
DRO Groupwise Regularization Eestimator

Appendix B. Supplementary Material

In the supplementary material, we will provide the proofs for DRO representation and
asymptotic result for logistic regression, which were discussed in Theorem 2 and Theorem
4, in Section B.1 and Section B.2. In addition, we will provide the results under the high
dimension setting for linear regression, where the number of predictors growth with the
sample size, as a generalization of Theorem 3 in Section B.3.

B.1. Proof of DRO for Logistic Regression

Proof [Proof for Theorem 2]By applying strong duality results for semi-infinity linear
programming problem in Blanchet et al. (2016), we can write the worst case expected loss
function as,

sup
P :Dc(P,Pn)≤δ

EP
[
log
(
1 + exp

(
−Y βTX

))]
= min

γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖α−1-(q,t)

}}
.

For each i, we can apply Lemma 1 in Shafieezadeh-Abadeh et al. (2015) and the dual norm
result in Proposition 5 to deal with the inner optimization problem. It gives us,

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖α−1-(q,t)

}
=

{
log
(
1 + exp

(
−YiβTXi

))
if ‖β‖α-(p,s) ≤ γ,

∞ if ‖β‖α-(p,s) > γ.

Moreover, since the outer player wishes to minimize, γ will be chosen to satisfy γ ≥
‖β‖α-(p,s). We then conclude

min
γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖α−1-(q,t)

}}

= min
γ≥‖β‖α-(p,s)

{
δγ +

1

n

n∑
i=1

log
(
1 + exp

(
−YiβTXi

))}

=
1

n

n∑
i=1

log
(
1 + exp

(
−YiβTXi

))
+ δ ‖β‖α-(p,s) ,

where the last equality is obtained by noting that the objective function is continuous and
monotone increasing in γ, thus γ = ‖β‖α-(p,s) is optimal. Hence, we conclude the DRO
formulation for GR-Lasso logistic regression.

B.2. Proof of Optimal Selection of Regularization for Logistic Regression

Proof [Proof of Theorem 4]We can apply strong duality result for semi-infinite linear
programming problem in Section B of Blanchet et al. (2016), and write the scaled RWP
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function evaluated at β∗ in the dual form as,
√
nRn (β∗) = max

ζ

{
ζTZn − EPnφ (X,Y, β∗, ζ)

}
,

where Zn = 1
n

∑n
i

YiXi
1+exp(YiXT

i β
∗)

and

φ (X,Y, β∗, ζ) = max
u

{
Y ζT

(
X

1 + exp (Y XTβ∗)
− u

1 + exp (Y uTβ∗)

)
− ‖X − u‖α−1-(q,t)

}
.

We proceed as in our proof of Theorem 3 in this paper and also adapting the case ρ = 1 for
Theorem 1 in Blanchet et al. (2016). We can apply Lemma 2 in Blanchet et al. (2016) and
conclude that the optimizer ζ can be taken to lie within a compact set with high probability
as n → ∞. We can combine the uniform law of large number estimate as in Lemma 3 of
Blanchet et al. (2016) and obtain

√
nRn (β) = max

ζ

{
ζTZn − EPφ (X,Y, β∗, ζ)

}
+ oP (1).

For the optimization problem defining φ (·), we can apply results in Lemma 5 in Section
A.3 of Blanchet et al. (2016), we know, for any choice of ζ̃, if,

ess sup
X,Y

∥∥∥∥∥ζ̃T y
(
1 + exp

(
Y XTβ∗

))
Id×d −XXT

(1 + exp (Y XTβ∗))2

∥∥∥∥∥
α-(p,s)

> 1,

we have E
[
φ
(
X,Y, β∗, ζ̃

)]
= ∞. Since the outer optimization problem is maximization

over ζ, the player will restrict ζ within the set A, where

A =

ζ ∈ Rd : ess sup
X,Y

∥∥∥∥∥ζT y
(
1 + exp

(
Y XTβ∗

))
Id×d −XXT

(1 + exp (Y XTβ∗))2

∥∥∥∥∥
α-(p,s)

≤ 1

 .

