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Abstract
We present a convolutional neural network for identifying radio frequency devices from
signal data, in order to detect possible interference sources for wireless local area networks.
Collecting training data for this problem is particularly challenging due to a high number of
possible interfering devices, difficulty in obtaining precise timings, and the need to measure
the devices in varying conditions. To overcome this challenge we focus on semi-supervised
learning, aiming to minimize the need for reliable training samples while utilizing larger
amounts of unsupervised labels to improve the accuracy. In particular, we propose a novel
structured extension of the pseudo-label technique to take advantage of temporal continuity
in the data and show that already a few seconds of training data for each device is sufficient
for highly accurate recognition.
Keywords: Convolutional neural networks, Semi-supervised learning, Wi-Fi, Spectral
data, Temporal data

1. Introduction

Wireless Local Area Networks (WLAN) based on IEEE 802.11 (Wi-Fi) operate in the 2.4GHz
and 5GHz spectrum, and since these frequency bands are unlicensed other devices operating
in the same frequency range can affect the performance of the Wi-Fi network. Identifi-
cation of such interfering devices plays a crucial role both in planning the initial network
configuration and in troubleshooting the network.

Since the devices cause interference in the spectral range of Wi-Fi, it is natural to attempt
detecting and identifying them by monitoring the signal spectrum itself. For example,
Rayanchu et al. (2011) developed the AirShark method for identifying 8 different devices by
constructing decision tree classifiers that are trained individually for each possible device.
While they demonstrated that it is possible to identify non-Wi-Fi devices based on generic
and device-specific features that attempt to capture the spectral and temporal properties of
the transmission, their approach has serious limitations in terms of practical applicability.
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The first challenge is the sheer number of possible interfering devices. The United States
Federal Communications Commission lists close to 500 devices that are authorized to operate
in the 2.4GHz band, many of which are common in urban environments. Developing indi-
vidual detectors for all of these is not feasible, but instead, we need to consider consolidated
models that can detect arbitrary devices available during training of the model.

The other core challenge is in obtaining training data for learning the detector. This is
typically done in laboratory conditions, by switching on a non-Wi-Fi device within prox-
imity of the sensor for collecting training instances for recognizing that particular device.
Furthermore, one should typically make several recordings for the same device in different
conditions, varying e.g. the distance and medium (walls, windows, etc.) between the device
and the sensor or the power of the device. This is a laborious process that scales linearly
with the number of devices, and produces noisy ground truth labels for training the detector:
Even if some device is switched on, it does not necessarily generate signal interference all
the time. For example, microwave ovens modulate their power by switching the magnetron
on or off instead of modifying the transmitted power, and transmitters and receivers may
only cause interference when there is actual communication. Consequently, to obtain high-
quality training data we would need to manually inspect the spectral data to identify when
the device is causing possible interference.

In this work, we overcome these limitations by introducing a unified model for recognizing
multiple non-Wi-Fi devices based on spectral data. We use a convolutional neural network
(CNN) (LeCun et al., 1995) that does not require device-dependent feature extractors but
instead learns an internal feature representation useful for classifying arbitrary devices. The
model recognizes the devices from real-time streaming data based on short temporal windows
of 2 seconds, can be extended to recognize new devices without re-training from scratch,
and most importantly, can be trained based on very limited supervision labels. Instead of
requiring access to fully labeled training collection, our model operates in a semi-supervised
fashion: For each device, we only require a few isolated examples of 2 second windows when
it was known to be broadcasting a signal, together with unlabeled data recorded during
times when some device was likely on but the labeling cannot be verified without manual
evaluation. To collect this kind of data it is sufficient to merely leave the devices on for a
longer time and evaluate the true labels for a few isolated spectral windows.

