
Proceedings of Machine Learning Research 77:407–422, 2017 ACML 2017

Magnitude-Preserving Ranking for Structured Outputs
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Abstract

In this paper, we present a novel method for solving structured prediction problems, based
on combining Input Output Kernel Regression (IOKR) with an extension of magnitude-
preserving ranking to structured output spaces. In particular, we concentrate on the case
where a set of candidate outputs has been given, and the associated pre-image problem calls
for ranking the set of candidate outputs. Our method, called magnitude-preserving IOKR,
both aims to produce a good approximation of the output feature vectors, and to preserve
the magnitude differences of the output features in the candidate sets. For the case where
the candidate set does not contain corresponding ’correct’ inputs, we propose a method for
approximating the inputs through application of IOKR in the reverse direction. We apply
our method to two learning problems: cross-lingual document retrieval and metabolite
identification. Experiments show that the proposed approach improves performance over
IOKR, and in the latter application obtains the current state-of-the-art accuracy.

Keywords: Structured prediction, kernel methods

1. Introduction

Many real-world learning tasks require predicting outputs that correspond to complex struc-
tured objects or to multiple interdependent outputs. The basic approach of decomposing
a structured prediction problem into simple problems that independently predict parts of
structured objects is often inefficient and leads to deficient accuracy. Structured prediction
approaches making use of the statistical dependencies between the output parts, have been
shown to achieve an improved prediction performance in several applications, such as pro-
tein secondary structure prediction, hierarchical multilabel classification, natural language
parsing, and metabolite identification.

In this paper, we focus on a kernel-based structured output prediction approach, called
output kernel regression (Weston et al., 2003; Cortes et al., 2005; Geurts et al., 2006; Kadri
et al., 2013; Brouard et al., 2016b). This approach is based on encoding the structure of the
output data using a kernel function, and approximating the output feature map associated
with this kernel through solving a regression problem. Kernel Dependency Estimation
(Weston et al., 2003; Cortes et al., 2005; Kadri et al., 2013), Output Kernel Trees (Geurts
et al., 2006) and Input Output Kernel Regression (IOKR) (Brouard et al., 2016b) are

c© 2017 C. Brouard, E. Bach, S. Böcker & J. Rousu.
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methods belonging to this setting. These methods generally require solving a pre-image
problem for extracting the models prediction, which in many cases is intractable (Giguère
et al., 2015). Here, we focus on the frequent case, where no efficient pre-image algorithm is
available, but a set of candidate outputs has been isolated, typically from the training set
or through using human expert knowledge. In this case, the pre-image problem corresponds
to a ranking problem in the candidate set.

In this work, we propose a new structured prediction method that augments the regression-
based IOKR approach (Brouard et al., 2016b) so that the candidate set information can be
used already in the learning phase, instead of the prediction phase only. This new method,
called magnitude-preserving IOKR, looks to preserve the difference between training out-
puts and candidates in the output feature space. For this end, we extend to structured
outputs the magnitude-preserving ranking method proposed by Cortes et al. (2007) for the
learning problem of ranking. We show that the magnitude-preserving objective amounts to
centering the inputs and outputs with respect to the candidate set means, thus encoding
information of the candidate set to the input and output feature spaces. Moreover, we
introduce a previously unstudied setting, that arises in structured output prediction tasks
using the magnitude-preserving objective: the case where a set of candidate outputs can be
defined or constructed, but the corresponding inputs are not known. For this case we pro-
pose an elegant approach to approximate the input feature vectors for the candidates. By
doing that we can give a closed-form solution of the MP-IOKR objective function, even if
the inputs of the candidates are unknown. In addition, when the input kernel is chosen as a
linear combination of several kernels, we introduce two different approaches to approximate
the corresponding input feature vectors.

2. Methods

We first describe the existing IOKR approach and then introduce the new magnitude-
preserving IOKR framework. The notation used in this paper is described in Table 1.

2.1. Input Output Kernel Regression

Input Output Kernel Regression (IOKR) is an approach proposed by Brouard et al. (2011,
2016b) for learning mappings between a structured input set X and a structured output
space Y. In this approach, the internal structure of the output data is encoded using an
output kernel function ky : Y × Y → R. The problem of learning the mapping between
X and Y is solved by first approximating the feature map ψ associated with the kernel ky
using a function h between the input set X and the output feature space Fy. As the values
of this function are vectors in Fy, IOKR uses the RKHS theory devoted to vector-valued
functions (Pedrick, 1957; Micchelli and Pontil, 2005). In this theory, the values of a kernel
function Kx are operators from Fy to Fy. Given a set S of ` training examples, the function
h is searched in the RKHS associated with an operator-valued kernel Kx by solving the
following optimization problem:

argmin
h∈H

∑̀
i=1

‖h(xi)− ψ(yi)‖2Fy
+ λ‖h‖2H, λ > 0. (1)
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Table 1: Notation used in the paper

