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Abstract

Big Data problems in Machine Learning have large number of data points or large number
of features, or both, which make training of models difficult because of high computational
complexities of single iteration of learning algorithms. To solve such learning problems,
Stochastic Approximation offers an optimization approach to make complexity of each it-
eration independent of number of data points by taking only one data point or mini-batch
of data points during each iteration and thereby helping to solve problems with large num-
ber of data points. Similarly, Coordinate Descent offers another optimization approach
to make iteration complexity independent of the number of features/coordinates/variables
by taking only one feature or block of features, instead of all, during an iteration and
thereby helping to solve problems with large number of features. In this paper, an op-
timization framework, namely, Batch Block Optimization Framework has been developed
to solve big data problems using the best of Stochastic Approximation as well as the best
of Coordinate Descent approaches, independent of any solver. This framework is used to
solve strongly convex and smooth empirical risk minimization problem with gradient de-
scent (as a solver) and two novel Stochastic Average Adjusted Gradient methods have been
proposed to reduce variance in mini-batch and block-coordinate setting of the developed
framework. Theoretical analysis prove linear convergence of the proposed methods and
empirical results with bench marked datasets prove the superiority of proposed methods
against existing methods.

Keywords: Stochastic approximation, coordinate descent, stochastic gradient descent,
gradient descent, block coordinate update, Big data optimization.

1. Introduction

Big data problems have multiple aspects and one of them is the size/volume of data, i.e., big
data problems have large number of data points or large number of features for each data
point, or both, which pose a major challenge to machine learning to train models on the large
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datasets because of high computational cost of each iteration of the learning algorithms.
This high iteration complexity is because of solving for all the variables (features) over all
data points during each iteration of the learning algorithms. Since every computer has
limited capability, each iteration might be very expensive or even infeasible to process. One
another interesting point about big data is that its meaning, i.e., what is big in ‘big data’
is not fixed since dataset sizes are continuously growing. So to solve big data problems, we
need not only efficient learning algorithms to deal with high iteration complexity but also
scalable learning algorithms to tackle growing size of datasets.

This paper solves Empirical Risk Minimization (ERM) problem which consists of average
of losses over all data points. For training data {(z1,v1), (z2,¥2), ..., (z;,y1) }, where x; € RP,
yi € {—1,+1}, Vi, [ is the number of data points, p is the number of features in each data
point, and [ or p, or both are assumed to be large. ERM problem is given below:

l
min f(w),  fw)= 3 3" Li(w,zi,p0) 1)

=1

where w € RP is parameter vector and L; are loss functions for ¢ = 1,2, ...,l. We assume
strong convexity and smoothness of ERM problem so L2 regularization can be used as given
below:

1 C
fw) =337 Liw, i, 30) + 5 |l (2)
i=1

where C' is a regularization constant. For example, for logistic regression eq.(2) can be

written as:
l

. 1 C
min f(w), f(w) = 7 > log(1+ exp(—yiw”x;)) + 51\w||2, (3)
i=1
where for the sake of simplicity, regularization can be hidden inside loss function, as

C
Li(w, z;,y;) = log(1 + exp(—y;wl x;)) + §Hw||2, Y q.

