Proceedings of Machine Learning Research 77:224-239, 2017 ACML 2017

PHD: A Probabilistic Model of Hybrid Deep Collaborative
Filtering for Recommender Systems

Jie Liu DAICOOLB@QOUTLOOK.COM
Dong Wang WANGDONG@SJTU.EDU.CN
Yue Ding DINGYUE@QSJTU.EDU.CN

Shanghai Jiao Tong University

Editors: Yung-Kyun Noh and Min-Ling Zhang

Abstract

Collaborative Filtering (CF), a well-known approach in producing recommender systems,
has achieved wide use and excellent performance not only in research but also in industry.
However, problems related to cold start and data sparsity have caused CF to attract an
increasing amount of attention in efforts to solve these problems. Traditional approaches
adopt side information to extract effective latent factors but still have some room for
growth. Due to the strong characteristic of feature extraction in deep learning, many
researchers have employed it with CF to extract effective representations and to enhance its
performance in rating prediction. Based on this previous work, we propose a probabilistic
model that combines a stacked denoising autoencoder and a convolutional neural network
together with auxiliary side information (i.e, both from users and items) to extract users and
items’ latent factors, respectively. Extensive experiments for four datasets demonstrate that
our proposed model outperforms other traditional approaches and deep learning models
making it state of the art.

Keywords: Collaborative Filtering, Stacked Denoising Autoencoder, Convolutional Neu-
ral Network, Recommender Systems

1. Introduction

In order to overcome the problem of information overload, applications of recommender
systems have attracted a large amount of attention in recent years. Many companies have
included recommender systems into their software such as Amazon', JD?, Taobao?, etc.
One effective method of recommendation is to predict new ratings of different users and
items. Currently, the most popular methods in this field are Content-based Filtering (CBF)
and Collaborative Filtering (CF).

CBF uses the context of users or items to predict new ratings. For example, we can
generate user preferences according to their age, gender, or graph of their friends, etc. In
addition, genres and reviews of items can be analyzed and selected to make recommendation
for different users. On the other side, CF uses the ratings of users for items in their feedback
records to predict new ratings. For instance, a list of N users {ui,uo,...,un} and a list
of M items {v1,v,...,up} are given. Simultaneously, a list of items, v,,, has been rated

1. https://www.amazon.com/
2. https://www.jd.com/
3. https://www.taobao.com/
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by user u;. These ratings can either be explicit feedback on a scale of 1-5, or implicit
feedback on a scale of 0-1. Our goal is to predict new feedback from users who have no
records. Furthermore, CF is often superior to CBF because CF outperforms the agnostic
vs. studied contest Ricci et al. (2011).

The most well-known approaches in CF are Probabilistic Matrix Factorization (PMF)
Mnih and Salakhutdinov (2008) and Singular Value Decomposition (SVD) Sarwar et al.
(2000). However, they are often faced with sparse matrices, a.k.a. cold start problem, so
they fail to extract effective representations from users and items. To address the difficulty
associated with this issue, an active line of research during the past decade and a variety
of techniques have been proposed Zhou et al. (2011, 2012); Trevisiol et al. (2014). Almost
all of these techniques consider employing the side information of users or items into CF
to generate more effective features. Moreover, the most commonly used side information
are documents, hence some approaches based on document modeling methods such as La-
tent Dirichlet Allocation and Collaborative Topic Modeling have been proposed Ling et al.
(2014); Wang and Blei (2011). While prior studies have examined documents as a bag-
of-words model, it may be preferable to contemplate the impact of sequences of words in
documents; therefore previous methods are limited to some extent.