Symbol Meaning

X , Y input, output sets
kx : X × X → R, ky : Y × Y → R input, output scalar kernels
Fx, Fy input, output feature spaces
φ : X → Fx, ψ : Y → Fy input, output feature maps
Kx : X × X → B(Fy) input operator-valued kernel
H RKHS of Kx

KX , KY input, output Gram matrices
S = {1, . . . , `} set of training indices
Ci candidate set of xi
ni number of candidates in Ci

n =
∑`

i=1 ni total number of candidates
C = ∪`i=1Ci union of the training candidate sets

When using the operator-valued kernel Kx(x, x′) = kx(x, x′)I, where kx : X × X → R
is a scalar-valued kernel and I is an identity operator, the solution of Equation (1) can be
written:

h(x) = ΨS(λI` +KXS
)−1kxXS

, (2)

where ΨS ∈ R|Fy |×` is a matrix defined by ΨS = [ψ(y1), . . . , ψ(y`)]. KXS
denotes the

Gram matrix of the kernel kx on the training set and kxXS
is the vector defined by kxXS

=

[kx(x1, x), . . . , kx(x`, x)]T .
The predicted feature vector h(x) is then mapped back to the output space Y by solving

a pre-image problem. The pre-image problem is solved by determining the structured output
y ∈ Y for which the distance between ψ(y) and h(x) in the output feature space is minimal:

f(x) = argmin
y∈Y

‖h(x)− ψ(y)‖2Fy
. (3)

When replacing h(x) by the solution given in Equation (2) and using the kernel trick in
the output space, the expression of the pre-image problem becomes:

f(x) = argmin
y∈Y

ky(y, y)− 2(kyYS
)T (λI` +KXS

)−1kxXS
,

where kyYS
= [ky(y1, y), . . . , ky(y`, y)]T ∈ R`×1.

Efficient pre-image algorithms exist for some particular structures, for example in hi-
erarchical classification. In this work, we focus on the often experienced case where no
efficient pre-image algorithm exists. Instead we assume that for each example xi a set con-
taining potential candidate outputs {yj}j∈Ci can be defined and the pre-image algorithm
is an exhaustive search among this candidate set. Several previous works have taken the
outputs occurring in the training set as candidate set. Such a set could also be extracted
by using human expert knowledge or by doing a local search around a seed output.
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In this case, the pre-image problem reduces to a ranking problem of these candidates,
where the candidates are sorted according to their distance to the predicted output feature
vector h(x). A good prediction is obtained in the case where a small rank is assigned to the
correct candidate.

2.2. Magnitude-preserving IOKR

Regression based methods for structured outputs, such as IOKR, learn a function that
approximates the output feature map, however, the ranking problem encountered in the
pre-image step is not taken into account in the learning phase. Thus, the information in the
candidate set is not taken advantage in model training. Here we introduce a new method,
called magnitude-preserving input-output kernel regression (MP-IOKR), that incorporates
the information of the candidate ranking when approximating the output feature vectors,
through combining the idea of the magnitude-preserving ranking with IOKR.

The MP-IOKR approach learns a mapping between two structured sets by approximat-
ing a feature map associated with an output kernel and by mapping this approximation back
to the output space by solving a pre-image problem. Compared to IOKR, in MP-IOKR the
first step is augmented to take into account the candidate set used when solving the pre-
image step for each input. Given a sample of ` training examples {(xi, ψ(yi)) ∈ X ×Fy}`i=1,
we consider the following objective function to be minimized:

J (h) =
∑̀
i=1

1

ni

∑
j∈Ci

‖(h(xi)− h(xj))− (ψ(yi)− ψ(yj))‖2Fy
+ λ‖h‖2H, (4)

where λ > 0 is a regularization parameter. The set Ci contains the indices of the can-
didates for the training example xi and ni = |Ci| corresponds to the number of candidates
in this set. The objective function penalizes discrepancy between the pairwise differences
of predictions h(xi)− h(xj) and the pairwise differences of the ground truth ψ(yi)− ψ(yj).
This extends the magnitude-preserving ranking approach proposed by Cortes et al. (2007)
for learning ranking. A similar approach, called RankRLS, was proposed at the same time
by Pahikkala et al. (2007). However, in our case the considered targets are vectors in the
output feature space rather than scalars, e.g. ratings, and the magnitudes are taken between
a training example and each of its candidates.

The solution h of this optimization problem is searched in the RKHS H associated with
an operator-valued kernel Kx : X × X → B(Fy). We state a representer theorem for the
MP-IOKR optimization problem.

