balls in pairs, then decide what to do with each pair. Specifically, there are
p+ q pairs {b2i−1, b2i}, and we can partition the counts by the number of pairs of which we put one
of the two balls in B2. Note that this number must be even. If there are 2k such pairs, which gives us
2k balls in B2, we still need to choose 2(q − k) pairs of which both balls are put in B2, and the left
are p− k pairs of which both balls are put in B1. The total number of counts given k is thus(

p+ q

p− k, q − k, 2k

)
22k

because we can choose either ball in each of the 2k pairs leading to 22k possible choices. Summing
over k we get the RHS. Hence the LHS and the RHS equal. The second identity can be proved with
essentially the same argument.

Appendix F. Proof of Theorem 11

Proof The base case. First we verify that y0, y1 is sufficiently close to x∗ so that the comparison
inequality (8) holds at step k = 0. In fact, since y0 = x0 by construction, we have

‖Exp−1y0 (x∗)‖ = ‖Exp−1x0 (x∗)‖ ≤ 1

4
√
K
, 5K‖Exp−1y0 (x∗)‖2 ≤ 1

80

(µ
L

) 3
2 ≤ β. (33)

To bound ‖Exp−1y1 (x∗)‖, observe that y1 is on the geodesic between x1 and v1. So first we bound
‖Exp−1x1 (x∗)‖ and ‖Exp−1v1 (x∗)‖. Bound on ‖Exp−1x1 (x∗)‖ comes from strong g-convexity:

‖Exp−1x1 (x∗)‖2 ≤ 2

µ
(f(x1)− f(x∗)) ≤ 2

µ
(f(x0)− f(x∗)) +

γ

µ
‖Exp−1x0 (x∗)‖2

≤ L+ γ

µ
‖Exp−1x0 (x∗)‖2,
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whereas bound on ‖Exp−1v1 (x∗)‖ utilizes the tangent space distance comparison theorem. First, from
the definition of Φ1 we have

‖Exp−1y0 (x∗)− Exp−1y0 (v1)‖2 =
2

γ
(Φ1(x

∗)− Φ∗1) ≤
2

γ
(Φ0(x

∗)− f(x∗)) ≤ L+ γ

γ
‖Exp−1x0 (x∗)‖2

Then note that (33) implies that the assumption in Theorem 10 is satisfied when k = 0, thus we have

‖Exp−1v1 (x∗)‖2 ≤ (1 + β)‖Exp−1y0 (x∗)− Exp−1y0 (v1)‖2 ≤
2(L+ γ)

γ
‖Exp−1x0 (x∗)‖2.

Together we have

‖Exp−1y1 (x∗)‖ ≤ ‖Exp−1x1 (x∗)‖+
αγ

γ + αµ
‖Exp−1x1 (v1)‖

≤ ‖Exp−1x1 (x∗)‖+
αγ

γ + αµ

(
‖Exp−1x1 (x∗)‖+ ‖Exp−1v1 (x∗)‖

)
≤

√
L+ γ

µ
‖Exp−1x0 (x∗)‖+

αγ

γ + αµ

(√
L+ γ

µ
+

√
2(L+ γ)

µ

)
‖Exp−1x0 (x∗)‖

≤

(
1 +

1 +
√

2

2

)√
L+ γ

µ
‖Exp−1x0 (x∗)‖

≤ 1

10
√
K

(µ
L

) 1
4 ≤ 1

4
√
K

(34)

which also implies

5K‖Exp−1y1 (x∗)‖2 ≤ 1

20

√
µ

L
≤ β (35)

By (34), (35) and Theorem 10 it is hence guaranteed that

γ‖Exp−1y1 (x∗)− Exp−1y1 (v1)‖2 ≤ γ‖Exp−1y0 (x∗)− Exp−1y0 (v1)‖2.

