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Abstract

Querying graph structured data is a fundamental operation that enables important applications in-
cluding knowledge graph search, social network analysis, and cyber-network security. However,
the growing size of real-world data graphs poses severe challenges for graph search to meet the
response-time requirements of the applications. To address these scalability challenges, we de-
velop a learning framework for graph search called Select-and-Evaluate (SCALE). The key insight
is to select a small part of the data graph that is sufficient to answer a given query in order to
satisfy the specified constraints on time or accuracy. We formulate the problem of generating the
candidate subgraph as a computational search process and induce search control knowledge from
training queries using imitation learning. First, we define a search space over candidate selection
plans, and identify target selection plans corresponding to the training queries by performing an
expensive search. Subsequently, we learn greedy search control knowledge to imitate the search
behavior of the target selection plans. Our experiments on large-scale knowledge graphs including
DBpedia, YAGO, and Freebase show that using the learned selection plans, we can significantly
improve the computational-efficiency of graph search to achieve high accuracy.

Keywords: Knowledge Graphs, Structured Prediction, Learning for Search

1. Introduction

Graph representations are employed for modeling data in many real-world applications including
knowledge graphs, social and biological networks. Graph querying is the most primitive operation
for information access, retrieval, and analytics over graph data that enables applications including
knowledge graph search, and cyber-network security. We consider the problem of graph search,
where the input is a data graph and a graph query, and the goal is to find the answers to the given
query by searching the data graph. For example, to detect potential threats, a network security expert
may want to “find communication patterns matching the attack pattern of a newly discovered Worm”
over a cyber network (3). This natural language query is issued using a formal graph query language
like SPARQL. Specifically, we study the graph querying problem as illustrated in Example 1.
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Figure 1: Illustration of the graph querying problem (33).

Example 1. Consider a graph query () on DBpedia knowledge graph, shown in Figure 1. We want
to find the artists who work with “J.Lo” in a Band. Each of these ambiguous nodes in () can have
excessive number of candidate matches. For example, there are 31,771 nodes with label “Band”
and 82,853 “Artists” in DBpedia. In addition, “J.Lo” can match to different people whose first
name starts with “J” or lastname starts with “Lo”. While “Jennifer Lopez” is the perfect match
for this query, users may want to get other similar people like “Jennifer Hudson”, etc. However,
the matching score for each candidate node can be different due to different node context. It is
computationally expensive to first expand all of those matches to find the query structure and then
rank them based on their matching scores.

The growing size of real-world data graphs in emerging real-world applications poses severe
challenges. For example, knowledge graphs employed in health-care and enterprise applications,
and cyber networks employed in network monitoring applications may involve billions of linked
entitites with rich associated information. Therefore, performing even a linear scan over these large
graphs is not possible within the real-time requirements of the application (e.g., network intrusion
detection and defense). Additionally, common graph queries are computationally expensive, e.g.,
evaluation of subgraph isomorphism query is NP-hard. As we overview in the next section, ex-
isting graph search algorithms follow the “one-size-fits-all” philosophy: all queries are processed
via predefined search strategies over entire data graph for every application. The main drawbacks
of existing algorithms include: 1) Query evaluation techniques scale poorly for large-scale data
graphs; 2) Predefined search procedures lack the flexibility to meet the requirements/constraints of
the applications (e.g., finding answers to a query within a time-bound); and 3) Cannot leverage the
knowledge of query distribution to automatically optimize the search procedure.

A primary contribution of this paper is to address the above challenges and drawbacks by study-
ing a learning framework that allows to trade-off speed and accuracy of graph search based on the
needs of the application. This problem can be seen as an instance of learning to speed up structured
prediction (17; 41; 11; 13; 28; 12). The general idea is to specify a computationally-bounded search
architecture with some parameters, and automatically optimize its performance based on the needs
of the application using training queries drawn from a target distribution. Specifically, we develop
a framework called Select-and-Evaluate (SCALE) to efficiently search large data graphs. The key
insight is to select a small part of the data graph that is sufficient to answer a given query in order
to satisfy the specified constraints on time or accuracy, which is loosely inspired by the HC-Search
framework (11). Given a query, data graph, and search bound 7 as input, the framework first selects
a candidate subgraph of size 7 to answer the input query and subsequently, evaluates the input query
on the selected candidate subgraph to find the best answer. The problem of generating the candidate
subgraph is formulated as a computational search process guided by a learned policy. The role of
policy is to quickly guide the search towards high-quality candidate subgraphs.
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We develop a imitation learning methodology for inducing greedy policies using training queries
drawn from a target distribution. First, we define a concrete search space over candidate selection
plans, where each selection plan can be seen as a sequence of actions to progressively construct a
subgraph of size 7. The quality of a candidate selection plan for a given graph query is defined
as the accuracy of the answer produced by evaluating the given query on the corresponding sub-
graph. Second, we perform a computationally-expensive search (heuristic guided beam search) in
this search space, to identify target selection plans corresponding to the training queries. Third, we
learn greedy policies in the framework of imitation learning to mimic the search behavior of these
target selection plans to quickly generate high-quality candidate subgraphs. Our experiments on
large-scale knowledge graphs including DBpedia, YAGO, and Freebase show that SCALE frame-
work with the learned policy can significantly improve the computational-efficiency of graph search
to achieve high accuracy.