We apply CNNs for the problem by sliding a window over the incoming signal. For any
given time point, the input for the model is a two-dimensional image where one dimension
is over the frequencies and the other over time within the window. CNNs have been used for
spectral data in a similar fashion in speech recognition (Abdel-Hamid et al., 2014), but to our
knowledge not for spectral data recorded for radio frequencies. The core technical contribu-
tion of the work is a new semi-supervised learning technique designed for temporal data. We
build on the concept of pseudo-label by Lee (2013), which allocates a pseudo-label for each
training instance without a known label and alternates between updating the pseudo-labels
based on the current classifier and updating the classifier based on both the true training
labels and the pseudo-labels. The standard pseudo-label algorithm assigns the pseudo-labels
independently for each instance. We extend the concept into structured pseudo-labels that
take into account relationships between the training instances. In particular, we develop an
extension that supports temporal continuity in the pseudo-labels by assuming they satisfy a
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Markovian assumption. This extension is shown to increase the final classification accuracy
when operating with a very small number of reliable training samples.

In the following, we first explain related work regarding non-Wi-Fi device detection and
semi-supervised learning and then proceed to explain our solution for the problem. We
evaluate the model on real spectral data in Section 4 and show that we are able to reach
essentially perfect recognition for 13 different devices with a unified model trained only with
tens of seconds of labeled data for each device. We outperform a simplified version of the
work by Rayanchu et al. (2011) on our data already with just a few seconds of training data
for each device, and demonstrate that structured pseudo-labels help in reducing the error
by one-third when operating with few labeled instances.

2. Background

This section presents relevant background for our work on identifying non-Wi-Fi radio fre-
quency devices from spectral data. In Section 2.1 we present related work in interference
detection. Our solution to the problem is a unified convolutional neural network that can
be trained even with limited amounts of labeled data, and consequently, we briefly describe
CNNs for spectral data in Section 2.2 and discuss methods for coping with small amounts
of training data in Section 2.3.

2.1. Interference Detection

Though Wi-Fi devices are able to operate in both 2.4GHz and 5GHz bands, the focus on
interference detection has traditionally been on the 2.4GHz band. This frequency band is
more crowded since it was unlicensed earlier and has more directly competing technologies
(e.g. Bluetooth, Zigbee). The quality of a Wi-Fi link can be affected by the hundreds of de-
vices operating in the spectrum (The United States Federal Communications Commission),
and these devices are common in many different environments (Rayanchu et al., 2011). For
instance, household microwave ovens use this frequency specifically because it is unlicensed.
Frequency-hopping and spread-spectrum techniques are also more frequent in this band.

Devices implementing the IEEE 802.11 specification have mechanisms in place for cop-
ing with concurrent transmissions; a clear-channel mechanism detects within-specification
transmission on the same channel and can withhold communication based on timing values
described in the received transmissions, and an energy-detection mechanism can be used to
measure non-Wi-Fi energy. Use of these techniques is considered standard operation in the
network and they do not affect the overall data rate. Strong interference, especially out-
side of the Wi-Fi specification, however, can corrupt packet preambles or cause frame error
checks to fail, necessitating retransmissions. The standard response is for wireless stations to
reduce the complexity of modulation used for transmission (dynamic rate switching), which
has the effect of lowering the bit rate of the communication. This can have a cascading effect
since transmitting at a lower rate will increase the time during which the wireless channel
is occupied. This in turn impacts even devices which are not directly sensing interference.
Constant strong interference will thus lower the overall throughput of the network.

Identification of such interfering devices is important for both planning the initial network
configuration, such as the placement of the network stations, as well as in troubleshooting
the network in case of poor performance. Often the cause is an individual non-Wi-Fi radio
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frequency device somewhere within the network, and the network can be repaired by iso-
lating or removing the device, lowering its transmission power or reconfiguring the channels
in use to avoid the source of interference. Previous works have sought to quantify interfer-
ence (Rayanchu et al.), to identify the devices causing interference (Rayanchu et al., 2011;
Kim et al., 2014) and to locate the interference source (Rayanchu et al.).

The closest to our work is the AirShark system (Rayanchu et al., 2011), which can
recognize eight different non-Wi-Fi devices operating in the 2.4GHz band based on a set
of generic features (frequency, bandwidth, spectral signature, duty cycle, pulse signature,
inter-pulse timing signature, pulse and spread) as well as some device-specific features like
sweep detection. By training individual decision trees and further tuning the features for
each device, the method is able to reach 91–100% recognition accuracy depending on the
device. While this is sufficient for practical applications, the approach is limited by the need
to select the features and train a separate classifier for each device. In Section 4, we will
compare our approach against a baseline motivated by AirShark on our data, demonstrating
that we outperform it by a wide margin. Our system scans 100MHz band with a resolution
bandwidth of 40kHz once per 40ms, whereas AirShark was initially proposed for a device
scanning 20MHz channels with a 312.5kHz resolution once per 100µs. Hence we cannot
incorporate all of AirShark’s features related to short time-scales, but our implementation
benefits from the wider frequency band compared to the original algorithm.

