SAAG: STOCHASTIC AVERAGE ADJUSTED GRADIENT METHODS

Appendix A. Proof of Theorem 1

Theorem 1 Suppose for objective function given by eq. (1), under the assumptions of -
strong convezity, component-wise Lipschitz continuity of gradient, constant step size o ran-
dom sampling without replacement for blocks and random sampling with replacement for
mini-batches SAAG-II, converges linearly to optimal value p*, for constant mini-batch size
B, constant block size v, as given below,

B[ (h) -9 < (1- 2““’*)k (7 (w0) - p) + 20 (2o s+ 2?) -1+ 2) an

p

1.2 (L] o

eB; 3

1if1 € v,
where / J

< Ry, Y w,i,j,B;,v; and e;j(i) = {

0 else

Proof By definition of SAAG method,
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Using Lipschitz continuity of gradient, we have,
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Subtracting optimal objective value p* and taking expectation on both sides over mini-
batches B;, we have,
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Substituting the values of egs. (19) and (20) in eq. (18) and taking max L; ; = L, we have,
17-]

2 2
1 Lo 4

2 2 1
+ aR? (La<3+2>—1+>
m m

2 1
+ aR2 (La<3+2> —1+>
m m

E; [f (wk;+1) —p*] < f (wk) —p —a

[f' (wk)} €
[f, (wk)} €

Taking expectation over the blocks v;, we have,
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Applying this inequality recursively and taking expectation, after simplifying we have,
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Thus, algorithm converges linearly.

Appendix B. More Experiments
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In the following experiments the difference of objective function and optimal value is plotted
against the training time of different methods. As it is clear from the figures, SAAGs out-
perform other methods, similar to results against number of epochs. SAAG-I outperforms
other methods using backtracking line search but SA AG-II outperforms other methods using

constant step size.
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Figure 1: Sub-optimality against training time with line search method and SUSY dataset
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Figure 2: Sub-optimality against training time with constant step size using Lipschitz
constant and SUSY dataset
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