Moreover, it is easy to calculate, if ζ ∈ A, we have E[φ (X,Y, β∗, ζ)] = 0, thus we have the
scaled RWP function has the following estimate, as n→∞

√
nRn (β) = max

ζ∈A
ζTZn + oP (1).

Letting n→∞, we obtain the exact asymptotic result.

For the stochastic upper bound, let us recall for the definition of the set A and consider the
following estimate∥∥∥∥∥ζT y

(
1 + exp

(
Y XTβ∗

))
Id×d −XXT

(1 + exp (Y XTβ∗))2

∥∥∥∥∥
α-(p,s)

≥
∥∥∥∥ Y ζ

1 + exp (Y β∗ TX)

∥∥∥∥
α-(p,s)

−

∥∥∥∥∥ ζTXβ∗

(1 + exp (Y β∗ TX))2

∥∥∥∥∥
α-(p,s)

≥

(
1

1 + exp (Y β∗ TX)
−

‖X‖α−1-(q,t) ‖β∗‖α-(p,s)

(1 + exp (Y β∗ TX)) (1 + exp (−Y β∗ TX))

)
‖ζ‖α-(p,s) .
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The first inequality is due to application of triangle inequality in Proposition 5, while the
second estimate follows from Hölder’s inequality and Y ∈ {−1,+1}. Since we assume posi-
tive probability density for the predictor X, we can argue that, if ‖ζ‖α-(p,s) = (1− ε)−2 > 1
and ε > 0 is chosen arbitrarily small, we can conclude from the above estimate that, we
have ∥∥∥∥∥ζT y

(
1 + exp

(
Y XTβ∗

))
Id×d −XXT

(1 + exp (Y XTβ∗))2

∥∥∥∥∥
α-(p,s)

> 1.

Thus, we proved the claim that A ⊂
{
ζ, ‖ζ‖α-(p,s) ≤ 1

}
. The stochastic upper bound is

derived by replacing A by
{
ζ, ‖ζ‖α-(p,s) ≤ 1

}
, i.e.

L3 = sup
ζ∈A

ζTZ ≤ sup
‖ζ‖α-(p,s)≤1

ζTZ = ‖Z‖α−1-(q,t) ,

where the final estimation is due to dual norm structure in Proposition 5. Since we know,
1

1+exp(Y XT β)
≤ 1, it is easy to argue, V ar(Z̃) − V ar(Z) is positive semidefinite, thus, we

know ‖Z‖α−1-(q,t) is stochastic dominated by L4 :=
∥∥∥Z̃∥∥∥

α−1-(q,t)
. Hence, we obtain L3 ≤ L4.

B.3. Technical Results for Optimal Regularization in GSRL for High
Dimensional Linear Regression

We conclude the supplementary material by exploring the behavior of the optimal distri-
butional uncertainty (in the sense of optimality presented in Section 3) as the dimension
increases. This is an analog of the high-dimension result for SR-Lasso as Theorem 6 in
Blanchet et al. (2016).

Theorem 6 (RWP Function Asymptotic Results for High-dimension) Suppose that

assumptions in Theorem 3 hold and select p = 2, s = 1 let us write
√
g̃ =

(√
g1, . . . ,

√
gd̄
)T

(so αj =
√
gj) and g̃−1/2 =

(
1/
√
g1, . . . , 1/

√
gd̄
)T

respectively. Moreover, let us define
C (n, d)

C (n, d) =
E ‖X‖√

d̄-(2,1)√
n

=
E
[
maxd̄i=1

√
gi ‖X (Gi)‖2

]
√
n

.