Contributions. The main contributions this paper are as follows:

1. A novel learning framework called Select-and-Evaluate (SCALE) for large-scale graph search is
developed. The key idea is to select a small candidate subgraph that is approximately sufficient to
answer a given graph query (Section 3).

2. Designing a imitation learning methodology for inducing greedy policies to guide the search for
high-quality candidate subgraph. This includes specifying a concrete search space, constructing a
oracle policy, and defining appropriate features to drive the learning process (Section 5).

3. Comprehensive evaluation of the SCALE framework and its variants on three large real-world
knowledge graphs, namely, YAGO, DBpedia, and Freebase (Section 6).

2. Background and Prior Work on Graph Query Processing

In this section, we provide the background on graph query processing, and the related work on top-k
graph search including the limitations of the state-of-the-art approaches.

Data Graph. We consider a labeled and directed data graph G=(V, E, £), with node set V' and
edge set £. Each node v € V (edge e € F) has a label L(v) (L(e)) that specifies node (edge)
information, and each edge represents a relationship between two nodes. In practice, £ may specify
heterogeneous attributes, entities, and relations (29).

Graph Query. We consider query @ as a graph (V, Eg, Lg). Each query node in @) provides
information/constraints about an entity, and an edge between two nodes specifies the relationship
posed on the two nodes. Formal graph query languages including SPARQL (36), Cypher, and
Gremlin can be used to issue graph queries to a database such as Neo4j(neo4j.com). Since
existing graph query languages are essentially subgraph queries, we can invoke a query transformer
to work with different query languages (27). Therefore, our work is general and is not tied to any
specific query language.

Subgraph Matching. Given a graph query () and a data graph G, a match of () in GG is a mapping
¢ C Vi x V, such that: 1) ¢ is an injective function, i.e., for any pair of distinct nodes u; and u;
in Vo, ¢(u;) # ¢(u;); and 2) for any edge (v, v;) € Eq, (¢(vi), #(v;)) € E. The match ¢(Q) is
a complete match if |Q| = |¢(Q)|, where |@Q| denotes the size of @, i.e., the sum of the number of
nodes and edges in @ (similarly for |¢(Q)|). Otherwise, ¢(Q) is a partial match.

Matching Score. Given () and a match ¢(Q) in G, we assume the existence of a scoring function
F(-) which computes, for each node v € V{, (resp. each edge e € E(), a matching score F'(¢(v))
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(resp. F'(¢(e))). The matching score of ¢ is computed by a function F'(¢(Q)) as

F($(@) = Y F(v,6(v)+ D Fle, ¢(e)) (1)

veVg ecEq

One can use any similarity function such as acronym, abbreviation, edit distance etc. We adopt
Levenshtein function (34) to compute node/edge label similarity, and employ the R-WAG’s ranking
function that incorporates both label and structural similarities (38) to compute matching score F'(+).
Top-k Graph Querying. Given ), G, and F'(-), the top-k subgraph querying problem is to find
a set of k matches Q(G, k), such that for any match ¢(Q) ¢ Q(G, k), for all ¢'(Q) € Q(G, k),
F(#(Q) > F(6(Q)).

Top-k Search Algorithms. Top-k graph querying problem is known to be intractable (NP-hard).
The common practice in existing top-k graph search techniques (39; 10; 2; 43; 40; 45; 42) is to
follow a conventional Threshold Algorithm (TA) style approach (14). TA framework consists of
three main steps: Step 1: Query Decomposition. A query @ is decomposed into a set of sub-queries
{Q1,...,Qr} without loss of generality. The procedure then initializes one list for each sub-query
to store the partial answers. For relational databases, sub-queries can correspond to individual
attributes (14); and for graph queries, sub-queries can correspond to edges (39; 45; 2; 10) or stars
(42); Step 2: Partial Answer Generation. For each sub-query @);, it performs an iterative exploration
as follows. a) It computes and fetches & partial matches of );; and b) It verifies if the partial matches
can be joined with other “seen” partial matches to be able to improve the top-k matching score; and
Step 3: Early Termination. TA dynamically maintains a) an lower bound (L B) as the smallest top-k
match score so far; and b) an upper bound (U B) to estimate the largest possible score of a complete
match from unseen matches. If UB < LB, TA terminates.

STAR (42) is the state-of-the-art graph search algorithm: instantiation of the TA framework,
where each sub-query takes the form of a star (i.e., graph with a unique pivot and some adjacent
nodes). It was shown both theoretically and empirically that star decomposition provides a good
trade-off between sub-query evaluation cost and the number of candidate partial answers. The main
limitations of TA framework and STAR are as follows: 1) Applying fixed search strategy may
not provide robust performance due to diversity in queries; 2) The performance of TA framework
highly depends on a good estimation of the upper bound; and 3) It is hard to adapt TA framework
to different resource constraints (e.g., memory, response time, accuracy, I/O cost).