Because feature extraction of deep learning has strong characteristic, an increasing
amount of studies have applied deep learning with side information to generate effective
representations, such as Stacked Denoising AutoEncoder (SDAE) Wang et al. (2015a,b)
and Convolutional Neural Network (CNN) Kim et al. (2016), a.k.a. ConvMF, which dif-
ferentiates the orders of words in documents. However, ConvMF only considers item side
information (e.g., document, review or abstract, etc.), so users’ latent factors still have no
effective representations. For another, the work of Dong et al. (2017) indicates that SDAE
is adept at extracting remarkable features in users’ latent factors without documents inside;
this causes items’ latent factors reside with some conventional approaches. In order to solve
above issues, we combine SDAE and ConvMF into a probabilistic model to more effec-
tively extract both users and items’ latent factors. Our contributions can be summarized
as follows:

e we propose a hybrid probabilistic model that we call PHD, which formulates users
and items’ latent factors meanwhile. To the best of our knowledge, PHD is the first
model to seamlessly integrate two deep learning models into PMF under probabilistic
perspective.

e we extensively demonstrate that PHD is a combination of several state-of-the-art
methods but with a more effective feature representation.

e we conduct different experiments which show that PHD can alleviate the data sparsity
problem in CF.

The rest of the paper is organized as follows. Section 2 defines the problem, background in-
formation and indispensable notations. Section 3 describes the PHD model and optimization
method. Experimental results for the components analysis and performance comparisons
are presented in Section 4. We conclude with a summary of this work and a discussion of
future work in Section 5.
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2. Preliminaries

In this section, we start with formulating the problems discussed in this paper, and then
briefly review Matrix Factorization (MF), SDAE and CNN.

2.1. Problem Definition

Similar to some existing publications, this paper takes explicit feedback as training and
testing data to complete the recommendation task. In a standard recommendation setting,
we have n users, m items, and an extremely sparse rating matrix R € R™ ™. Each entry
R;; of R corresponds to user ¢’s rating on item j. Likewise, the auxiliary information
matrix of users and items are denoted by X € R"*¢ and Y € R™*f, respectively. Let
u;,v; € R be user ¢’s latent factor vector and item j’s latent factor respectively, where k is
the dimensionality of the latent space. Therefore, the corresponding matrix forms of latent
factors for users and items are U = ufy.,) and V' = v[y,,), respectively. Given the sparse
rating matrix R and the side information matrix X as well as Y, our goal is to learn effective
users’ latent factors U and items’ latent factors V', and then to predict the missing ratings
in R.

2.2. Matrix Factorization

Due to the required accuracy and scalability, matrix factorization has been the most high-
profile method in Collaborative Filtering, and was first developed in the Netflix contest
Koren et al. (2009). Generally, MF model can learn low-rank representations (i.e., latent
factors) of users and items in the user-item matrix, which are further used to predict new
ratings between users and items. For clarity, we include the most common formulation of
MF as follow:

N M
1 1 1
£ =argming ;1 ;1 Lij(Rij — uj vj)* + SANUNE + SAvIVITE (1)

in which I;; is an indicator function that is equal to 1 if R;; > 0, otherwise 0. In addition,
[|U||r and ||V|| denote the Frobenius norm of the matrix, and A\yy and Ay are regularization
parameters that are usually set to alleviate model overfitting.

2.3. Stacked Denoising Autoencoder

As a specific form of neural network, an autoencoder (AE) takes a given input and maps it
or encodes it to a hidden representation via deterministic mapping. Denoising autoencoders
reconstruct the input from a corrupted version of data with the motivation of learning a
mapping method from data. Various types of autoencoder have been developed in the liter-
ature and have shown promising results in several domains Lee et al. (2009); Kavukcuoglu
et al. (2009). Moreover, denoising autoencoders can be stacked to construct a deep network
also known as a stacked denoising autoencoder which allows learning higher level repre-
sentations Vincent et al. (2008). Certainly, there is some research that employs SDAE to
enhance the performance of recommendation. For example, the autoencoder of Wang et al.
(2015a) generates a relational SDAE model with tags, and that of Li et al. (2015) utilizes a
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Figure 1: Overview of three kinds of autoencoder

marginalized denoising autoencoder with PMF to compose latent factors. Because SDAE
has the characteristic of feature extraction, we adopt it with auxiliary side information to
generate users’ latent factors in our PHD model, which will be introduced in Section 3.2.
In order to have an intuitive understanding of AE, Figure 1 illustrates the most popular
variant of AEs from three different aspects: a) a basic AE, b) a denoising AE, c) a stacked
denoising AE. Specifically, learning of a SDAE involves solving the following regularized
optimization problem:

{I‘}i? || X corrupted_input — XoutputH% +A Z(HWIH% + HblH%) (2)
1,91 1

where )\ is a regularization parameter and W; as well as b; is weight parameter of SDAE.

2.4. Convolutional Neural Network

A convolutional neural network is a class of deep, feed-forward neural network that has
successfully been applied to Computer Vision Krizhevsky et al. (2012), Natural Language
Processing Kim (2014) and Audio Signal Processing Piczak (2015). Similarly, there are some
studies have used CNN in recommender systems, such as content-based music recommenda-
tion van den Oord et al. (2013), which compares a traditional approach using a bag-of-words
representation of the audio signals with deep CNN, and ConvMF, which employs CNN to
generate items’ latent factors but ignores users’ latent factors because of the user privacy
problem. In other words, their work only considers one sided latent factors (i.e., item side
information), which makes predicted ratings not equal to SVD through gradient descent.
Consequently, we use items’ latent factors constructed by ConvMF and users’ latent factors
constructed by a variant of SDAE (auxiliary SDAE that we call aSDAE), which will be
introduced in Section 3.2.
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Figure 2: Overview of the PHD model

3. PHD Model

In this section, we provide details of the proposed PHD model through three steps: 1) First,
we introduce the probabilistic model, and describe the main idea used to combine PMF,
aSDAE and CNN tactfully in order to utilize ratings, user side information and item side
information simultaneously. 2) Next, we explain the detailed architecture of our aSDAE,
which generates users’ latent factors by exploiting user side information, and CNN, which
generates items’ latent factors by analyzing item description documents. 3) Finally, we
describe how to optimize our PHD model.

3.1. Probabilistic Model of PHD

Figure 2 shows the overview of the probabilistic model for PHD, which integrates aSDAE
and CNN into PMF. From a probabilistic point of view, the conditional distribution over
predicted ratings can be given by

N M
p(RIU,V,0%) = [TT] N (Rijluf vj, 0%)" (3)
i

where N (z|u,0?) is the probability density function of the Gaussian normal distribution
with mean p and variance o2. As for users’ latent factors, we assume that a user’s latent
factor is formed by three variables: 1) internal weights W in aSDAE, 2) X; representing
the side information of user ¢, and 3) varepsilon variable as Gaussian noise, which is applied
to optimize the user’s latent factor for the rating. Thus, the final user’s latent factor can
be generated by the following equations.

u; = asdae(W, X;) + & (4)
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gi = N(0,051) (5)

where asdae() represents the L /2 layer’s output of aSDAE architecture. For each weight
w; in W™, we place zero-mean spherical Gaussian prior, the most commonly used prior.

Plwlof) = [[ Ny l0.0%) (6)
k

Accordingly, the conditional distribution over users’ latent factors is given by
N
pUW, X, o) = [[ N(uilasdae(W™, X;), 07 (7)
7

Just like the user’s latent factor, an item’s latent factor consists of three variables: 1)
internal weights W in CNN, 2) Y representing the side information of item j, and 3)
epsilon variable as Gaussian noise, which is used to further optimize an item’s latent factor
for rating. Hence, the final item’s latent factor can be given by the following equations.

v = enn(W,Y)) + ¢; (8)

& = N(0,0%1) (9)

where cnn() represents the output of CNN architecture. In the same way, for each weight
wy in W, we set zero-mean spherical Gaussian prior.