1.1. Motivation

In big data problems, high iteration complexity is due to dependency on all data points (1)
and on all features (p), during each iteration of the learning algorithms. To reduce high
iteration complexity, one approach is to use Stochastic approximation (SA, Robbins and
Monro (1951); Kiefer and Wolfowitz (1952)) which is an iterative optimization approach to
solve optimization problems which can not be solved directly but using approximations. In
machine learning problems, it is computationally very expensive, and might be infeasible in
some cases, to use all data points in each iteration of learning algorithms. So, SA is used
which makes each iteration independent of [ by considering one data point or mini-batch of
data points, i.e., instead of going through all data points, only one data point or mini-batch
of data points are processed in each iteration which makes a large computational difference
for large values of [. Similarly, remaining data points can be used in mini-batches during
other iterations. Thus, SA is computationally very efficient optimization approach to deal
with large-scale problems with large number of data points because of using one data point
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or mini-batch of data points instead of using all data, during each iteration of approximation
method. No doubt that might affect the accuracy of solution, which can be compensated
by using larger mini-batches and other techniques like SAG (Schmidt et al. (2016)) and
SAGA (Defazio et al. (2014)) etc. But, SA might not be suitable for problems with large
number of features (in each data point), because each iteration, in spite of being independent
of [, is still dependent over p. Coordinate Descent (CD, Wright (2015)) offers another
optimization approach to solve large-scale problems with large number of features. CD
is a recursive approach to solve optimization problems by approximate minimization along
coordinate directions or coordinate hyperplanes, i.e., it recursively solves small subproblems
consisting of only one or few variables. As SA makes iteration complexity independent of
I, similarly, CD makes iteration complexity independent of p by considering one feature or
block of features as variables, fixing the rest features and solving the reduced subproblem
thus formed. Then, new one feature or block of features are selected as variables while fixing
the rest and resulting subproblem is solved. This process is repeated until all subproblems
covering all features are solved, then whole process is repeated until convergence. Thus,
CD is a good approach to solve large-scale problems with large number of features but
again might not be sufficient to solve problems with large number of data points. So it is
observed that SA makes each iteration independent of [, but still, each iteration depends
on p so SA is suitable for problems with large | but might not be suitable for problems
with large values of p. On the other hand, CD makes each iteration independent of p, but
still, each iteration depends on [ so CD is suitable for problems with large values of p but
might not be suitable for problems with large values of . Thus, an optimization framework
(see, Subsection 1.2) can be developed to solve big data problems, which makes use of best
of SA as well as best of CD. In this framework, each iteration is independent of both [
and p by considering only one data point or mini-batch of data points with one feature or
block of features, i.e., each iteration solves a reduced subproblem of one feature or block
of features over one data point or mini-batch of data points. Thus, whatever is the size
of the problem, the iteration complexity is very low, making this framework efficient and
scalable for solving big data problems. By considering suitable mini-batch of data points
and a block of coordinates during each iteration, the framework can be further improved.

Let’s apply the above stated ideas of SA and CD approaches to Gradient Descent (GD)
method to understand how computational complexity of a single iteration is reduced to
make each iteration simple and feasible. For solving problem given in eq.(1), the parameter
update rule for (k 4 1)* iteration using GD method is given by

!
k+1 _  k ! o
W = wh — af (wk 72_: (w*, 4, 9:) (4)

where « is the step size and L; is gradient of loss function. The computational complexity of
this iteration is O(Ip) which is dependent on [ and p both thus it would be very expensive and
might be even infeasible for large values of [ or p, or both. GD exhibits linear convergence
rate but at the expense of high iteration complexity. Using SA approach with GD method,
i.e., Stochastic Gradient Descent (SGD) method (Zhang (2004)), taking only one data point
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during each iteration, the subproblem and update rule are given by

muz)n L (w, 2, vi.), i€ {1,2,....1},

()

whtt = wk — aL;k(wk,xik,yik), ir € {1,2,....,1}

where i, is randomly selected data point. In SGD, computational complexity of iteration
is O(p) which is much smaller than GD method as it considers only one data point and it
exhibits linear convergence rate (Schmidt (2014)) but solution is less accurate as compared
to GD due to variance in the gradient values of SGD and GD which can be reduced either
by using mini-batches of data points (Li et al. (2014)) in each iteration or using variance
reduction methods, like SAG (Schmidt et al. (2016)), SAGA (Defazio et al. (2014)), S2GD
(Konecény and Richtérik (2013)) and SVRG (Johnson and Zhang (2013)) etc.

For CD approach with GD method, i.e., for Coordinate Gradient Descent (CGD) method
taking only one coordinate while keeping others fixed following subproblem and update rule

are obtained: . .
TZ}Z.TL f(wjvw/])a J :1)27"'>p>

k+1 _  k reo k1 k S
wj - w] -« [f (w<j 7w>j) s J = 1727 -5 Dy
- J

where wf means ;" coordinate/variable of w*, w% means coordinates of w* excluding j*",

[ f/()} _denotes partial derivative w.r.t. j* variable, wi';l denotes variables of w**! which
j

are already computed and wij denotes variables of w* that have not yet to be advanced
to iteration (k + 1) along with j** variable being updated, i.e., eq.(6) updates coordinates
in Gauss-Seidel-like manner. CGD is dependent on only one variable and still exhibits
linear convergence rate (Nesterov (2012); Wright (2015)). For CGD method computational
complexity of iteration is O(l) which is much smaller than GD method. Now, by combining
SA and CD for GD method, i.e., egs.(5) and (6), following subproblem and update rule are
obtained:

T?Uln sz(wjaw/jvxlkaylk)7 .] = 1727 - Dy i € {1727 "‘7l})
J

7)
k’ ’ k . . (
wj+l - w;? -a Lik(w<}_17w§j) i J=12,..,p, ix €{1,2,...,1},

which solves subproblem with one variable over one data point and thus have constant
computational complexity of iteration as O(1). Thus, combination of SA and CD provide
an efficient and scalable solution to solve big data problems of any size.