3. SCALE Framework

In this section, we first provide a high-level overview of our SCALE framework. Subsequently, we
describe the details of both selection and evaluation components.

Key Idea. Our SCALE framework is an instantiation of the following general idea. We accept
that graph search is a NP-hard problem. Therefore, we specify a computationally-bounded search
architecture with some parameters, and automatically optimize its performance based on the needs
of the application using training queries drawn from a target distribution.

Overview of the SCALE Framework. There are two main computational components in SCALE:
1) Selection, whose role is to generate a candidate subgraph of size 7 (parameter) to answer the
input query; and 2) Evaluation, whose role is to find the best answer by evaluating the input graph
query on the generated subgraph. The scoring function F'(.) is used to score the candidate answers.
Given a graph query (), data graph GG, and search bound T, the selection component generates a
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Figure 2: High-level overview of the SCALE framework.

subgraph G C G whose size is 7 and the evaluation component finds the best answer A by
searching G ;.

Selection Component. The selection component performs state space search and consists of two
key elements: 1) Search Space S, = (I, A) over candidate subgraphs of the data graph G that can
be instantiated for a given query ), where I(Q) is the initial state and A(s) refers to the available
actions at a state s. We will provide a concrete search space definition as part of our learning
methodology; and 2) Selection Policy 11 that guides the greedy search from /(Q) until it uncovers a
subgraph of size 7. Note that it is computationally intractable to perform exhaustive search over all
candidate subgraphs of size 7.

For a given graph query (), the search starts with an empty graph (initial state sg); and grows the
partial graph based on the set of possible actions A (e.g., adding an edge) and the greedy policy 11
that selects the best scoring action at each state. The search is continued until a candidate subgraph
of size 7 is found. The corresponding subgraph G - will be selected for evaluation.

Evaluation Component. Given a query (), the corresponding selected subgraph G -, and a scor-
ing function F'(.) to score the candidate answers, the evaluation algorithm needs to search for the
best scoring candidate answer A. This corresponds to solving an instance of subgraph isomorphism

Algorithm 1 SCALE Framework
Input: Q = graph query, G = data graph, F' = scoring function, (I, A) = search space, 7 = search bound, IT =
selection policy

1: so < I(Q) // Initial state with empty subgraph

2: for each selection step t=1 to 7 do

3: Abest <— AT MAT e A(s,_4) LL(S, @) // Pick the best scoring action

4 St < Apply apest On S¢—1 // Grow the subgraph

5: end for
6: QQ,T < subgraph from state s // Subgraph of size T selected by greedy policy 11
7
8

: A« Evaluate(Q,Gq,-, F) // Evaluation of query Q on the selected subgraph G, -
: return answer A
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problem. We will employ the following two algorithms in our experiments: VF2 (exact and expen-
sive) and Dual Simulation (approximate and cheap).

1) VF2 Algorithm. Cordella et al. proposed an exact algorithm named VF?2 to solve subgraph
isomorphism (4; 5). The VF2 algorithm considers a state space search formulation, where states
correspond to a partial mapping solution between () and G . The search space is explored in a
depth-first manner guided by a fixed set of pruning rules to make the search efficient. The time
complexity is ©(N) and ©(N! - N) in the best-case and worst-case respectively, where N is the
total number of nodes in @ and G .

2) Dual Simulation Algorithm. Simulation and dual simulation allows to capture meaningful,
approximate matches for graph patterns by relaxing the strict “one-to-one” mapping requirement by
subgraph isomorphism (15; 31). Intuitively, a dual simulation based pattern matching preserves the
path information between query and the corresponding match. The time complexity of the state-of-
the-art dual simulation algorithm for query @ and selected subgraph G, is O(Ng - Ng,, ) (31),
where Nq and N¢,, , correspond to the total number of nodes and edges in Q and G,  respectively.

4. Problem Setup

We assume the availability of a data graph G and a training set of queries 7 = {Q} drawn from
an unknown target distribution D, where () is a graph query. Unlike traditional supervised learning
problems, we do not know the correct answers for these training queries (recall that graph search is
a NP-Hard problem). For a given query (), search bound parameter 7 (total number of nodes and
edges in (0), and candidate subgraph G C G, suppose a query evaluation algorithm Evaluate
produces A as the corresponding answer. We define the pessimistic loss function L as follows:

AN F(Q7A)
L(Q7A)_1_ SMAX (Q) (2)

, where SMAX (Q) is the maximum possible score according to F'(.) for a candidate answer of
query Q. This loss function is pessimistic because even if we run an exact evaluation algorithm

(e.g., VF2) on query () and data graph G, the best answer A* may have a score less than SMAX (Q) .