P(wlofy) = [N (wkl0, o) (10)
k
M
p(VIW,Y,0%) = [ [ N(v;lenn(W,Y;), 031) (11)

J
3.2. Auxiliary Stacked Denoising Autoencoder of PHD

The work of Vincent et al. (2008) has shown that multiple layers stacked together can
generate rich representations in hidden layers. We extend this idea as did Dong et al.
(2017) with auxiliary information. Figure 3 shows the generative process with a user’s
latent factor, which we employ to compose the matrix U in latent factors. Furthermore, we
give a detailed generative process of a user’s latent factor as follows:

e For each hidden layer [ € 1,..., L — 1 of the aSDAE model, the hidden representation
h; is computed as:

hi = g(Crhy—1 + QX +by)

in which C; as well as @ is the weight parameter in each layer, and b; is the bias vector
for each layer. g¢() is a nonlinear activation function. Recall that hg is a corrupted
version of R; and X is a corrupted version of X.
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Figure 3: Auxiliary stacked denoising autoencoder architecture of the PHD model

e For the output layer L, the outputs can be computed as:

~

Ry = f(Crhr +bg,)
X = f(Qrhr +by)

where f() is also a nonlinear activation function.

Note that the first % layers of aSDAE serve as an encoder and the last % layers serve as a
decoder. Accordingly, we can learn Cj, Q; and b; for each layer using the back-propagation
algorithm. In our PHD model, we only use the % layer as the user’s latent factor. For user
side information, according to the content of information, we encode the information into
a binary vector whose length can be up to 500 in our experiment. For the input layer, we
only regard the rating vector of each user as the source input.

3.3. Convolutional Neural Network of PHD

The objective of our CNN architecture is to obtain documents’ latent vectors from docu-
ments of items, which are used to compose the items’ latent factors with epsilon variables.
Figure 4 reveals our CNN architecture that contains four layers: 1) embedding layer, 2)
convolution layer, 3) pooling layer, 4) output layer.

Embedding layer

The function of the embedding layer is to transform a raw document into a numeric
matrix according to the length of words, which will be conducted a convolution operation
in the next layer. For instance, if we have a document whose number of words is [, then
we can concatenate a vector of each word into a matrix in accordance with the sequence of
words. The word vectors are initialized with a pre-trained word embedding model such as
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Figure 4: Convolutional neural network architecture of the PHD model

Glove Pennington et al. (2014). Next, the document matrix D € RP*! can be visualized as
follow:

wi ... W1 ... W7
w21 ... W2 ... W9
Wpr - Wpi ... wpl

in which p stands for the dimension of word embedding and wyy., ;) represents raw word ¢
in the document.

Convolution Layer

The convolution layer extracts contextual features. We employ the convolution architec-
ture to dispose documents. A contextual feature 027 € R is extracted by jth shared weight
Wi € RPXs whose window size ws determines the number of surrounding words:

¢ = f(WIsD(:yi: (i +ws — 1)) +b) (12)

where * is a convolution operator, bl € R is a bias for W and f() is a nonlinear activation
function. Among nonlinear activation functions such as sigmoid, tanh and rectified linear
unit(ReLU). We use ReLU to avoid the problem of vanishing gradient, which causes slow
optimization convergence and may lead to a poor local minimum. Then, a contextual
feature vector ¢/ € RE“s*1 of a document with WY is constructed by:

A =c], ]yl (13)

However, one shared weight captures one type of contextual features. Thus, we use multiple
shared weights to capture multiple types of contextual features, which enable us to generate
contextual feature vectors as many as the number n. of We. (i.e., W¢ where j=1,2,...,n.)
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Pooling Layer

The pooling layer not only extracts representative features from the convolution layer
but also deals with variable lengths of documents via pooling operation that constructs a
fixed-length feature vector. After the convolution layer is created, a document is represented
as n. contextual feature vectors, where each contextual feature vector has variable length
(i.e., I —ws + 1 contextual feature). However, such representation imposes two problems:
1) there are too many contextual ¢;, in which most contextual features might not help
enhance the performance of the model, 2) the length of contextual feature vector varied,
which makes it difficult to construct the following layers. Therefore, we utilize max-pooling,
which reduces the representation of a document into an n. fixed-length vector by extracting
only the maximum contextual feature from each contextual feature vector as follow.

dy = [maz(c'),maz(c?), ...,maz(), ..., maz(c")] (14)

where ¢ is a contextual feature vector of length [ — ws + 1 extracted by jth shared weight
w?