There are also other systems using specialized hardware to detect interfering devices (Hong
and Katti, 2011; Gollakota et al., 2011). A different approach for troubleshooting Wi-Fi net-
work performance and identifying the type of device causing interference is to combine packet
loss analysis and 802.11 ACK number analysis (Kim et al., 2014). Cyclostationary aspects
of the signal have also been used for detection. Autocorrelation of peaks in the spectral data
was used to detect microwave ovens by looking for periodicities matching the AC oscillating
frequency of 60Hz (Weng et al., 2014). Commercial products include AirMagnet’s Spec-
trum XT and Cisco’s CleanAir Technology, which can coordinate detection and localization
between compatible wireless access points.

2.2. Convolutional Networks for Spectral Data

The convolutional neural networks are naturally suited for analysis of data where spatial
or temporal invariance of objects within a larger structure is needed, such as image classi-
fication. Quite naturally, they have been successfully applied for spectral data as well, in
particular in audio and speech recognition (Abdel-Hamid et al., 2014). The audio data is
converted into a spectrogram by computing short-time Fourier transforms, and the resulting
spectrogram is analyzed by interpreting temporal time windows as images that range over
frequencies and time. We use the same approach for analyzing the spectral data in our
application, but here the frequency range is provided by the measuring device instead of
computing the Fourier transform from an audio waveform.

The convolutions in such a model can be computed either over the frequency domain or
the temporal domain, or both. For example, Abdel-Hamid et al. (2012) and Abdel-Hamid
et al. (2014) considered convolutions only over the frequency dimension to normalize speaker
variance in speech recognition while modeling the temporal continuity with hidden Markov
models (HMMs), whereas Lee et al. (2009) computed convolutions over the temporal domain
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to learn phonemes from unlabeled data. The choice ultimately depends on the nature of
the application; we use two-dimensional convolutions over both the spectral and temporal
dimension to learn features that are invariant of the specific frequency of the interfering
device and placement of the analysis windows.

2.3. Coping with Small Data

The success of CNNs has traditionally been based on large amounts of labeled training
data (Krizhevsky et al., 2012). However, collecting such data can be expensive or imprac-
tical, and methods for increasing the data or utilizing unlabeled data are often required.
There are three main approaches for this: pre-training with unlabeled data (Erhan et al.,
2010; Lee et al., 2009), augmenting the labeled data with some transformations (Krizhevsky
et al., 2012) and utilizing both labeled and unlabeled data in the training (Chapelle et al.,
2006). We shortly describe the first two methods and explain why they are not promising
candidates in the application of Wi-Fi interference identification, and then proceed to ex-
plain in more detail the techniques proposed for actual semi-supervised learning that use
both supervised and unsupervised samples.

The key idea in unsupervised pre-training is to use a large amount of unlabeled data
to learn a good feature representation, which then helps to solve the supervised learning
problem on the more limited labeled set (Erhan et al., 2010). However, unsupervised pre-
training is in itself a harder task than directly training a supervised model, often requiring
a generative model for the data. It is hence feasible for domains where a) good generative
models exist, and b) a number of unsupervised instances is truly massive to facilitate solving
a more complex learning task. In our application this is not the case; even unsupervised
training data needs to be collected largely manually, and no good generative formulations for
arbitrary Wi-Fi spectrum data exist. Similarly, augmenting the training data by applying
various transformations for the limited training samples, shown to improve accuracy for
example in image classification (Krizhevsky et al., 2012), is not applicable to our case. For
natural images it is easy to imagine transformations that preserve the labels, for example
by modifying the contrast or by adding camera noise, but for spectral data we cannot tell
which kinds of rich enough transformations would be guaranteed to preserve the labels.