We are given a search space definition S, = (I, A) over candidate subgraphs of the data graph
G that can be instantiated for a given query () and a search bound parameter 7. We focus on
greedy search (see Algorithm 1). For a given input query @, the decision process for producing the
subgraph G ~ corresponds to choosing a sequence of actions leading from the initial state using the
selection policy II, until the search process uncovers a subgraph of size 7. In this work, we assume
a linear function to represent the selection policy II: II(s,a) = w - ¥(s, a), where ¥(s,a) € R™
represents the features of a state action pair (s, a) (i.e., query ) and the subgraph formed due to
action a) and w € R™ correspond to the parameters of the policy. We want to learn the parameters
of IT using the training queries 7, with the goal of minimizing the loss on unseen queries drawn
from the target distribution.

5. Learning Methodology

In this section, we explain the different components of our imitation learning methodology that in-
cludes defining a concrete search space, constructing a good oracle policy, and defining appropriate
features to drive the learning process.
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5.1. Search Space

We first explain the building blocks that we will use to define our search space, and then define a
concrete search space over candidate subgraphs of the data graph G for a given query Q).

Building Blocks. We need the following two elements to define an effective search space. 1) Seed
Nodes: For a input query () with vertex set Vy, we obtain a list of seed nodes CAND (v) for each
node v € V( using the following scheme: We first compute the best-1 label match set based on
node label similarity to v € Vi using the Levenshtein function (34). Subsequently, we consider all
the nodes in the data graph that contain the labels in that set as our seed nodes. For computational
efficiency, we pre-compute these lists for all node labels in the data graph GG and store them as an
index. 2) One-Hop Index: We also pre-compute a One-Hop index for all nodes in the data graph
G to be able to quickly prune bad search paths. For each node u, we store two indices: IN (u)
and OUT (u) that represents the labels of the nodes that have an incoming edge to the node u and
outgoing edge from the node u respectively.

Search Space Definition. The search space S, = (I, A) is defined in terms of an initial state
function I and action set function A that gives the available actions at any state to be able to generate
the successor states. 1) Initial State Function: For a input query @, 1(Q) gives the initial state. The
initial state corresponds to an empty graph. 2) Successor Function: A(s) refers to the available
actions at a state s that corresponds to different ways of growing the subgraph at state s. If s
contains an empty graph, the action set A(s) represent adding different seed nodes of the vertex
v € V that has the smallest [CAND (v) |. For states with non-empty subgraph, we execute the
following procedure to get the available actions A(s): We define a depth-first search (DFS) based
ordering over the edges Eg of the query () and perform a round-robin selection over these edges.
For each selected edge e € Eg, we consider candidate matches to this edge (via One-Hop index)
to grow the subgraph of the current state. If the selected edge does not have any more candidate
matches to grow the subgraph, we move to the next edge in the DFS order.

5.2. Learning Search Control Knowledge

Inspired by the recent success of imitation learning approaches for solving sequential decision-
making tasks (21; 23; 22; 35), we formulate and solve the problem of learning policies to select
high-quality subgraphs in the framework of imitation learning.

Overview of Imitation Learning. In traditional imitation learning, expert demonstrations are pro-
vided as training data (e.g., demonstrations of a human expert driving a car), and the goal of the
learner is to learn to imitate the behavior of an expert performing a task in a way that generalizes
to similar tasks or situations. Typically this is done by collecting a set of trajectories of the expert’s
behavior on a set of training tasks. Then supervised learning is used to find a policy that can repli-
cate the decisions made on those trajectories. Often the supervised learning problem corresponds to
learning a classifier or regressor to map states to actions, and off-the-shelf tools can be used.

The two main challenges in applying imitation learning framework to selection plan generation
are: 1) Obtaining a high-quality oracle policy that will provide the supervision for the imitation
learning process (oracle construction); and 2) Learning search control policies that can make search
decisions in a computationally-efficient manner (policy learning). We provide solutions for these
two challenges below.

1) Oracle Construction. We describe a generic procedure to compute high-quality selection plans
within the given search space S, = (I, A). We will start by defining the needed terminology.
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Definition 1. For a given query (), a state s in the search space S, is called a terminal state if
the size of the subgraph corresponding to the state s is equal to 7, the search bound parameter.

Definition 2. For a given query (), a sequence of actions from initial state to terminal state,
(s0,a0)," -+, (s, @), is called a selection plan (SP), where s¢ is the initial state and s, is the
terminal state.

Definition 3. For a given query @, the quality of a SP is defined as the loss L(Q, A) € [0,1]
(smaller the better), where A is the answer obtained by executing a query evaluation algorithm
Evaluate using the corresponding subgraph G .

The goal of oracle construction is to compute high-quality selection plans for each training
query Q. A naive approach would be to perform depth-bounded exhaustive search in search space
Sp instantiated for each training query. Since the naive approach is impractical, we resort to heuristic
guided beam search and define a effective heuristic function to make the search efficient.