The inductive step. Assume that for i = 0, . . . , k − 1, (8) hold simultaneously, i.e.:

γ‖Exp−1yi+1
(x∗)− Exp−1yi+1

(vi+1)‖2 ≤ γ‖Exp−1yi (x∗)− Exp−1yi (vi+1)‖2, ∀i = 0, . . . , k − 1

and also that ‖Exp−1yk (x∗)‖ ≤ 1
10
√
K

( µ
L

) 1
4 . To bound ‖Exp−1yk+1

(x∗)‖, observe that yk+1 is on the

geodesic between xk+1 and vk+1. So first we bound ‖Exp−1xk+1
(x∗)‖ and ‖Exp−1vk+1

(x∗)‖. Note that
due to the sequential nature of the algorithm, statements about any step only depend on its previous
steps, but not any step afterwards. Since (8) hold for steps i = 0, . . . , k − 1, the analysis in the
previous section already applies for steps i = 0, . . . , k− 1. Therefore by Theorem 7 and the proof of
Lemma 6 we know

f(x∗) ≤ f(xk+1) ≤ Φ∗k+1 ≤ Φk+1(x
∗) ≤ f(x∗) + (1− α)k+1(Φ0(x

∗)− f(x∗))

≤ Φ0(x
∗) = f(x0) +

γ

2
‖Exp−1x0 (x∗)‖2
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Hence we get f(xk+1) − f(x∗) ≤ Φ0(x
∗) − f(x∗) and γ

2‖Exp−1yk (x∗) − Exp−1yk (vk+1)‖2 ≡
Φk+1(x

∗)− Φ∗k+1 ≤ Φ0(x
∗)− f(x∗). Bound on ‖Exp−1xk+1

(x∗)‖ comes from strong g-convexity:

‖Exp−1xk+1
(x∗)‖2 ≤ 2

µ
(f(xk+1)− f(x∗)) ≤ 2

µ
(f(x0)− f(x∗)) +

γ

µ
‖Exp−1x0 (x∗)‖2

≤ L+ γ

µ
‖Exp−1x0 (x∗)‖2,

whereas bound on ‖Exp−1vk+1
(x∗)‖ utilizes the tangent space distance comparison theorem. First,

from the definition of Φk+1 we have

‖Exp−1yk (x∗)−Exp−1yk (vk+1)‖2 =
2

γ
(Φk+1(x

∗)−Φ∗k+1) ≤
2

γ
(Φ0(x

∗)−f(x∗)) ≤ L+ γ

γ
‖Exp−1x0 (x∗)‖2

Then note that the inductive hypothesis implies that

‖Exp−1vk+1
(x∗)‖2 ≤ (1 + β)‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2 ≤

2(L+ γ)

γ
‖Exp−1x0 (x∗)‖2

Together we have

‖Exp−1yk+1
(x∗)‖ ≤ ‖Exp−1xk+1

(x∗)‖+
αγ

γ + αµ
‖Exp−1xk+1

(vk+1)‖

≤ ‖Exp−1xk+1
(x∗)‖+

αγ

γ + αµ

(
‖Exp−1xk+1

(x∗)‖+ ‖Exp−1vk+1
(x∗)‖

)
≤

√
L+ γ

µ
‖Exp−1x0 (x∗)‖+

αγ

γ + αµ

(√
L+ γ

µ
+

√
2(L+ γ)

µ

)
‖Exp−1x0 (x∗)‖

≤

(
1 +

1 +
√

2

2

)√
L+ γ

µ
‖Exp−1x0 (x∗)‖

≤ 1

10
√
K

(µ
L

) 1
4 ≤ 1

4
√
K

which also implies that

5K‖Exp−1yk+1
(x∗)‖2 ≤ 1

20

√
µ

L
≤ β

By the two lines of equations above and Theorem 10 it is guaranteed that ‖Exp−1yk+1
(x∗)‖ ≤

1
10
√
K

( µ
L

) 1
4 and also

γ‖Exp−1yk+1
(x∗)− Exp−1yk+1

(vk+1)‖2 ≤ γ‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2.

i.e. (8) hold for i = 0, . . . , k. This concludes the inductive step.
By induction, (8) hold for all k ≥ 0, hence by Theorem 7, Algorithm 2 converges, with

αi ≡ α =

√
β2 + 4(1 + β)µh− β

2
=

√
µh

2

(√
1

25
+ 4

(
1 +

√
µh

5

)
− 1

5

)
≥ 9

10

√
µ

L
.
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