We hence turn to standard semi-supervised learning algorithms that use both labeled
and unlabeled data during the training phase (Chapelle et al., 2006). A practical family of
semi-supervised algorithms is based on alternatively inferring the labels for the unlabeled
samples based on the current model and updating the model itself based on both the actual
supervised labels and the labels inferred for the unlabeled samples; for early works see
Ghahramani and Jordan (1994); Blum and Mitchell (1998). Our solution builds on pseudo-
labels proposed by Lee (2013) as a simple semi-supervised strategy for deep learning. They
trained the model with sure labels, and in each iteration added pseudo-labels for unlabeled
data by choosing the class with maximum predicted probability for each data point. These
pseudo-labels were then used in training as if they were real labels, with additional weighting
for the importance of the individual samples based on the amount of the unlabeled data
and the phase of learning. The technique has been used, for example, to improve image
classification accuracy on small datasets by augmenting the data by images queried from
online image search (Kolář et al., 2016).
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More advanced semi-supervised learning techniques have been proposed recently, typi-
cally demonstrating improved accuracy on classical benchmark datasets. The results achieved
by Lee (2013) were further improved with pseudo-ensemble agreement (PEA) regulariza-
tion (Bachman et al., 2014) that was able to reduce the test error from the 10.49% achieved
by pseudo-labels to 5.21% on the MNIST data with 100 labeled samples, and Rasmus et al.
(2015) used semi-supervised learning with Ladder Networks to reach test error of 1.06%. In
this work, we build on the pseudo-label technique due to its’ simplicity and expandability,
and because it is sufficient for solving our application with essentially perfect accuracy.

3. Methods

Building on the background presented in the previous section, we now describe the proposed
solution for identifying the interference sources. We first describe the nature of the input
data so that the design decisions for the proposed model can be understood, and then proceed
to describe the convolutional neural network used for classifying the samples, followed by
the presentation of the semi-supervised learning approach and the new structured extension
for the pseudo-label idea.

3.1. Input

The data was collected with a spectrum analyzer provided by Ekahau. The spectrum ana-
lyzer was configured to perform sweeps over the 2.4GHz spectrum at a resolution bandwidth
(RBW) of about 40kHz, which it provided at a rate of about 25Hz, or once per 40ms. The
2.4GHz band (spanning 100MHz) thus provides roughly 3000 individual features, each corre-
sponding to a bin in fast Fourier transform, for every time slice. Such individual time slices
are not alone sufficient for recognizing the devices since some devices are only recognized
based on their temporal characteristics, and hence we analyse the data in form of two-second
windows, each collecting 50 consecutive slices. For learning we use partially overlapping
windows, starting a new one every second. For an illustration of the raw spectral data, see
Figure 1 (left). The only preprocessing done for the raw data is z-score normalization based
on the no-interference samples.

The data consists of measurements of 13 different devices. The devices included in the
data are a wireless video camera, a microphone, a remote control for a remote-controlled
car, a headset and an intercom, two baby monitors, a microwave oven, two jammers and
three wireless spy cameras. For each device, we collected 4–6 different measurements varying
the distances or other conditions. Each measurement consists of roughly three minutes of
data: one-minute recording of the device turned on surrounded by one minute periods of
background recording with no active interfering devices. For cases where the device setup
consisted of a transmitter and a receiver, the transmitter was turned on before the receiver.

A critical property of this data collection procedure, shared by all reasonable ways of
collecting training data for solving the problem, is that the actual onset and offset times
for interference are not known precisely. The devices are turned on manually, with no time
synchronization with the measurement device, and the actual interference may start at a
delay depending on the device or be sporadic as in the case of microwave oven operating
at low power. Consequently, we cannot directly use the recorded onset and offset times for
providing the training labels, and in fact, we did not even attempt to carefully record them.
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Figure 1: Example of one data measurement of microwave oven at 800w (left) and the
division of one measurement into test and training sets (right).

Instead, we conducted the experiments in a way where only data with guaranteed labels
are used for testing, whereas the training is done on portions of the data for which the true
labels are uncertain, letting the semi-supervised learning technique infer the real labels.