Assume that largest eigenvalue of Σ is of order o
(
nC (n, d)2

)
, that β∗ satisfies a weak

sparsity condition, namely, ‖β∗‖√g̃-(2,1) = o (1/C (n, d)). Then,

nRn (β∗) .D

‖Zn‖g̃−1/2-(2,∞)

V ar (|e|)
,

as n, d→∞, where Zn := n−1/2
∑n

i=1 eiXi.
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Proof For linear regression model with square loss function, the RWP function is defined
as in equation (10). By considering the cost function as in Theorem 1 and applying the
strong duality results in the Appendix of Blanchet et al. (2016), we can write the scaled
RWP function in the dual form as,

nRn (β∗) = sup
ζ

{
− ζTZn

− 1√
n

n∑
i=1

sup
∆
{eiζT∆−

(
βT∗ ∆

) (
ζTXi

)
−
(√

n ‖∆‖2g̃−1/2-(2,∞) +
(
βT∗ ∆

) (
ζT∆

))
}
}
.

For each i−th inner optimization problem, we can apply Hölder inequality in Proposition
5 for the term

(
βT∗ ∆

) (
ζT∆

)
, we have an upper bound for the scaled RWP function, i.e.

nRn (β∗) ≤ sup
ζ

{
− ζTZn

− 1√
n

n∑
i=1

sup
∆
{
(
eiζ −

(
ζTXi

)
β∗
)T

∆−
√
n

(
1−
‖β∗‖√g̃-(p,s) ‖ζ‖√g̃-(p,s)√

n

)
‖∆‖2g̃−1/2-(q,t)}

}
.

Since the coefficients for each inner optimization problem is negative and we can get an
upper bound for RWP function if we do not fully optimize the inner optimization problem.
For each i, let us take ∆ to the direction satisfying the Hölder inequality in Property 5 for

the term
(
eiζ −

(
ζTXi

)
β∗
)T

∆ and only optimize the magnitude of ∆, for simplicity let us
denote γ = ‖∆‖g̃−1/2-(q,t).
We have,

nRn (β∗) ≤ sup
ζ

{
− ζTZn

− 1√
n

n∑
i=1

sup
γ
{γ
∥∥eiζ − (ζTXi

)
β∗
∥∥√

g-(p,s)
−
√
n

(
1−
‖β∗‖√g̃-(p,s) ‖ζ‖√g̃-(p,s)√

n

)
γ2}
}
.

For each inner optimization problem it is of quadratic form in γ, especially, when n is large
the coefficients for the second order term will be negative, thus, as n → ∞, we can solve
the inner optimization problem and obtain,

nRn (β∗)

≤ sup
ζ

{
− ζTZn −

1

4
(

1− ‖β∗‖√g-(p,s) ‖ζ‖√g̃-(p,s)n−1/2
) 1

n

n∑
i=1

∥∥eiζ − (ζTXi

)
β∗
∥∥2√

g̃-(p,s)

}
= sup

a≥0
sup

ζ:‖ζ‖√g̃-(p,s)=1

{
− aζTZn −

a2

4
(

1− ‖β∗‖√g̃-(p,s) an−1/2
) 1

n

n∑
i=1

∥∥eiζ − (ζTXi

)
β∗
∥∥2√

g̃-(p,s)

}
.

The equality above is due to changing to polar coordinate for the ball under
√
g̃-(p, s) norm.

For the first term, ζTZn, when ‖ζ‖√g̃-(p,s) = 1, we can apply Hölder inequality again, i.e.∣∣ζTZn∣∣ ≤ ‖Zn‖g̃−1/2-(q,t). Then, only the second term in the previous display involves the
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direction of ζ, thus we can have

nRn (β∗) ≤ sup
a≥0

{
a ‖Zn‖g̃−1/2-(q,t)

− a2

4
(

1− ‖β∗‖√g-(p,s) an−1/2
) inf
ζ:‖ζ‖√g̃-(p,s)=1

1

n

n∑
i=1

∥∥eiζ − (ζTXi

)
β∗
∥∥2
√
g-(p,s)

}
.