Theorem 1 The solution of the optimization problem (4) admits a representation of the
form:

∀x ∈ X , h(x) =
∑

i∈S∪C
Kx(x, xi)ci, ci ∈ Fy.

The proof of this theorem is given in the supplementary materials.
In the following we consider the operator-valued kernel

Kx(x, x′) = kx(x, x′)I, (5)
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where kx : X × X → R is a scalar-valued kernel and I the identity operator. The scalar
kernel is associated with a feature space Fx and a feature map φ : X → Fx. Using this
kernel allows us to work in the general setting, where the dimension of the output feature
space can be infinite and output feature vectors are not explicitly known. Using this kernel,
the expression of the function h can be rewritten as h(x) = Wφ(x), where W is a linear
operator from Fx to Fy.

We show that the optimization problem in Equation (4) can be casted back to an IOKR
optimization problem on the training and candidate examples with modified input and
output feature vectors. This modification consists in centering the input/output feature
vectors around the input/output feature center of one of the candidate sets, this set varying
depending on the examples. In the following, we note S = {1, . . . , `} the set containing the
indices of the training examples and C = ∪`i=1Ci, the union of the training candidate sets.

Theorem 2 When using the operator-valued kernel defined in Equation (5), the optimiza-
tion problem (4) can be rewritten under the following form:

min
W

∑
j∈S∪C

‖Wφ′(xj)− ψ′(yj)‖2Fy
+ λ‖W‖2F . (6)

The modified input feature vectors are defined as:

φ′(xj) =

{
φ(xj)− φCj

if j ∈ S
1√
ni

(
φ(xj)− φCi

)
if j ∈ Ci

, (7)

where φCi
= 1

ni

∑
j∈Ci

φ(xj). The modified output feature vectors are defined similarly.

In the following, we derive the solution of this optimization problem. Let ΨS and ΦS be
the matrices containing the training input/output feature vectors: ΨS = [ψ(y1), . . . , ψ(y`))]
and ΦS = [φ(x1), . . . , φ(x`))]. We note similarly ΦCi and ΨCi the matrices containing
respectively the input and output feature vectors for the candidates belonging to the set Ci.
Finally we define ΨC the matrix defined as ΨC = [ΨC1 , . . . ,ΨC`

] and Ψ̄C = [ψ̄C1 , . . . , ψ̄C`
].

We define similarly the matrices ΦC and Φ̄C for the input feature vectors.

Proposition 3 Using the solution of the IOKR optimization problem in Equation (2),
we obtain the following expression for the function minimizing the objective function in
Equation (6):

h(x) = Ψ′
(
λI`+n + Φ′TΦ′

)−1
Φ′Tφ(x),

where Ψ′ is the matrix defined as Ψ′ = [Ψ′S ,Ψ
′
C ] =

[
ΨS − Ψ̄C , (ΨC − Ψ̄CV

T )Dn

]
and Φ′ =

[Φ′S ,Φ
′
C ] =

[
ΦS − Φ̄C , (ΦC − Φ̄CV

T )Dn

]
. V is a matrix of size n × `, where n =

∑`
i=1 ni,

defined such that: Vij = 1 if i ∈ Cj and Vij = 0 otherwise. Dn ∈ Rn×n is a diagonal matrix
defined such that: [Dn]ii = 1√

nj
if i ∈ Cj.

The computation of this solution requires inverting a matrix of size (`+ n)× (`+ n).
The terms Φ′TΦ′ and Φ′Tφ(x) can be expressed in term of kernel values: Φ′Tφ(x) =[
kxXS
− V TD2

nk
x
XC

Dn(In − V V TD2
n)kxXC

]
and Φ′TΦ′ =

[
K ′XS

K ′XS,C

(K ′XC,S
)T K ′XC

]
where
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• K ′XS
= KXS

−KXS,C
D2

nV − (KXS,C
D2

nV )T + V TD2
nKXC

D2
nV ,

• K ′XS,C
= (KXS,C

− V TD2
nKXC

)(In −D2
nV V

T )Dn,

• K ′XC
= Dn(In − V V TD2

n)KXC
(In −D2

nV V
T )Dn.

2.3. Approximating the Inputs of the Candidates

The computation of the input kernel matrices Φ′TΦ′ and Φ′Tφ(x) requires knowing the input
features corresponding to the candidate outputs. However, this information might not be
available in all applications, for example if the candidate sets are large and the generation
of the inputs corresponding to the outputs is expensive. In the experiments section, we
consider the metabolite identification problem, in which the inputs are tandem mass spectra
available for a few thousand of metabolites, while millions of molecular candidates are
available. Generating a reference tandem mass spectrum for a new molecule requires a heavy
experimental protocol which is prohibitively expensive for the sole purpose of generating
training data for machine learning algorithms.