For each measurement of three minutes, we extracted one minute of test samples by tak-
ing the first and last 20 second periods to represent no interference and the middle 20 second
period to represent the device causing interference. Despite our inaccurate onset and offset
timings, these samples are guaranteed to match the correct class. The remaining samples
were left for training. For the training instances, we set the label according to the imprecise
onset/offset timing of the device. Since the labels for samples near the onsets and offsets
are uncertain, we construct several versions of the training set by controlling the number of
labeled samples. Figure 1 (right) demonstrates the division of one measurement into these
sets, clarifying the way the training samples are assigned into labeled and unlabeled sets.

In summary, our data collection has for most devices 40 non-overlapping or 76 over-
lapping windows per measurement used for testing, combined with 80 or 152 windows of
no-interference. The training set consists of roughly double the amount of windows per
measurement, of which roughly half can be reliably assigned with true labels. In the exper-
iments we evaluate the model also with a considerably smaller number of labeled examples,
to estimate how little data is sufficient for learning the model.

3.2. Convolutional Neural Network

As described above, the input for the classifier is provided as two-second windows each
corresponding to 50 consecutive time-slices that are each a 3000-dimensional vector of real-
valued numbers. Such a window can be interpreted as a 50x3000 image, allowing us to borrow
network design principles from standard applications of convolutional neural networks for
image data. Since the total amount of data in our experiments is fairly limited for a deep
learning model, only about 10000 instances in total including the unlabeled instances, we
use a relatively shallow network while still allowing for clearly non-linear decision surfaces
and sufficient structure for learning reasonable latent representation. The convolutions are
used for modeling features that are broader than one frequency bin or time-slice, and the
standard choice of max pooling is used to implement temporal invariance within the window.
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Figure 2: Structure of the convolutional neural network. In all layers, the filter size used
was 3x3 and stride 3.

The architecture used in the empirical experiments is presented in Figure 2 and consists
of two convolutional layers with rectified linear unit activation, two max-pooling layers, and a
fully connected layer. Finally, the output from the last layer is given to a 14-way softmax that
gives a distribution over the labels. We also use drop-out as well as `2 regularization in the
convolutional layers to avoid overfitting. For training, we used stochastic gradient descent
with a mini-batch size of 50 and a learning rate 0.1. In a set of preliminary experiments, we
found that a wide range of alternative structures would solve the problem well, indicating
that the solution is robust for minor modifications. Very shallow networks, however, were not
sufficient for solving the classification problem, and leaving out the convolutions dramatically
reduced the performance. With larger datasets, we could conceivably user deeper networks.

3.3. Semi-Supervised Learning with Pseudo-Labels

As described above, our data comes in form of a sequence of time windows where the
reliability of the supervising label depends on the time; for instances around the device
onset or offset point we cannot tell the true label, whereas for the ones far away from those
we can reliably say that the device was on. Note, however, that even this does not guarantee
that the label is necessarily correct since it may not be causing interference at that time.

To cope with such data, we use pseudo-labels so that the samples with sufficiently certain
labels are provided as supervised examples, whereas the rest are left as unsupervised samples
for which we learn pseudo-labels during training. We first explain the standard pseudo-label
technique by Lee (2013), and then proceed to present our extension for structured domains,
here samples with temporal continuity.

3.3.1. Pseudo-Labels

Pseudo-Labels (Lee, 2013) is a simple method for utilizing unlabeled data in training deep
neural networks. It is an EM-like solution where in each iteration the class with the maxi-
mum predicted probability is given as the label for the unlabeled samples, which are then
used in the training in a supervised fashion. The full learning algorithm alternates between
solving the supervised learning problem using all samples and assigning new pseudo-labels
for the unsupervised samples.
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Algorithm 1 Structured Pseudo-Label
Data: labeled data x, labels y, unlabeld data x′

Function trainModel(x, y, x′)
model ← train using x, y
y
′ ← predict(model, x′)
while y′ changes do

model ← train using x+ x′, y + y′

y
′ ← predict(model, x′)

end
Function predict(model, x)

ŷ ← predict labels for x
y ← viterbi(ŷ)
return y

The whole optimization problem can be defined using a consolidated loss function

L(θ, y′) = 1

n

n∑
m=1

L(ym, fm) + α(t)
1

n′

n′∑
m=1

L(y
′
m, f

′
m), (1)

where n is the number of samples in labeled data and n′ in unlabeled data, fm is the outputs
and ym the true labels of labeled data, and f ′

m is the outputs and y′
m the pseudo-labels of

unlabeled data.
The first term in the loss corresponds to a classical supervised loss, whereas the latter

term that is optimized over both the pseudo-labels y′ and the network parameters imple-
ments the semi-supervised learning. The coefficient α(t) is used to scale the weight given
for pseudo-labels in the loss function. Lee (2013) increase the value of α(t) slowly during
the process, however, in our case, just using a constant value α(t) = 1 was sufficient.