Heuristic Function. The heuristic function H takes a state s (query Q = (Vi, Eqg) and cor-
responding subgraph G’ = (V’, E’) C @) and returns a numeric score (higher the better). We
define our heuristic function as follows: H(s) = Zuer H,(u), where H, is a primitive heuristic
function. The primitive heuristic H), assigns a score to each node u € Vi based on the candidate
subgraph G":

Hy(u) = max,ey S(u,v) + P(u,v) 3)

, where S(u,v) is the normalized similarity between u and v based on the Levenshtein function,
and P(u,v) is the normalized potential function that assigns scores to vertices v € V' proportional
to the neighboring edges N (v) that can potentially match with the neighboring edges N (u).

Target Selection Plan Computation via Beam Search. For each training query (), we perform
best-first beam search with beam width b starting at initial state s9 = I(Q), until we uncover a
terminal state (i.e., size of subgraph at the state is 7). The sequence of actions leading from sg to
terminal state s is identified as the target selection plan for () (see Algorithm 2).

The quality of the selection plans pro-
duced by heuristic-guided beam search Algorithm 2 Target Selection Plan Computation
will depend critically on two parameters: Input: Q = query, (I, A) = search space,

1) beam width b; and 2) search bound 7. 7 = searchbound, b = beam width
Intuitively, the quality of plans will im- ! B < o= I(Q) #/ Initial state
. 2: TERMINATE < False
prove as the values of b and 7 increase, 3. Liae not TERMINATE do
although at the expense of additional com-
putation. In practice, we will vary both b
and 7 to evaluate the quality of the ora-
. L. . TERMINATE = True and s, = s
cle policy on all the training queries before else
starting the imitation learning process. 9: Expand s and add all next states to C' // Expansion
2) Learning Greedy Policies via Imita- 10: endif

tion Learning. Our goal is to learn a 11: B < Top-b scoring states in C' via heuristic // Pruning
12: end while

13: return state-action pair sequence from so to s

s <— best scoring state in B // Selection
C + 0 // Candidate set
if size of subgraph at s == 7 then

A AN

greedy policy II that maps states to ac-
tions in order to imitate the target se-
lection plans computed via oracle con-
struction. We assume that for any training query (), we can get the oracle selection plan
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(sg,ag), (s7,a7y),- -, (s, @) via Algorithm 2, where s is the initial state and s* is the terminal
state. The goal is to learn the parameters of II such that at each state s}, a7 € A(s]) is selected.

Exact Imitation Approach. At each state s; on the target selection plan of a training query
@, we create a ranking example such that the score of the best action a; € A(s;) is higher than all
other actions: w-VU(s;,a;) > w-V(s}f,a),Va € A(sf)\af. The sets of aggregate ranking imitation
examples collected over all the training queries are then fed to a rank learner (e.g., Perceptron or
SVM-Rank), to learn the parameters of 1I (see Algorithm 3). This reduction allows us to leverage
powerful off-the-shelf rank learners. In theory and practice, policies learned via exact imitation can
be prone to error propagation: errors in the previous state contributes to more errors.

DAgger Algorithm. DAgger is an advanced imitation approach (37) that generates additional
training data so that the learner is able to learn from its mistakes. It is an iterative algorithm, where
each iteration adds imitation data to an aggregated data set. The first iteration follows the exact
imitation approach. After each iteration, we learn policy II using the current data. Subsequent
iterations perform selection planning using the learned policy to generate a trajectory of states for
each training query. At each decision along this trajectory, we add a new imitation example if the
search decision of the learned policy is different from the oracle policy. In the end, we select the
best policy over all the iterations via performance on validation data.

3) Features. Recall that we assume

a linear function to represent the se- Algorithm 3 Learning Greedy Policy via Exact Imitation
lection policy II: H( s, a) = w - Imput: 7 = Training queries, and 7 = search bound
U(s,a), where ¥(s,a) € R™ repre-

sents the features of a state action pair I: Initialize the set of ranking examples D = 0

. 2: for each training query @Q € 7 do
(s, a) (i.e., query Q) and the subgraph 3 Compute the target query plan (sg, ap), - , (s, D)
formed due to action a). To drive 4: for eachsearchstept =0toT — 1 do
the learning process, we define the 5: Generate ranking examples R; to imitate (s}, ay)
following category of features for U: & Aggregate training data: D =D U R,

. 7 end for

1) Number of candidate matches for  g. .4 for
each query node in the subgraph; 2) 9: 1Tz; = Rank-Learner(D)
Number of candidate node matches 10: return greedy policy [Lserect

for a query node in the subgraph that

satisfy the one-hop neighborhood label index property of nodes in the query graph; 3) Same as 2 but
in the data graph; 4) We perform a random walk of fixed size starting from each of the nodes in the
query graph. We check from how many nodes in the subgraph, we can do the same random walk;
5) Size of the query graph, subgraph, and number of available actions to grow the subgraph from
new state; 6) Number of candidates present for the last selected query edge and also for each of the
nodes of the last selected query edge. Alternatively, as mentioned in section 6.3, we can employ a
deep learning model to learn appropriate representation automatically.