In the following, we address this problem by approximating the candidate input feature
vectors from their outputs. We first address the case of inputs being represented by a single
input kernel and then the case of a linear combination of input kernels.

2.3.1. Single Input Kernel Case

We propose to approximate the input feature vector φ(xi) of a candidate from its output
yi using a function g : Y → Fx. In this case, the expression of φ′ defined in Equation (7)
becomes:

φ′(xj) =

{
φ(xj)− gCj

if j ∈ S
1√
ni

(
g(yj)− gCi

)
if j ∈ Ci

. (8)

The definition of ψ′ remains the same as in the previous subsection.
As shown in Section 2.1, the first step of IOKR consists in learning an output feature

map. The function g can thus be learned by minimizing a similar objective:

min
g∈G

∑̀
i=1

‖g(yi)− φ(xi)‖2Fy
+ γ‖g‖2G , γ > 0. (9)

According to the Representer theorem for vector-valued functions, the function g admits
the following expansion: ∀y ∈ Y, g(y) =

∑`
i=1Ky(y, yi)bi, where Ky : Y × Y → B(Fx)

is an operator-valued kernel. Using the IOKR approach with the operator-valued kernel
Ky(y, y′) = ky(y, y′)I, the expression obtained for the function g is:

g(y) = ΦS(γI` +KYS
)−1kyYS

. (10)

In the following we note M = (γI` +KYS
)−1.

Proposition 4 The solution of the optimization problem (6) when using the expression of
φ′ in Equation (8) is given by:

h(x) = Ψ′AT
(
λI` +KXS

AAT
)−1

kxXS
, (11)
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where A =
[
I` −MΨT

S Ψ̄C ,MΨT
SΨ′C

]
.

The proof is given in the supplementary materials. The computation of this solution
only requires inverting a matrix of size `×`, while it is (`+n)×(`+n) in the case where the
candidate input feature vectors can be obtained. Regarding the computational complexity,
the dominant term is O(`2(`+ n)).

2.3.2. Multiple Input Kernels Case

We now consider the case where data from different sources are available. We note {kix}Ki=1

the K kernels associated with these different input sources and we consider a linear com-
bination of them as input kernel: kx(x, x′) =

∑K
i=1 µik

i
x(x, x′), µi ≥ 0. For the kernel

weights, in this paper we use uniform weighting µi = 1/K, for i = 1, . . . ,K, but we note
that in general some multiple kernel learning algorithm could be used to learn the weights.

For j ∈ {1, . . .K}, let φj(xi) be a candidate input feature vector associated with the
kernel kjx. Then φ(xi) = [

√
µ1φ

1(xi), . . . ,
√
µKφ

K(xi)]
T is an input feature vector associated

with the combined kernel kx. If we directly apply the candidate input feature approximation
approach described in 2.3.1, then according to Equation (10), an approximation of this
feature vector will write as:

g(yi) = ΦS(γI` +KYS
)−1kyiYS

,

where ΦS = [
√
µ1Φ1

S , . . . ,
√
µKΦK

S ]T .
We propose an alternative approach, in which the input feature vectors of the candidates

are approximated separately for each base kernel:

g(yi) =


√
µ1Φ1

S(γ1I` +KYS
)−1kyiYS

...√
µKΦK

S (γKI` +KYS
)−1kyiYS

. (12)

The matrix containing the approximated input feature vectors of all the candidates
writes as:

Φ̃C = DΦS
MKYS ,YC

,

where DΦS
is a K×K block diagonal matrix such that [DΦS

]jj =
√
µjΦ

j
S and M is a K×1

block matrix where Mj = (γjI` +KYS
)−1. KYS ,YC

is the output Gram matrix between the
training and the candidate sets.

Proposition 5 The solution of the optimization problem (6) when using the function g
defined in Equation (12) writes as:

h(x) = Ψ′AT
(
λI`K +DKXS

AAT
)−1

kxXS
, (13)

where A =
[
I−MΨT

S Ψ̄C ,MΨT
SΨ′C

]
, DKXS

= diag(µ1K
1
XS
, . . . , µkK

K
XS

) and I = [I`, . . . , I`]
T

is a matrix of size `K × `. kxXS
now denotes a vector of length `K defined as: kxXS

=

[(k1x
XS

)T , . . . , (kK
x
XS

)T ]T .
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The derivation of this solution is provided in the supplementary materials. We notice that
the size of the matrix to invert is `K× `K and depends on the number of training data and
of the number of base kernels. The dominant term for the computation of this solution is
O((`K)2(`K + `+ n)). This approach can be very heavy in the case where the number of
kernels K is large. In practice, the regularization parameters γj are often selected among
a finite set of parameters. If the selected parameter is the same for a set of kernels, then
the computational complexity can be reduced by grouping these kernels. This is done by
considering only one matrix Mj for a selected regularization parameter γj in M and by
using the linear combination of the kernels associated with γj as corresponding input kernel
in DKXS

.