Output Layer

Generally, at output layer, high-level features obtained from the previous layer should
be converted for a specific task. Thus, we project d;y on a k-dimensional space of users
and items’ latent factors for our recommendation task, which finally produces a document’s
latent vector by using conventional nonlinear projection:

s = tanh(Wy,{tanh(Wy,d¢ + by, )} + by,) (15)

in whcich Wy, € RS *7e Wy, € RF*f are projection matrices, and by, € RS, by, € R* is a
bias vector for Wy, , Wy, with s € R*. Eventually, through the above processes, our CNN
architecture becomes a function that takes a raw document as input, and returns a latent
vector of each document as output:

sj = enn(W,Y;) (16)

where W denotes all the weight and bias variables to prevent clutter, Y; denotes a raw
document of item j, and s; denotes a document’s latent vector of item j.

3.4. Optimization
To optimize the variables such as users’ latent factors, items’ latent factors, weight and bias
parameters of aSDAE and CNN, we use maximum a posteriori estimation as follow.

(U,V,WJr,W‘R,X,Y,O’Z,O'QU,U‘Q/,O"%V+,O'IZ/V) (17)

max p
UV,W+ W

= R|U,V,oc®)p(UW, X, 02)p(WT|c? VIW.,Y, 02)p(W|o?
U,\;?vﬁf,w[p( ! a*)p(U| o )p(WT oy )p(V| av)p(W oy )]
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If we give a negative logarithm on Equation (17), it can be reformulated as follow.

N M N
I;; Au
LOV,WEW)=>">" ?J(R,-j —ulvj)? + 5 > i — asdae(WH, X5)[|F - (18)
i i i

|wk ‘ |wg|

ZH +H2 ZHwkH2

in which Ay is 0% /o, Ay is 0% /od, A}, is 02/0%,+ and Aw is 0% /of;,. We adopt coordinate
ascent,which iteratively optimizes a latent variable while fixing the remaining variables.
Specifically, Equation (17) becomes a quadratic function with respect to U (or V') while
temporarily assuming W and V (or W™ and U) can be analytically computed in a closed
form by simply differentiating the optimization function £ with respect to u; (or v;) as
follows.

)\W+

v
ZHU] — enn(W, Y))|| +

= (VLVT + \pIx) YV R; + M\yasdae(W™, X;)) (19)
= (ULUT + \vIx) " HUR; 4+ Ayenn(W,Y5)) (20)

where I; is a diagonal matrix with I;;,j = 1,...,M as its diagonal elements and R; is a
vector with (Rij)j]vil for user i. For item j, I; and R; are similarly defined as I; and R;,
respectively. Equations (19) and (20) show the updated formula of user’s latent factor w;
and item’s latent factor v;, respectively, where Ay and Ay are balancing parameters as in
Wang and Blei (2011). Unfortunately, W' and W cannot be optimized by an analytic
solution as we do for U and V because WT and W are closely related to the features in
aSDAE and CNN architecture. Nonetheless, we observe that £ can be interpreted as a
squared error function with Ls regularized terms as follows when U and V are temporarily
constant.

‘wk |

Z |lw;7]|3 + constant (21)

A A
PWT) = U Z |[u; — asdae(WT, X;)||% + W+

[wi|

A Aw
(W) =22 Z lvj — enn(W, Y;)||% + = Z ||wg| |2 + constant (22)

To optimize W and W, we use the back .propagation algorithm.