6. Experiments

In this section, we first describe our experimental setup. Subsequently, we present the empirical
evaluation and analysis of our SCALE framework.
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6.1. Experimental Setup

Datasets. We employ three real-world open knowledge graphs: 1) YAGO! contains 2.6M entities
(e.g., people, companies, cities), 5.6M relationships, and 10.7M nodes and edge labels, extracted
from several knowledge bases including Wikipedia; 2) DBpedia® consists of 3.9M entities, 16.8M
edges, and 14.9M labels; and 3) Freebase?, a more diversified knowledge graph that contains 40.3M
entities, 180M edges, and 81.6M labels.

Query Workload. We developed a query generator to produce both training and testing queries
following the DBPSB benchmark (32). First, we generate a set of query templates, each has a
topology sampled from a graph category, and is assigned with labels (specified as “entity types”)
drawn from top 20% most frequent labels in the real-world graphs. We created 20 templates to
cover common entity types, and generated a total of 2K queries by instantiating the templates.
The maximum size of the generated query graph (total number of nodes and edges) was 13. We
employed 50% queries for training, 20% for validation, and 30% for testing respectively.

ORACLE Policy Implementation. We performed heuristic guided best-first beam search with dif-
ferent beam widths b = {1, 5, 10, 20, 50,100} and search bound 7 values to compute high-quality
target selection plans for each training query. We select the oracle policy (combination of b and 7
values) based on both computation time and error.

SCALE Implementation. We employed SVM-Rank (25) as our base rank learner. The hyper-
parameter C' to trade-off training error and generalization error was tuned based on the validation
data. SCALE(EI) and SCALE(DAGGER) corresponds to policy learning via exact imitation and
DAgger algorithms respectively. We performed 5 iterations of DAgger with 8 = 0.8 and exponen-
tial decay. We selected the final policy based on the performance on validation data.

STAR Implementation. We implemented the state-of-the-art graph query processing approach
STAR (42) in Java using the Neo4j (neo4 j . com) graph database system.

Evaluation Metrics. We evaluate STAR, ORACLE, and SCALE using two metrics: 1) Speed.
For a given graph query () and data graph G, the response time of an algorithm P, denoted as
Time(P, Q), refers to the total CPU time taken from receiving the query to finding the answer;
and 2) Error. We employ Levenshtein distance function (34) to compute node/edge label similarity,
and R-WAG’s ranking function(38) to compute the matching score F(-). Suppose an algorithm P

produces answer A for a given query Q. We compute the error, Error(P,Q) as 1 — Sl;(g(’é)) ,

where SMAX (Q) is the maximum possible score according to F'(.) for a candidate answer of query
Q. Error metric directly depends on the evaluation algorithm employed to compute the answer A.
Error (Dual-Sim) and Error (VF2) refer to the error metrics using dual simulation and VF2
algorithms respectively. Note that, dual simulation is optimistic in terms of evaluation and cheap in
terms of computation; and VF2 is exact and computationally very expensive.

We conducted all our experiments on a Linux machine with 2.4 GHz CPU and 256GB RAM
configuration. All experiments are conducted 3 times and averaged results are presented. We report
the average metrics (computation time and error metric) over all testing queries.

1. mpi-inf.mpg.de/yago
2. dbpedia.org
3. freebase.com
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6.2. Results and Analysis

We organize our results along different dimensions.

ORACLE Policy Performance. The performance of oracle depends on both beam size b and search
bound 7. We employed Error (Dual—-Sim) to calibrate the performance of oracle. We didn’t see
any noticeable improvements in the error beyond 7=100. Fig 3 shows the Error (Dual-Sim) of
oracle with different values of 7 and b for all the three knowledge graphs. We make the following
observations: 1) We are able to uncover very high-quality subgraphs with very small 7 and b values.
This shows the effectiveness of our oracle construction procedure; 2) The error decreases as 7
increases. However, the improvements are very small beyond 7=25 for all beam sizes; 3) The error
decreases as b increases, but the improvements are very small beyond b=10 and they saturate at
b=100. Since imitation learning algorithms require several calls to the oracle policy, policy learning
won’t scale for very large 7 and b values. Therefore, we employ b=10 and 7=25 as our oracle policy
to train the selection policy, which is a reasonable choice based on the above observations.
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Figure 3: ORACLE policy performance with search bound 7 value and different beam sizes:
by, bs, bsg, and bygg stands for beam size of 1, 5, 50, and 100 respectively. We show the
Error (Dual—-Sim) metric in log-scale: (a) YAGO, (b) Freebase, and (¢) DBpedia