3. Experiments

We evaluated our developed methods in two representative applications, that also demon-
strate the generality of the methods for different structured prediction problems. The first
application, cross-lingual document retrieval, deals with the case where the inputs corre-
sponding to the candidate outputs are available. The second application, metabolite identi-
fication, concerns the case where the inputs are not available and need to be approximated.

3.1. Cross-lingual Document Retrieval

We performed experiments on a cross-lingual document retrieval task. Given a document
written in one language, the goal of this task is to retrieve the translation of this document
within a document corpus written in a different language. The inputs are therefore the
documents written in the source language and the outputs are the translation of these
documents in the target language. In this case, the candidate set for our method is the
corpus of documents written in the target language. During the learning phase of MP-
IOKR, we used the outputs occurring in the training set as candidate set. The candidate
inputs are therefore known in this setting and we used the approach described in Section 2.2.

We used as dataset a subset of the JRC-Acquis multilingual parallel corpus (Steinberger
et al., 2006). This corpus contains legal documents from the European Union (EU) which
have been translated and aligned in the different official languages of the EU. We considered
a subset of 10,000 aligned documents in French, English, Spanish, German and Dutch lan-
guages. We processed the documents of the corpus with the quanteda R package, including
tokenization, removal of punctuation and stop worlds and stemming. We then computed a
document feature representation using a term frequency inverse document frequency model
(TF-IDF). We built linear kernels between the TF-IDF representations of the documents
for the input and output kernels.

We randomly selected 5000 documents for the training set and 5000 for the test set.
The performances were averaged over ten random partitions of the documents in training
and test sets. The regularization parameter λ was selected using a 5-fold cross-validation
experiment on the training set among the set [10−7, 10−6, . . . , 104, 105]. For evaluating the
performance, we computed the top-k accuracy, which corresponds to the percentage of
test examples for which the correct answer is found among the k top ranked candidates.
We performed a Welch’s t-test for the different input/output language pairs. The top-
k accuracies obtained with IOKR and MP-IOKR, as well as the corresponding p-values
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Table 2: Top-k accuracies obtained for each pair of source (S) and target (T) languages in
the cross-lingual document retrieval task using IOKR and MP-IOKR. Colored cells indicate
significant improvement according to the Welch’s t-test. Shades of blue are used for repre-
senting p-values lower than the chosen significance level (p = 0.05). The following shortcuts
are used for the languages: fr: French, en: English, es: Spanish, de: German, nl: Dutch.

Language Top-1 Top-5 Top-10

S T IOKR MP-IOKR IOKR MP-IOKR IOKR MP-IOKR

fr

en 55.1± 0.6 60.7± 0.6 84.5± 0.6 89.7± 0.4 90.7± 0.4 94.2± 0.3
es 58.5± 2.2 63.0± 0.7 86.0± 1.9 90.0± 0.4 91.4± 1.5 94.4± 0.3
de 32.9± 0.5 35.3± 0.6 74.4± 0.7 81.1± 0.6 84.4± 0.5 89.5± 0.3
nl 36.3± 0.5 38.9± 0.6 76.4± 0.5 83.0± 0.3 85.6± 0.4 90.6± 0.3

en

fr 52.3± 0.7 57.2± 0.7 84.5± 0.5 89.4± 0.3 90.6± 0.4 94.0± 0.3
es 54.6± 0.7 59.5± 0.7 84.3± 0.6 89.2± 0.4 90.3± 0.5 93.9± 0.3
de 33.4± 0.5 34.9± 0.5 74.7± 0.6 81.1± 0.5 84.5± 0.5 89.4± 0.4
nl 36.5± 0.6 38.4± 0.6 76.4± 0.6 82.8± 0.4 85.6± 0.4 90.3± 0.4

es

fr 55.9± 0.5 60.8± 0.5 85.4± 0.5 90.0± 0.3 91.1± 0.4 94.5± 0.3
en 55.6± 0.7 60.9± 0.6 84.5± 0.6 89.5± 0.3 90.5± 0.3 94.0± 0.3
de 33.5± 0.6 35.1± 0.5 74.2± 0.6 80.6± 0.5 84.3± 0.4 89.1± 0.4
nl 36.7± 0.6 38.5± 0.5 76.3± 0.6 82.7± 0.3 85.7± 0.4 90.3± 0.2