The overall optimization process (U,V,W* and W are alternatively updated) is repeated
until convergence. With optimized U,V ,W™T and W, finally we can predict ratings of users
on items:

Rij = E[Rij\uiij, 02] = ul-ij = (asdae(WT, X;) + Ei)T(cnn(I/V, Y;) +¢€j) (23)

in which ]A%ij is the predicted value of rating.

4. Experiment

In this section, we evaluate the performance of our PHD model with four real-word datasets
from different domains and compare our PHD model with five state-of-the-art algorithms.
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Table 1: Statistics of datasets

Dataset User side information Item side information  Users Items Ratings Density
ML-100K tags movie descriptions 943 1,546 94,808 6.503%
ML-1M gender/age/occupation/zipcode movie descriptions 6,040 3,544 993,482 1.413%
ML-10M tags movie descriptions 69,878 10,073 9,945,875  4.641%
Amazon demographic characteristics reviews 81,339 18,203 238,352 0.016%

4.1. Experiment Setting

Our experiment environment is in Google Cloud Platform* with 24 CPU (Xeon(R), 2.2GHz),
2 GPU(K80, 24G memory), 90G RAM and 128G SSD. We use keras as the deep learning
framework and employ tensorflow as the background. Our implementation is available at
https://github.com/daicoolb/PHDMF

Datasets

To manifest the effectiveness of our model in terms of rating prediction, we employ four
datasets, three from Movielens® and one from Amazon® for our experiment. The first three
datasets, MovieLens-100k (ML-100K), MovieLens-1M (ML-1M) and MovieLens-10M (ML-
10M), are universally used for evaluating the performance of recommender systems. The
ML-100K includes more than 90 thousand ratings from 943 users on 1,546 items, ML-1M
contains over 1 million ratings from 6,040 users on 3,706 movies, and ML-10M contains
69,878 users and 10,073 items with nearly 10 million ratings. Amazon instant videos has
81,339 users and 18,203 items with 9,945,875 ratings after selecting the user whose minimum
rating is 2 and by ignoring items without reviews. Table 1 shows the side information’ and
statistics of datasets we used in the experiment.

Baselines

To demonstrate the performance of our model, we compare it with three traditional
methods, which are NMF, PMF and SVD as well as two deep learning methods, which are
aSDAE and ConvMF. As far as that our model is based on PMF, we compare it with NMF
Zhang et al. (2006) and SVD, which is the most common method in production environment.
Note that some traditional approaches, such as Collective Matrix Factorization (CMF)
Singh and Gordon (2008) and Kernelized Probabilistic Matrix Factorization (KPMF) Zhou
et al. (2012) which adopt side information, are superior than PMF and NMF. However, this
fact proves trivial when compared with SVD. Hence, we employ SVD instead of CMF and
KPMF. Furthermore, in order to show that our model can extract effective representations
from both sides (i.e., users and items), we contrast it with aSDAE Dong et al. (2017) which
ignores item side information (i.e., abstract, review or description, etc.) and ConvMF Kim
et al. (2016) which neglects user side information (i.e., age, country, genre or demographics,
etc.).

Evaluation Metrics

Evaluation measures for recommender systems are usually divided into three categories
Davoudi and Chatterjee (2016): 1) predictive accuracy measures (such as Mean Absolute

4. https://cloud.google.com/

5. https://grouplens.org/datasets/movielens/

6. http://jmcauley.ucsd.edu/data/amazon/

7. Note that movie descriptions can be collected in http://www.imdb.com/
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Table 2: Parameter settings of different methods