1.2. Batch Block Optimization Framework (BBOF)

SA approach is used to solve the optimization problem by considering one or some of data
points during each iteration which helps to reduce the iteration complexity but affects the
accuracy of solution. But by considering suitable mini-batches of data points (Li et al.
(2014)) in each iteration or using variance reduction techniques, like, SAG (Schmidt et al.
(2016)), SAGA (Defazio et al. (2014)), S2GD (Kone¢ny and Richtarik (2013)) and SVRG
(Johnson and Zhang (2013)) etc., solutions can be improved. On the other hand, CD is
used to solve the optimization problem by considering one or some of the features/variables
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to formulate a reduced subproblem, which helps to reduce the iteration complexity. By
considering, a suitable block of coordinates/variables in CD, during each iteration of learn-
ing algorithm, performance can be improved. Now, combining mini-batch SA approach
with block CD approach, an optimization framework is formed, which is used to solve a
subproblem of block of variables over a mini-batch of data points, during each iteration of
learning algorithm. This framework which can be called Batch Block Optimization Frame-
work (BBOF), is an efficient and scalable framework and can be used to solve big data
problems because of its low iteration complexity. BBOF is presented by Algorithm 1. Sup-
pose {(z1,91), (x2,92), ..., (x1,y;)} is the training set with [ data points where z; € RP,
yi € {-1,41} Vi, X = (z1,22,....,27) and Y = (y1,¥2,...,y;). Suppose w € RP is parti-
tioned into (v, v, ...,vs), s blocks, v; € RPi, s.t. 25:1 pj = p and X is partitioned into m
mini-batches (Bi, Ba, ..., By,) of size |B;| each, s.t. Y /" |B;| = L.

Algorithm 1 Batch Block Optimization Framework (BBOF)

1: Inputs: m = #mini-batches, s = #blocks, n = #epochs and a = step size.
2: Initialize: w°

3: for k=1,2,...,ndo

4: fori=1,2,...,m do

5 Randomly select one mini-batch B; without replacement.

6 for j=1,2,...,s do

T: Cyclically select one block of coordinates v;.

8

9

Formulate a subproblem using block v; over mini-batch B; as given in eq.(8).
Solve eq.(8) and update the solution for block v; and keep the rest blocks fixed.
10: end for
11:  end for
12: end for

BBOF divides the given training set into m mini-batches, divides the features into s
blocks of features and runs for n epochs, each of which goes through all data points, i.e.,
it runs over all batches and covers all blocks of features for each mini-batch to avoid the
overhead of reading data again and again. It randomly selects one mini-batch of data points
B; without replacement and cyclically selects one block of features v;. Other sampling
schemes can be tried for sampling mini-batches and blocks of features in this framework.
But cyclic sampling is used for blocks of features since it would be difficult otherwise to
use sparse implementations. Moreover, as pointed out in Zhao et al. (2014), methods like,
SAG, SAGA, SAAG-I, which use stochastic averaging scheme, i.e., maintain full gradient
from previous iterations, can’t be used with random sampling of blocks and mini-batches.
A subproblem is formulated by taking selected block of coordinates as variables and fixing
the values of rest coordinates, over the selected mini-batch of data points as given below:

min Lp(wy,wy.), 7=12,...8 1=12,..,m, 8
wvj ‘Bl’ héz ( vJ /UJ> ( )

where w,; denotes block of coordinates v; and w/,, denotes coordinates excluding v;. The
size of mini-batches and blocks is selected in such a way to allow iteration complexity that
can be handled efficiently by computers on which experiments are performed. On solving
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the subproblem, the selected block of coordinates are updated but other coordinates remains
unchanged. This runs for predetermined number of epochs n but other exit criteria can be
tried depending up on the method used to solve the subproblem and as per requirements.
Before this, the idea of mini-batches and block coordinates is studied by few researchers
like Wang and Banerjee (2014); Zhao et al. (2014) and Xu and Yin (2015) with Gradi-
ent/Proximal Gradient methods, but we project mini-batch and block coordinates setting
as an optimization framework (BBOF) independent of any method, as an efficient and scal-
able framework for solving big data problems. BBOF is a tunable framework and can be
tuned to eight different settings by changing the values of m (number of mini-batches) and
s (number of blocks), e.g., using Gradient Descent method as a solver in BBOF, following
different methods can be tuned:

i) m = 1, i.e., one batch contains all data points, s = 1, i.e., one block contains all coordi-
nates, then method is GD.