de

fr 43.7± 0.6 44.1± 0.6 83.9± 0.5 84.4± 0.5 90.8± 0.4 91.1± 0.4
en 47.6± 0.7 48.1± 0.7 84.9± 0.5 85.5± 0.5 91.3± 0.4 91.6± 0.4
es 45.9± 0.7 46.4± 0.7 84.0± 0.5 84.4± 0.6 90.5± 0.5 90.9± 0.5
nl 36.5± 1.3 37.4± 0.6 81.0± 2.2 82.7± 0.5 89.2± 1.5 90.3± 0.4

nl

fr 47.9± 0.5 48.3± 0.4 85.3± 0.4 85.8± 0.4 91.6± 0.3 91.9± 0.2
en 51.1± 0.6 51.8± 0.6 85.9± 0.4 86.4± 0.3 91.8± 0.4 92.2± 0.4
es 50.0± 0.7 50.6± 0.7 85.3± 0.5 85.8± 0.5 91.6± 0.5 91.9± 0.5
de 33.7± 0.5 36.9± 0.5 76.3± 0.6 82.7± 0.5 85.8± 0.5 90.4± 0.3

p < 0.0001 0.0001 ≤ p < 0.001 0.001 ≤ p < 0.01 0.01 ≤ p < 0.05 p ≥ 0.05

are shown in Table 2. We first observe that MP-IOKR consistently obtains better top-k
accuracies compared to IOKR for the different language pairs and values of k. We also
observe that this improvement is significant for 15 to 19 language pairs out of 20 depending
on the value of k. IOKR and MP-IOKR both present better performance when the chosen
target language is French, English and Spanish compared to German and Dutch.We also
note that the relative improvement observed for MP-IOKR compared to IOKR is larger for
German and Dutch, this means for the most difficult target languages in this application.

3.2. Metabolite Identification

Our second application is the metabolite identification problem, which is an important task
in metabolomics. Metabolites are small molecules involved in the biological processes of
organisms. Given a biological sample, e.g. cells, blood or other biofluids, the task is to
determine the molecular structures of the unknown metabolites contained in the sample.
Mass spectrometry (MS) is a popular method to extract features from biological samples due
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Figure 1: Molecular structure (left) and tandem mass spectrum (right) of the metabolite
beta-Lapachone. The x-axis shows the mass-to-charge ratio of the measured fragments
and the y-axis the (relative) abundance of the fragments.

to its sensitivity and applicability for a wide range of metabolites (Patti et al., 2012). A mass
spectrometer measures the abundance of charged molecules or molecular fragments with a
certain mass-to-charge ratio. Using the MS technique, a tandem mass (MS/MS) spectrum
can be extracted for a molecule in the sample by fragmenting it and measuring the obtained
fragments with the mass spectrometer. The resulting MS/MS spectrum contains a set of
peaks associated with the fragments of the measured molecule. The mass of a fragment
determines its peak’s position and its abundance the peak’s height. An example MS/MS
spectrum is shown in Figure 1.

Dataset. We used a dataset containing 4138 annotated MS/MS spectra of metabolites
extracted from the GNPS (Global Natural Products Social) public spectral library (Wang
et al., 2016). We considered 24 different input kernels that were previously used by Brouard
et al. (2016a) to solve the metabolite identification task with the IOKR approach. These
kernels are defined based on the MS/MS spectra and on the fragmentation trees (Böcker
and Rasche, 2008), which can be computed from the MS/MS spectra. The description of
these kernels can be found in Brouard et al. (2016a). We combined the different input
kernels uniformly. On the output side, we measured the similarity between the molecules
using a linear kernel between their molecular fingerprints. These fingerprints are binary
vectors where each bit indicates the presence or absence of a certain molecular property.
We considered fingerprints built from a set of 2765 molecular properties, which are described
in Brouard et al. (2016a).

For each metabolite in the dataset, the corresponding candidate set contained all the
molecular structures in the molecular database PubChem (Kim et al., 2016) having the same
molecular formula as the considered metabolite (see Figure 1 for an example of a molecular
formula). As in Brouard et al. (2016a), the molecular formula of the test examples were
supposed to be known.

Experiment setup. We compared MP-IOKR to IOKR (Brouard et al., 2016a) and to
two competing methods: CSI:FingerID (Dührkop et al., 2015; Shen et al., 2014) and CFM-
ID (Allen et al., 2015). CSI:FingerID trains separate SVMs for each binary molecular
property. For this method we used the same kernels, combined using the ALIGNF multi-
ple kernel learning method (Cortes et al., 2012), and the same molecular fingerprints and
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Table 3: Top-k accuracy for the metabolite identification task using different methods. For
MP-IOKR the left value results from using all the candidates and the right one from using
1% randomly chosen candidates. (j) indicates the joint input feature approximation and
(s) the separate one. The standard deviation of the top-k accuracy in the random selection
case was 0.1 for the three reported values.