Method ML-100K ML-1M ML-10M Amazon
NMF Ay = 0.06, Ay = 0.06 Ay =0.06,\yy =0.06 Ay =0.08,\yy =0.08 Ay =0.07,\y =0.07
PMF Ay =0.01,A\y =0.01 Ay =0.01,A\y =0.01 Ay =0.01,A\y =0.01 Ay =0.05,\y =0.05
SVD Ay = 0.005, Ay =0.005 Ay =0.01,\y =0.01 Ay =0.01,A\y =0.01 Ay =0.01, Ay =0.01
aSDAE Ay =5, \y = 200 Ay = 10, Ay = 100 Ay = 10, Ay = 100 Ay =1,y =100
ConvMF )\U = 80,)\‘/ =20 )‘U = 200, )\V =5 )‘U = 1007 )‘V =1 )‘U = 1, AV =150
PHD Ay = 2.5, Ay = 250 Au =3, Ay = 250 Ay =15,y = 80 Ay = 250,y =1

Table 3: Average RMSE on ML-100K and ML-1M of different methods

Ratio of training set (ML-100k)

Ratio of training set (ML-1M)

Method 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
NMF 1.06720 1.01020 0.97920 0.97400 0.96690 0.92970 0.92360 0.91250
PMF 1.12140 1.03940 0.97970 0.95220 0.99830 0.93100 0.91220 0.88900
SVD 0.97470  0.96100 0.94660 0.94530 0.93330 0.91140 0.89300 0.86840

aSDAE 1.06475 0.98455 0.95495 0.94193 0.93778 0.90409 0.89151 0.87190

ConvMF 1.08427 1.00367 0.96441 0.95215 0.99910 0.91540 0.88706 0.85909
PHD 0.99019  0.96517 0.94185 0.93259 0.91696 0.88070 0.86543 0.84895

Error (MAE), Root Mean Squared Error (RMSE)) which evaluate how accurately the rec-
ommender system is in predicting rating values, 2) classification accuracy measures (such
as precision and recall) which measure the frequency with which a recommender system
makes correct/incorrect decisions, and 3) rank accuracy measures (such as discounted cu-
mulative gain and mean average precision) which evaluate the correctness of the ordering
of items performed by the recommendation system. Since our purpose is to conduct rating
prediction, we employ RMSE and MAE as the evaluation metrics. Generally, RMSE and
MAE can be formulated as follows:

1 N
RMSE = N Z Zﬂ-(Rij — Ri;)? (24)
Z?]
> ZE IRy — Ryl
MAE = 2 2
N (25)

where N is the total number of ratings in the test set, and Zl-lj- is a binary matrix that
indicates test ratings.

Parameter Settings

For all the compared methods, we train them with different percentages (20%, 40%,
60%, 80%), which means that we use the specific ratio to randomly generate a training set
and the remaining data is used as the test set. Table 2 shows the parameters of different
methods. For the latent dimension of U and V', we all set 50 according to previous work
Wang et al. (2015a). The corrupted ratio is 0.4 and layer [ is 4 in aSDAE. Recall that other
parameters such as the learning rate in NMF, PMF and SVD can be selected according
to the regularization parameters (i.e., Ay, A\yy). We repeat the evaluation five times with
different randomly selected training sets and the average performance is reported.
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Table 4: Average RMSE on ML-10M and Amazon of different methods
Ratio of training set (ML-10m) Ratio of training set (Amazon)

Method 0.2 0.4 0.6 0.8 0.4 0.6 0.8

NMF 0.90481 0.88182 0.87413 0.86912 1.42063 1.36050 1.31092
PMF 0.93842 0.88161 0.85072 0.82703 1.37080 1.37091 1.37462
SVD 0.87920 0.83712 0.81283 0.79521 1.14239 1.05667 1.0139
aSDAE 0.83710 0.80740 0.79232 0.78014 1.53697 1.31685 1.15460
ConvMF  0.86602 0.83894 0.82795 0.80742 1.68026 1.37892 1.24843
PHD 0.83530 0.80651 0.79220 0.77991 1.13340 1.04011 0.97354