SCALE vs. ORACLE. ORACLE policy is computationally expensive due to the large beam size. To
improve the computational efficiency, SCALE learns greedy policies. We compare SCALE with the
oracle policy to understand how well the learner is able to mimic the search behavior of oracle. Table
1 shows the results of ORACLE (b=10), ORACLE (b=100), SCALE(EI), and SCALE(DAGGER)
with 7=100. We can see that the error of SCALE(EI) in general is very close to the oracle policy
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across all the datasets. SCALE(EI) loses at most 3% in error and significantly improves speed when
compared to ORACLE (b=10) that was used for training. For example, SCALE(EI) is 12 times faster
than ORACLE (b=10) with less than 1% loss in error for Freebase. Interestingly, the search time
for SCALE is lowest for Freebase even though it is the largest graph. The reason is that the average
number of actions available to grow the subgraph is smaller in Freebase when compared to the other
graphs. This is a very advantageous property of SCALE. We saw very small improvement in error
when the selection policy is trained with DAgger when compared to training with exact-imitation.
However, training with DAgger is computationally excessive as learner aggressively queries the
ORACLE policy for supervision. From now on, we will present all the results of SCALE with the
policy trained via DAgger.

YAGO Freebase DBpedia
Error | Time(s) | Error | Time(s) | Error | Time(s)
STAR 4.56% 5.81 | 11.58% 19.98 | 7.79% 9.69
ORACLE (b =10) | 2.80% 8.15 | 7.74% 6.54 | 6.82% 19.14
ORACLE (b=100) | 1.81% 14.61 | 6.56% 32.06 | 6.42% 25.98
SCALE(EI) 4.32% 2.05 | 8.45% 0.68 | 9.61% 1.47
SCALE(DAGGER) | 4.13% 1.90 | 8.38% 0.53 | 9.46% 1.24

Table 1: SCALE vs. ORACLE and STAR with 7=100: Time in seconds and Error (VF2).

SCALE Performance vs. Search Bound 7. The performance of SCALE in terms of computation
time and error metric directly depend on the search bound 7. Figure 4 shows the performance of
SCALE as a function of 7 for all the three knowledge graphs. We can see that the computation time
grows as 7 increases. The growth is significant for DBpedia, which is due to the large number of
candidate matches. On the other hand, the error decreases monotonically as 7 increases. However,
the improvement in error is very small to none beyond 7=50.

8000 T T T T T T T T T T T T
DBpedia - oo x 14 - DBpedia - Xo--s
7000 Yago * = Yago *
6000 | Freebase —©-— _(7).12 rFreebase —©-
0 | 110 @ ox
5000 : < SOV
g o A
4000 |- % S g N S OV ®
0] o a
Bsooo oxs el ox
[ - S o) .
2000 ez X A B * * * * x
1000 | N < =
* ,"'«_»»'O/’ 2
@ ! ! ! ! ! ! ! ! ! !
25 50 100 150 200 250 25 50 100 150 200 250
Search Bound (subgraph size) 7T Search Bound (subgraph size) 7
(a) (b)

Figure 4: SCALE performance vs. search bound 7: (a) Time in milli seconds (b)

Error (Dual—-Sim).
SCALE Performance vs. Beam Size b. SCALE uses greedy search guided by the policy to perform

selection. It is possible to improve the error of SCALE by adding some more search: performing
beam search (b > 1) by plugging the learned greedy heuristic function. Table 2 shows the error and
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computation time of SCALE (b > 1) for all the three knowledge graphs. SCALE (b > 1) improves
the error metric ranging from 1 to 3% at the expense of increased computation time.

YAGO Freebase DBpedia
Error | Time(s) | Error | Time(s) | Error | Time(s)
SCALE (b=2) | 3.09% 3.16 | 8.37% 1.72 | 8.73% 3.50
SCALE (b=3) | 2.70% 8.08 | 6.90% 3.18 | 8.29% 6.86
SCALE (b=4) | 1.92% 1242 | 6.81% 6.01 | 8.10% 11.23
SCALE (b=5) | 1.37% 12.47 | 5.39% 8.56 | 7.65% 11.58
SCALE (b=10) | 1.00% 17.29 | 5.54% 17.56 | 6.71% 16.69

Table 2: SCALE performance w/ 7=100 vs. beam size b: Time in seconds and Error (VF2).

SCALE vs. STAR. ORACLE (b=10) and ORACLE (b=100) perform better than STAR in terms
of error metric, but they take more time than STAR (except for Freebase). The error metric of
SCALE is better than STAR (except DBPedia) and is faster by 3 to 38 times when compared STAR.
For example, SCALE is 38 times faster and improves the error by 3.2% over STAR on Freebase
knowledge graph. Indeed, STAR is very slow on dense graphs such as Freebase, where we expect
more candidate matches for each star-query. We also investigated the reasons for the anomalous
behavior of SCALE on DBpedia. We found that label distribution is the main reason. Specifically,
nodes with some labels have a very high degree and results in large branching factor during search.
As a result, the corresponding learning problem becomes very hard due to the large number of
ranking constraints. SCALE (b=2) further improves the error and is still faster than STAR.

In summary, our SCALE framework can trade-off speed and accuracy of graph search by varying
search bound 7 and beam size b. Experimental results show that SCALE is able to produce highly
accurate answers with only small graphs of size ~100, and achieved significant speedup over a state-
of-the-art graph search algorithm (STAR) with better or small loss in accuracy. We also performed
experiments for search bound 7 > 100, but did not see noticeable improvements.