Method Top-1 Top-10 Top-20

CFM-ID 14.8 46.6 55.9
CSI:FingerID 29.7 64.3 71.7
IOKR 30.7 66.3 73.9
MP-IOKR (j) 30.7/30.8 67.0/67.2 74.6/74.6
MP-IOKR (s) 31.2/31.2 67.9/67.8 75.3/75.3

candidate sets as for MP-IOKR. CFM-ID is a probabilistic approach simulating MS/MS
spectra. Given an input MS/MS spectrum the spectra of its candidates are simulated using
their molecular structure. The input is then compared with all simulated spectra and the
predicted molecular structure is chosen as the one corresponding to the most similar spec-
trum. We trained a single-energy model using the latest version of the CFM-ID software1.
The training parameters were chosen as suggested in Allen et al. (2015). We excluded 270
spectra from the training as their corresponding molecular structures can not be processed
using the CFM-ID software.

We performed the evaluation using a 10-fold cross-validation (CV) experiment. In the
evaluation of the predictive performance we considered a subset of 3868 examples, which
could be processed by all methods we compared MP-IOKR with.

For MP-IOKR we first selected the γi parameters of the input feature approximation
and subsequently the λ parameter on the same training set. The γi and λ parameters where
selected using cross-validation on the training set. As in this application we did not have the
inputs (MS/MS spectra) for each molecule in the candidate sets, we used the approximation
method described in Section 2.3. When we used the approach to separately approximate
the input features, we observed that only 5 different γi were selected as regularization
parameters. We could therefore group the input kernels into 5 groups as described in
Section 2.3.2. During the training phase of MP-IOKR we used two alternative strategies for
using the candidate sets: either all candidates or a random subset of 1% of the candidates
corresponding to the training examples were used. The first set contained around 5.8
million (of which 2.5 million have a unique molecular structure) and the latter around 58000
molecular structures. The random selection of the candidates and MP-IOKR training was
repeated 20 times, and averaged results are reported.

Results. In Table 3 we summarize the results for the metabolite identification task and
in Figure 2 we show the performance difference of MP-IOKR and CSI:FingerID compared
with IOKR on the range of top-1 to top-100. We omitted the curve for MP-IOKR using a
random subset of candidates in the figure as it follows the one using all the candidates. We

1. https://sourceforge.net/projects/cfm-id/
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Figure 2: Difference of the top-k accuracy of the different metabolite identification ap-
proaches to the baseline method, which corresponds to IOKR.

also omitted CFM-ID as its performance is much lower than IOKR. The curves shows that
MP-IOKR constantly outperforms IOKR and CSI:FingerID. Considering MP-IOKR, we
observe that better performance is obtained when approximating the input feature vectors
for the 24 input kernels separately rather than jointly. Using MP-IOKR with separate
feature approximation, the top-1 accuracy can be improved by 0.5 point over IOKR and
by up to 1.4 for the top-20. The accuracy improves the most in the top-10. This is an
important measure in the metabolite identification task, as we cannot assume to reliably
predict the true molecule at the top-1. In Table 4 we show that the ranks predicted using
MP-IOKR are significantly better than with any other method in our comparison. We
could not observe a significant difference between the different candidate selection strategies:
using all the candidates for the magnitude preservation performs as well as using a random
subset of candidates. We think this could be related to the fact, that in the solution of
the MP-IOKR optimization problem in the case of approximated input features given in
Equations (11) and respectively (13) the candidate output feature vectors appear as the
candidate sets’ mean vectors Ψ̄C and covariance matrix Cov{ΨC}. This can be seen by
developing the terms Ψ′AT and AAT . We think that these statistics might not differ much
between considering all candidates or a subset of them.

In Table 5 we compare the training and test running times for all methods. For the
training step we fixed the hyperparameters and used 4138 training examples. In the test
phase we identified the metabolites of 625 test examples. For MP-IOKR using separate
input feature approximation we used 5 input kernels as this was the number of kernels with
different γi’s during our experiments. Thus in the training the input feature vectors of 5
kernels needed to be approximated. The calculation of the input kernels, fragmentation
trees and molecular fingerprints were not taken into account. The reported running times
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Table 4: P-values of the right-tailed sign test testing whether the ranks of the molecules
predicted using MP-IOKR are significantly lower (better) than using one of the reference
methods. All values are significant with p < 0.0001.