ii) m = [, i.e., one batch contains only one data point, s = 1, then method is SGD.

iii) m = 1, s = p, i.e., one block contains only one coordinate, then method is CGD.

iv) m=B, 1< B <, s=1, then method is mini-batch SGD.

v) m= B, 1< B <, s=p, then method is mini-batch CGD.

vi)m=1, s=wv, 1 <v < p, then method is BCD (Block Coordinate Gradient Descent).
vil) m =1, s =v, 1 < v < p, then method is stochastic BCD.

viii) m=B, 1 < B<l, s =v, 1 <v < p, then method is mini-batch block-coordinate GD
(MBGD).

1.3. Brief Literature Review

Stochastic Approximation (SA) approach (Robbins and Monro (1951); Kiefer and Wol-
fowitz (1952)) used with GD method gives SGD method (Zhang (2004)), which introduces
variance in the gradient values because of noisy approximations of gradient. This variance
can be reduced by using suitable mini-batches (Li et al. (2014)) instead of using one data
point, or by using some variance reduction techniques, like, SAG (Schmidt et al. (2016)),
SAGA (Defazio et al. (2014)), SVRG (Johnson and Zhang (2013)) and S2GD (Koneény and
Richtarik (2013)) etc., which have same convergence as GD but have iteration complexity
nearly equal to SGD method. CD approach along with Block Coordinate Descent (BCD)
approach have been studied extensively in literature (Tseng (2001); Nesterov (2012); Beck
and Tetruashvili (2013); Richtérik and Takac¢ (2014); Wright (2015); Lu and Xiao (2015);
Shi and Liu (2016) etc.). The combination of BCD and mini-batch SA approach with
GD/Proximal GD (PGD) method is studied recently in MRBCD (Zhao et al. (2014)), OR-
BCD (Wang and Banerjee (2014)) and BSG (Xu and Yin (2015)), which are specific cases
of BBOF with GD/PGD method, used to solve different problems. MRBCD and ORBCD
have similar idea and theoretical results. BSG solves for convex and non-convex problems
and MRBCD solves only convex problems. Both the methods use variance reduction tech-
niques. MRBCD and BSG use extension of SVRG for variance reduction in mini-batch
and block coordinate setting. This paper uses BBOF with GD method, i.e., mini-batch
and block coordinate setting with GD as a solver, and proposes two new variance reduction
methods (see, Section 2), in addition to extending SAG, SAGA and S2GD to this setting.
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1.4. Contributions

The contributions of the paper are summarized below:

e Mini-batch and block-coordinate setting, i.e., a combination of Stochastic Approxima-
tion (SA) and Coordinate Descent (CD) approaches, have been projected as an effi-
cient and scalable optimization framework, namely, Batch Block Optimization Frame-
work (BBOF), independent of any solver, for solving big data problems. BBOF is a
tunable framework and can generate eight different methods by changing m (number
of mini-batches) and s (number of blocks) values (see, Sub-section 1.2).

e Two novel methods, namely, SAAG-I and SAAG-II (see, Section 2) have been pro-
posed as a variance reduction methods, under mini-batch and block coordinate setting
with GD method and used to solve strongly convex and smooth problem. SAAGs can
be used in mini-batched stochastic gradient setting also. Theoretical analysis proves
linear convergence for SAAG-II method.

e Variance reduction methods SAG, SAGA, SVRG and S2GD have been extended to
mini-batch and block coordinate setting, and compared with the proposed methods.