Training and Testing on Different Knowledge Graphs. The learned selection policy can be seen
as a function that maps search states to appropriate actions via features. Since the feature defini-
tions are general, and include different structural and syntactical properties of the data graph and
query graph, one could hypothesize that the learned knowledge is general and can be used to search
different data graphs. To test this hypothesis, we learned selection policies on each of the three
knowledge graphs; and tested each policy on individual knowledge graphs. We make the following
observations from Table 3. The learned selection policies generalize very well to datasets that are
not used for their training. We get the best performance when training and testing are done on the
same dataset.

Training and Testing on Different Query Templates. We tested the learned selection policy
on query templates that are not used to generate the training queries to evaluate its generalization
behavior. Table 4 shows the results with testing queries from old and new query templates. We
can see that the selection policy generalizes reasonably well to new query templates and the loss in
performance is very small.

In general, we need to update the policy whenever the distribution of queries and/or data graph
changes significantly.
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- New Old
Testing Graph Template | Template

YAGO | Freebase | DBpedia P P
YAGO 4.43% 4.10%

.. YAGO 4.13% 4.53% 4.20% :

Training DBpedia 8.80% 8.38%
raph Freebase | 10.78% 8.38% 10.73% Froch 10.04% 0.46%
grap DBpedia | 9.72% | 9.71% | 9.46% reebase 270 2070

Table 4: Error (VF2) of SCALE with
training and testing on different query
templates.

Table 3: Error (VF2) of SCALE with training and
testing on different knowledge graphs.

6.3. Limitations and Potential Solutions

In this section, we discuss the limitations of our approach along with ways to overcome them.

1) Non-Localized Graph Queries. Our SCALE approach can currently handle localized graph
queries: queries whose matches exist in a local neighborhood of the data graph. It is an interest-
ing open problem to extend SCALE to handle non-localized graph queries (e.g., simulation and
reachability queries).

2) Scalability of Learning Approach. We can employ advanced imitation learning approaches
such as LOLS (1) to potentially improve over the reference (oracle) policy. However, this approach
is relatively more expensive than DAgger. We need to explore active learning approaches to selec-
tively query the oracle policy to improve the efficiency of learning.

3) Selection Policy Representation. We learned linear ranking functions from hand-designed fea-
tures W over state-action pairs. To improve the performance, we can leverage the recent advances
in deep neural networks for learning good representations for the policy (6).

7. Related Work

Our work is related to a sub-area of Al called speedup learning (17). Specifically, it is an in-
stance of inter-problem speedup learning. Reinforcement learning (RL), imitation learning (IL),
and hybrid approaches combining RL and IL have been explored to learn search control knowledge
from training problems in the context of diverse application domains. Some examples include job
shop scheduling (44), deterministic and stochastic planning (41; 35), natural language processing
(24; 21; 22; 30), hardware design optimization (7; 8; 9), and mixed-integer programming solvers
(23; 26). Our work explores this speedup learning problem for graph search, a novel problem with
numerous applications. We developed a novel learning framework called SCALE, and formalized
and solved the corresponding speedup learning problem using imitation learning.

There is some work on loose integration of supervised learning techniques in the context of
query optimization (20; 18; 19). In a concurrent work (33), Namaki and colleagues developed
a learning to plan (L2P) framework for TA-style algorithms that is similar in spirit to our work.
However, SCALE is more general than L2P framework as it is not tied to a specific query reasoner
and query class. The resource-bounded (RB) querying framework (16) is closely related to our
work, but SCALE is more general than RB approach for the following reasons: 1) RB approach
assumes a known personalized node as seed node, which results in a easier search problem. SCALE
does not make such assumptions; 2) RB approach works for only complete matches and the concept
of best answer is not applicable. SCALE can work with both partial and complete matches; and
3) The search control knowledge is specified by the human designer in RB approach, whereas it is
automatically learned in SCALE.
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8. Summary and Future Work

We developed a novel learning framework called SCALE to improve the computational-efficiency
of searching large-scale knowledge graphs. Our framework allows to automatically trade-off speed
and accuracy of graph search as per the needs of the application. The key idea is to select a small
part of the data graph that is sufficient to answer a given query in order to satisfy the specified
constraints on speed/accuracy. We integrated learning and search to quickly select high-quality
subgraphs in a data-driven manner via training queries. We showed that our SCALE framework
was able to produce highly accurate answers with only small graphs of size ~100 and achieved
significant speedup over a state-of-the-art graph search algorithm (STAR) with better or small loss
in accuracy across multiple knowledge graphs.

Future work includes exploring deep learning based policies to match the accuracy of the oracle
policy; scaling up the learning framework to handle large number of batch/streaming queries by
exploring active learning techniques; and deploying the learning system for real-world applications.
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WO11INF-17-1-0485 from their computing sciences program.
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