Table 5: Impacts of A\, and )\, on four datasets

Density 6.503% ML_100K
AU 1 2.5 3 3 3 3 10 10 15
Ay 150 250 50 80 100 150 150 180 180
RMSE 0.94014 0.93259 0.95483 0.94687  0.94108 0.93883 0.95478 0.95218 0.95218
Density 1.413% ML_1M
AU 1 1 1 3 3 3 3 3.5 3.5
Ay 150 200 250 150 200 250 300 250 300
RMSE  0.86057 0.86832 0.85528 0.85092 0.85065 0.84895 0.85066 0.85023 0.84976
Density 4.641% ML_10M
AU 0.1 1 15 20 20 20 20 20 30
Ay 100 100 80 100 120 150 350 500 100
RMSE 0.91775 0.82130 0.77991 0.78004 0.78070 0.78061 0.78259 0.78750 0.78183
Density 0.016% Amazon
AU 80 100 100 100 100 150 200 250 350
Av 1 1 2 3 5 1 1 1 1

RMSE 0.99895  0.98014 0.98684  0.99606 0.99989  0.99218  0.99187 0.97354 0.99151

4.2. Experiment Results

Tables 3 and 4 show the average RMSE of NMF, PMF, SVD, aSDAE, ConvMF and our
PHD model with different percentages of testing data on the four datasets. First, we can
observe from Tables 3 and 4 that aSDAE and ConvMF achieve better performance than
NMF and PMF. This implies the effectiveness of incorporating side information. However,
when the ratio of training set is below 0.4, we see a different trend emerging in that NMF and
PMF have lower RMSE value when compared with aSDAE and ConvMF. It demonstrates
that when the data matrix is too sparse, aSDAE and ConvMF cannot effectively extract
latent factors. Nonetheless, in almost locations, our PHD model outperforms the above
methods except that when raito is 0.2 in ML-100K when compared with SVD. That is,
deep structures can create better feature quality of side information especially combining
aSDAE and CNN together to extract more effective latent factors. As for the ratio with
0.2 in ML-100K, we believe that the side information is inadequate in a small dataset to
effectively extract features. Furthermore, from Tables 3 and 4, we can see that our PHD
model obtains lower RMSE than aSDAE and ConvMF, which validates the strengths of the
latent factors learned by our model. At the same time, we can conclude that even when
the data is too sparse, the PHD model still has robust and good performance when compared
with traditional approaches and other deep learning models. In addition, Figure 5 shows the
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Figure 5: Average MAE of four datasets on training sets whose ratio are 0.8

average MAE, compared with different methods, on the entire training sets whose ratio are
0.8. From the above, our model PHD still achieves good performance even when compared
with the most popular method SVD. Therefore, the RMSE and MAE metrics demonstrate
the effectiveness of our PHD model.

Table 5 shows the impacts of Ay and Ay on four datasets. Regarding the changes from
different datasets, we observe that when the rating data becomes sparse, Ay increases while
Ay decreases to produce the best results. At the same time, compared with the aSDAE and
ConvMF’s RMSE in different ratios of training sets from Tables 3 and 4, we can conclude
that it is more effective to extract users’ latent factors from aSDAE and extract items’ latent
factors from ConvMF, respectively. In other words, it implies that in different situations
with sparse data, our PHD model can still effectively extract features according to both user
and item side information, and this can alleviate the data sparsity problem. Moreover, based
on the above comparison, we can also conclude that our PHD model has a more effective
feature representation by combining aSDAE and ConvMF.

5. Conclusion and Future Work

In this paper, we present a hybrid collaborative filtering model that combines aSDAE and
CNN into a probabilistic matrix factorization. Our proposed model can learn effective
latent factors from both user-item rating matrix and side formation for both users and
items. Furthermore, our model is based on aSDAE and ConvMF and can effectively learn
users and items’ latent factors, respectively. Our experimental results present that our
model outperforms five state-of-the-art algorithms. As for part of future work, we will
think about how to reduce the fine-tuning time in deep learning models with recommender
systems. In addition, we want to use a recurrent neural network to extract time features
composing users’ latent factors in Collaborative Filtering.
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