2. Stochastic Average Adjusted Gradient (SAAG) Methods

SAG, SAGA, SVRG, S2GD and proposed SAAG methods are variance reduction techniques
for stochastic gradient. It is very interesting to note that they have very small differences
in their update rules, as it is clear from their equations given in this section. All these
methods calculate one partial gradient over selected mini-batch at latest iterate which gives
the latest gradient values, i.e., step direction to move, calculate one partial gradient over
selected mini-batch at old iterate and one partial gradient over whole dataset calculated at
old iterates which might not give correct step direction to move. Old gradient values help
in reducing the variance in expectation but might lead in wrong direction. Our intuition
behind proposing SAAGs is to give more weightage to latest gradient values to get better
step direction. So we have divided the latest value of gradient using mini-batch size but old
values using number of data points. SAAGs are useful for sufficiently large mini-batches.
Our intuitions are followed by the empirical results which clearly show the out-performance
of SAAGs over other methods.

In this section, two methods are proposed with two training algorithms, namely, SAAG-I
and SAAG-II, both of which use the mini-batch and block-coordinate setting, i.e., BBOF
framework. First method is SAAG-I, given by eq.(10) and presented by Algorithm 2, which
takes m, s and n as input and sets initial solution (w") and total gradient (G) to zero vectors.
It randomly selects one mini-batch of data points without replacement and cyclically selects
one block of coordinates as in BBOF and formulates a reduced subproblem given by eq.(8)
which is solved using eq.(9). The iteration complexity is very low since it calculates two
partial gradients w.r.t. selected block of variables over the selected mini-batch of data
points and reduces variance by using averaged gradient values calculated using the previous
iterations. The parameters are updated for only selected block of coordinates and keeping
the rest coordinates unchanged. SAAG-II method is given by eq.(11) and presented
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Algorithm 2 SAAG-I

1: Inputs: m = #mini-batches, s = #blocks, n = #epochs and o = step size.
2. Initialize: solution w" € R? and total gradient G € RP to zero vector.
3: for k=1,2,...,n do

4: Set uF0 = k-1
50 fori=1,2,....,mdo
6: Randomly select one mini-batch B; without replacement.
7 for j=1,2,...,s do
8: Cyclically select one block of coordinates v;.
9: Formulate a subproblem using block v; over mini-batch B; as given in eq.(8).
10: Calculate: gp, ., = [L;l (ulzij,u};’ijfl>} and gp, ., = 3 [L;l (uk,oﬂ
heB; N Vj heB; Yj

11: Update solution as:
12: . 1 1

ki k-1 _

uk,z _ uk,z—l.
/v /v
. 1 _

13: Update total gradient vector, [G]Uj + = 7 (9Biw; — GBiv;)-
14: end for
15:  end for
16: k— ylem,
17: end for

Algorithm 3 SAAG-II

1: Inputs: m = #mini-batches, s = #blocks, n = #epochs and a = step size.
2. Initialize: solution w® € R?
3: for k=1,2,...,ndo

4: Set uF0 = k1,

5. Calculate full gradient, G.

6: fori=1,2,...,mdo

7 Randomly select one mini-batch B; without replacement.

8: for j=1,2,...,s do

9: Cyclically select one block of coordinates v;.

10: Formulate a subproblem using block v; over mini-batch B; as given in eq.(8).

11: Calculate: gp, v, = [L;L (uiéj,ugij—lﬂ and gB;0; = > [L;l (uk,O)} |
heB; Uj heB; Uj

12: Update solution using eq.(9).

13: end for

14:  end for

15: k= yhm,

16: end for
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by Algorithm 3. SAAG-II algorithm is similar to SAAG-I and uses BBOF framework to
provide an efficient and scalable solution to solve the big data problems. Similar to later,
it calculates two partial gradients over the mini-batch of data points and uses one gradient
over all data points which is calculated at the start of each epoch for variance reduction.
Thus, the difference between SAAG-I and SAAG-II algorithms is only in the value of average
gradient calculation, former maintains the value from previous iterations starting with zero
vector unlike the later which calculates the full gradient at the start of each epoch.

SAG, SAGA, SVRG and S2GD are well known variance reduction methods for SGD
setting. SVRG has been extended to mini-batch and block-coordinate setting, for variance
reduction, in MRBCD (Zhao et al. (2014)) and BSG (Xu and Yin (2015)). In this paper,
SAG, SAGA and S2GD are also extended to this setting for comparing against SAAG
methods. To closely study, all these methods in the mini-batch and block-coordinate setting,
the parameter update rules are given by equations (10-15), where uﬁj’.z denotes the k"
parameter update rule for v; block of coordinates over the ith mini-batch B;, u]if,] denotes
variables of u¥* which are already computed and uizj_l denotes variables of u®*~! that have
not yet to be advanced to iteration (k,4) along with v; block of variables being updated.
As it is clear from following equations, SAAG-I, like, SAG and SAGA, maintains the full
gradient from previous iterations by saving the partial gradients over the mini-batches but
SAAG-II, like, S2GD and SVRG, calculates the full gradient at the start of the epochs and
uses inside the inner loops to reduce the variance in gradient value. S2GD and SVRG have
similar parameter update rules, although different learning algorithms, so only SVRG is
given.