Method MP-IOKR

all, joint all, separated random, joint random, separated

CFM-ID 1.05 · 10−116 1.48 · 10−122 2.15 · 10−117 1.68 · 10−121

CSI:FingerID 5.71 · 10−11 3.75 · 10−13 3.83 · 10−12 3.95 · 10−13

IOKR 3.10 · 10−42 2.14 · 10−08 5.37 · 10−88 6.54 · 10−11

Table 5: Running time comparison: 4138 (3868 for CFM-ID) examples have been used in
the training phase and 625 example during testing. For MP-IOKR the training procedure
can be split into the calculation of the candidate statistics and model estimation, whereby
the former step does not need to be repeated during hyperparameter selection. The left
value results from using all the candidates and the right one from using 1% randomly chosen
candidates. (j) indicates the joint input feature approximation and (s) the separate one.

Method Training time Test time

CFM-ID 870 h 11 min 18 s 3287 h 36 min 49 s
CSI:FingerID 82 h 28 min 23 s 1 h 11 min 31 s
IOKR 10 s 2 min 16 s

candidate statistics model estimation

MP-IOKR (j) 1 h 42 min 8 s / 11 min 18 s 53 s 2 min 17 s
MP-IOKR (s) 1 h 42 min 8 s / 11 min 18 s 25 min 12 s 2 min 17 s

are given in CPU-time. The comparison shows that IOKR can be trained within a few sec-
onds, while MP-IOKR takes from 12 minutes up to 2 hours (candidate statistics + model
estimation) depending on the candidate selection and input feature approximation strategy.
However, the calculation of the candidate statistics Ψ̄C and Cov{ΨC} (see previous para-
graph) needs to be done only ones per training set. For the selection of the hyperparmaters,
i.e. γi’s and λ, only the model estimation step, i.e. a matrix inversion (see Equation (11)
respectively (13)), needs to be repeated. The MP-IOKR training time is at least 40 times
shorter than for CSI:FingerID and at least 400 times than for CFM-ID. In the testing time
MP-IOKR and IOKR perform almost equally and outperform CSI:FingerID and CFM-ID
clearly. For CFM-ID the simulation of the 514, 483 candidate spectra takes most of the
time.

The complexity of the IOKR optimization is dominated by the inversion of an ` × `
matrix. Compared to that the complexity of MP-IOKR depends also on the number of
candidates used in the magnitude preservation (see Section 2.3.1 and 2.3.2). This explains
the increase of the training time from a few seconds to several minutes by using MP-IOKR
over IOKR. It furthermore explains the training time difference between using all and a
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random subset of candidates. The complexity of MP-IOKR further increases by using the
separate input feature approximation, as the number of input kernels appears as factor in
the complexity as well (see Section 2.3.2). It is worth mentioning that the training time can
be significantly reduced by considering only a random subset of candidates without loss of
identification performance.

4. Conclusions

In this paper, we propose a new method for structured prediction, based on combining the
Input-Output Kernel Regression (IOKR) framework with magnitude-preserving ranking.
The method, magnitude-preserving IOKR, is able to take advantage of the set of candidate
outputs during the learning of the model, and thus leads to a better predictive performance
than the pure regression approach. Interestingly, the magnitude-preserving extension turns
out to correspond to IOKR with modified input and output features, by centering them
within the candidate sets. For the frequent case of candidate sets with outputs lacking the
corresponding ’correct’ input, we derive an extension that approximates the inputs of the
candidate sets. Our experiments confirm the benefits of magnitude-preserving IOKR.

Acknowledgments

This work has been supported by the Academy of Finland under the grants 268874 (MI-
DAS), 295496 (D4Health), and 310107 (MACOME). We acknowledge the computational
resources provided by the Aalto Science-IT project.

References

F. Allen, R. Greiner, and D. Wishart. Competitive fragmentation modeling of ESI-MS/MS
spectra for putative metabolite identification. Metabolomics, 11:98–110, 2015.
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M. Wang, J. J. Carver, V. V. Phelan, L. M. Sanchez, N. Garg, Y. Peng, D. D. Nguyen,
J. Watrous, C. A. Kapono, T. Luzzatto-Knaan, et al. Sharing and community curation of
mass spectrometry data with global natural products social molecular networking. Nature
biotechnology, 34(8):828–837, 2016.

J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik. Kernel dependency
estimation. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural
Information Processing Systems 15. MIT Press, 2003.

422


	Introduction
	Methods
	Input Output Kernel Regression
	Magnitude-preserving IOKR
	Approximating the Inputs of the Candidates
	Single Input Kernel Case
	Multiple Input Kernels Case


	Experiments
	Cross-lingual Document Retrieval
	Metabolite Identification

	Conclusions