By the weak sparsity assumption, we have ‖β∗‖√g̃-(p,s) n−1/2 → 0 as n→∞, the supremum
over a is attained at

a∗ =
2 ‖Zn‖g̃−1/2-(q,t)

infζ:‖ζ‖√g̃-(p,s)=1
1
n

∑n
i=1 ‖eiζ − (ζTXi)β∗‖2√g-(p,s)

+ o(1),

as n→∞. Therefore, we have the upper bound estimator for the scaled RWP function,

nRn (β∗) ≤
‖Zn‖2g̃−1/2-(q,t)

infζ:‖ζ‖√g̃-(p,s)=1
1
n

∑n
i=1 ‖eiζ − (ζTXi)β∗‖2√g-(p,s)

+ op(1). (18)

To get the final result, we try to find a lower bound for the infimum in the denominator. For
the objective function in the denominator, since we optimize on the surface ‖ζ‖√g̃-(p,s) = 1,
and due to the triangle inequality analysis in Proposition 5, we have

1

n

n∑
i=1

∥∥eiζ − (ζTXi

)
β∗
∥∥2√

g̃-(p,s)
≥ 1

n

n∑
i=1

(
|ei| ‖ζ‖√g̃-(p,s) −

∣∣ζTXi

∣∣ ‖β∗‖√g̃-(p,s))2

=
1

n

n∑
i=1

|ei|2 + ‖β∗‖2√g̃-(p,s)
1

n

n∑
i=1

∣∣ζTXi

∣∣2 − 2 ‖β∗‖√g̃-(p,s) E [|ei|]
1

n

n∑
i=1

∣∣ζTXi

∣∣− εn (ζ) ,

where εn (ζ) = 2 ‖β∗‖√g̃-(p,s)
1
n

∑n
i=1 (|ei| − E [|ei|]). Let us denote the pseudo error to be

ẽi = |ei| − E [|ei|], which has mean zero and V ar [ẽi] ≤ V ar [ei]. Since ei is independent of
Xi we have that

E
[
ẽi
∣∣ζTXi

∣∣] = 0,

V ar
[
ẽi
∣∣ζTXi

∣∣] = V ar [ẽi] ζ
TΣζ ≤ V ar [ei] ζ

TΣζ.

By our assumptions on the eigenstructure of Σ, i.e. λmax (Σ) = o
(
nC(n, d)2

)
, for the case

p = 2 and s = 1, we have

sup
ζ:‖ζ‖√g̃-(2,1)=1

ζTΣζ ≤ sup
ζ:‖ζ‖√g̃-(2,1)=1

λmax (Σ) ‖ζ‖2 ≤ λmax (Σ) = o
(
nC(n, d)2

)
.

Then, we have the variance of 1
n

∑n
i=1

∣∣ζTXi

∣∣ is of order o
(
C(n, d)2

)
uniformly on ‖ζ‖√g̃-(p,s) =

1. Combining this estimate with the weak sparsity assumption that we have imposed, we
have

εn (ζ) = op(1).
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Since the estimate is uniform over ‖ζ‖√g̃-(2,1) = 1, we have that for n sufficiently large,

1

n

n∑
i=1

∥∥eiζ − (ζTXi

)
β∗
∥∥2√

g̃-(2,1)

≥ 1

n

n∑
i=1

|ei|2 − (E [|ei|])2 + inf
ζ:‖ζ‖√g̃-(2,1)=1

(
‖β∗‖√g̃-(2,1)

1

n

n∑
i=1

∣∣ζTXi

∣∣− E [|ei|]

)2

+ op(1)

≥ V arn [|ei|] + op(1).

Combining the above estimate and equation (18), when p = q = 2, s = 1 and t = ∞, we
have that

nRn (β∗) ≤
‖Zn‖2g̃−1/2-(2,∞)

V ar [|e|]
+ op(1),

as n→∞.
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