SAAG-I:
ki _ o kyi—1 1 ’ ki k-1 1 ’ k0 1 ’ ki kyi—1
T LBH W25, (10 (o2, 8 )L] 2, 0 () T [20 (2, 2% )LJ} "
SAAG-II:
R R Tl LA A | ol A T | S A O ) an
Vi Vi IB;| néB, L "<’ 2y v; L héB; h v LRz U vj
SAGA:

. . 1 ’ . . 1 ’ 1 ! ’ . .
k,i k,i—1 k,i k,i—1 k,0 k,i k,i—1
wuy = U, —a > [L (u o uL )} — > [L (u ’ )] + -3 [L (u S TR )] (12)
v v |:\Bz\ nEB, h <vj T>wj » 1B, hEB, h v 1l h=1 h <vj %o v

SAG:
B S > {L/ (uk,i uk,i—l)] 1 > [L/ (uk,o)} +1 i [L/ (uk7 uk‘i—l)} (13)
vj v 1 hEB; h <1/j‘ Zuj v i hEB, h v [ =1 h <'Uj7 ZU]' v
SVRG:
= e B [ ()] - B, I GO, e B I L] 0w
vi Vi IBi| néB, L M\ < 2y v |Bil nEB; h v L=l vj

57



CHAUHAN DAHIYA SHARMA

MBGD:

kyi _ , kyi—1 o [ ( k,i k,i—1>:|
wt =t - > L u su K
vi Vi |Bi| néB, L P\ T<vi" 2 v (15)

Complexity Analysis The per-iteration complexity for all the methods is O(Bv) (as-
suming constant mini-batch size B and block size v), which is controllable as per the machine
capability, unlike, complexity O(lp) of GD method which might be infeasible to process.
Using same algorithm structure, as given in Algorithm 1, per epoch component gradient
evaluations for S2GD, SVRG and SAAG-II are [ (calculation of full gradient at start of
epoch) + 21 (2Bm, as Bm = [), but for SAG, SAGA and SAAG-I are 2[ since they main-
tain full gradient from previous iterations and don’t calculate at start of epoch. Technically,
later case take only [ gradient evaluations per epoch at the expense of saving gradients which
need O(Ip) extra memory in general but only O(l) memory to solve problem given by eq. (3).

3. Analysis

Theorem 1 Suppose for objective function given by eq. (1), under the assumptions of -
strong convezity, component-wise Lipschitz continuity of gradient, constant step size o ran-
dom sampling without replacement for blocks and random sampling with replacement for
mini-batches SAAG-II, converges linearly to optimal value p*, for constant mini-batch size
B, constant block size v, as given below,

E[f(w*) —p] < (1— 2”O‘”>k(f (w®) —p*) +§f§ <La <3+2£2> —1+l?> (16)

p

1.2 [Lw], e

eB; 3

14f1 € vj

0 else

where

< Ry, Y w,i,j,B;,v; and e;j(i) = {
Detailed derivation of convergence is given in Appendix A (supplementary material).

4. Numerical Experiments

In this section, experimental results' are provided and proposed methods, SAAG-I and
SAAG-II, are compared against the variance reduction techniques, like, BSG (Xu and Yin
(2015)), MRBCD (Zhao et al. (2014)) and extensions of SAG (Schmidt et al. (2016)),
SAGA (Defazio et al. (2014)), SVRG (Johnson and Zhang (2013)) and S2GD (Konecény
and Richtarik (2013)) to mini-batch and block-coordinate setting. MBGD (Mini-batch
Block-coordinate Gradient Descent) which is simple method without any variance reduc-
tion is also considered as presented in eq.(15). In this experimentation, logistic regression
problem, given in eq.(3) is solved. Since BSG and MRBCD use SVRG for variance re-
duction, thus under our experimental settings BSG, MRBCD and extension of SVRG to
mini-batch and block-coordinate setting become same so only SVRG is mentioned in the

1. Experimental results can be reproduced using code available at link: https://sites.google.com/site/
jmdvinodjmd/code/saag

58


https://sites.google.com/site/jmdvinodjmd/code/saag
https://sites.google.com/site/jmdvinodjmd/code/saag

SAAG: STOCHASTIC AVERAGE ADJUSTED GRADIENT METHODS

experiments. All the methods use the same algorithmic structure as given in eq. (1) with
change only in update rule (variance reduction method) at step 9. Experiments are con-
ducted with datasets as given in Table 1. All the methods use averaged gradient value
for variance reduction, calculated either at start of epochs or maintained from previous
iterations. To store the full gradient only a vector of length [ is used since it stores only
constant value for each data point instead of storing the complete gradient vector which will
take [ * p memory space. Step size is calculated using two different methods, namely, back
tracking line search method and constant step size determined using Lipschitz constant.
It is interesting to note that in backtracking line search using all data points for big data
problems can be very expensive so backtracking line search is performed only on selected
mini-batch with parameter values as 5 = 0.5 ( to decrease the step size) and v = 0.1 (i.e.,
allow 10% decrease of objective function) for all methods. With Lipschitz constant L, step
size is taken as 1/L for all the methods. This is to be noted that all experiments have been
conducted on single node, MacBook Air (8 GB 1600 MHz DDRS3, 1.6 GHz Intel Core i5,
256 SSD). For all methods, regularization parameter is set as C = 1/1.

Table 1: Datasets?used in experimentation

Dataset #classes | #features | #datapoints
news20.binary 2| 1,355,191 19,996
rcvl.binary 2 20,242 47,236
real-sim 2 72,309 20,958
webspam 2 254 350,000
SUSY 2 18 5,000,000

Following figures presents the experimental results with bench marked datasets given in
Table 1, with different mini-batch and block sizes. Figures plot the difference of objective
function and optimum value against the number of epochs. Following observations can be
made from the experimental results:

(i) In general, SAAG methods, i.e., SAAG-I and SAAG-II, converges faster than other
solvers with SAAG-II outperforms all other methods.

(ii) In general, with increase in size of the mini-batch and block, SAAG methods perform
better as compared with rest of the solvers, but for smaller sizes, e.g., with mini-batch of
one data point they don’t perform.

(iii) Results with line search method and using Lipschitz constant to determine the step
size give similar results and prove the superiority of SAAG methods over others.

(iv) As expected from equations of different solvers, when block size is equal to #features
and mini-batch size is equal to #data points, i.e., in GD method setting all methods converge
exactly same (due to space constraints figure is not included).

(v) Plots of sub-optimality against time shows similar results as shown for sub-optimality
against epochs (see supplementary material for results).

(vi) Line search results are smoother than constant step size. Moreover, line search results
are better than constant step for SUSY but for other datasets, constant step size gives better

2. All used datasets are available at link: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: Results with constant step size using Lipschitz constant (news20 - (a), (b), (c),
(d); revl - (e), (f) (g), (h); real-sim - (i), (j), (k), (1)).
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results. Major reason for this is the larger step size obtained using Lipschitz constant which
is sometimes even greater than one but for line search maximum size is one which keeps
on decreasing and other possible reason is that the line search is performed on selected
mini-batch and not on full dataset.

(vii) SUSY has only 18 features so block size has been taken equal to number of features,
moreover for webspam all features has been taken with mini-batches of 500, 200 and 5000.
These experiments form mini-batched stochastic gradient setting and prove the effectiveness
of SAAGs for this setting also, and algorithms and formulas can be obtained for this setting
by setting v = p.

5. Conclusion and Future Scope

In this paper, Mini-batch and block-coordinate setting, i.e., a combination of SA and CD
approaches, has been projected as an efficient and scalable optimization framework, namely,
BBOF, independent of any solver, for solving big data problems. BBOF has been discussed
with Gradient Descent as a solver and two novel variance reduction methods (SAAG-I and
SAAG-II) have been proposed and used to solve strongly convex and smooth problems. The-
oretical results prove linear convergence and empirical results with bench marked datasets
prove faster convergence for the proposed methods than existing methods of variance re-
duction. BBOF and SAAG can be extended to parallel and distributed settings, and to
solve other convex and non-convex problems. In addition, SAAG methods are further open
for analyzing the convergence for SAAG-I and SAAG-II algorithms, and their theoretical
properties.
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