3.3.2. Structured Pseudo-Labels

Our core technical contribution is an extension of pseudo-labels that takes into account the
structure underlying the sample space. Instead of independently assigning the pseudo-labels
for each sample, we introduce in (1) an additional term that encourages solutions that are
smooth over the sample space and then assign the pseudo-labels for all samples at once. In
this work we consider temporally continuous samples and present the technical details for
labels that exhibit a Markovian property but note that the same principle applies also, for
example, spatial continuity implemented using a Markov random field.

The temporal continuity is enforced by assuming a Markovian property: The distribution
of possible labels depends on the label of the previous sample. This is incorporated into the
loss function (1) by adding a new term

λ

n′∑
m=2

I[y
′m
i 6= y

′m−1
i ], (2)

which penalizes the model by λ for every case where consecutive samples are assigned a
different label. Here I is the identity function that evaluates to 1 when the condition holds
and to 0 otherwise.
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Given this term, the pseudo-labels can no longer be assigned independently. However,
a straightforward dynamic programming algorithm corresponding to the Viterbi algorithm
used for Hidden Markov models (HMMs) can be used for making the assignment. This is
natural given that the structured pseudo-label loss corresponds to the temporal structure of
a simplified HMM where all self-transitions share the same probability p and the remaining
transitions are all set to equal value q = (1− p)/C, where C is the number of devices1. The
prior negative log-probability of a sequence under such a transition matrix is given by

−
n∑

m=2

I[y
′m
i 6= y

′m−1
i ] log q −

n∑
m=2

I[y
′m
i = y

′m−1
i ] log p

= −
n∑

m=2

I[y
′m
i 6= y

′m−1
i ](log q − log p)−

n∑
m=2

log p

=

n∑
m=2

I[y
′m
i 6= y

′m−1
i ](log p− log q) +D,

where the constant D does not depend on the assignments. Hence, λ in (2) relates to the
transition probabilities by λ = log p− log q, where p > q to indicate preference for retaining
the same label. The larger λ is, the bigger the preference for retaining the label. In our
experiments we set λ to 1.18, corresponding to p = 0.2, but as demonstrated in Section 4
the technique is very robust for the choice. Note that p = q results in λ = 0, reverting back
to the classical pseudo-label technique.

The structured pseudo-label algorithm (Algorithm 1) hence optimizes for the loss that
combines (1) and (2), by alternating between learning of the network parameters given both
the true labels and the pseudo-labels and inferring the pseudo-labels with the Viterbi algo-
rithm. Finally, the same Viterbi algorithm can be used for encouraging temporal continuity
of the labels also in the test set.

4. Experiments

In the following, we conduct a series of experiments to demonstrate the proposed algorithm.
We first present a simplified version of AirShark (Rayanchu et al., 2011) to act as a base-
line, and then proceed to show that the proposed convolutional neural network solves the
core classification problem with near perfect accuracy whereas the baseline reaches only
80% accuracy when both methods are allowed to use a maximally large number of labeled
samples. To further highlight the advantage of our consolidated model (instead of device-
specific models of AirShark), we demonstrate that the latent representation learned by the
convolutional network generalizes over devices, by showing that when adding new devices it
is sufficient to re-train only the last layer of the network.

We then proceed to study the effectiveness of the pseudo-label technique and its newly
proposed structured variant in coping with limited training samples. We experiment with
varying sizes of labeled training instances and show that pseudo-labels clearly help with
small training sets.

1. Note that the number of classes in the classification problem is C+1, since we also have the no-interference
scenario.
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mic 0 0 39 1 0 0 0 0 0 0 0 0 0 0
head 0 0 6 34 0 0 0 0 0 0 0 0 0 0
inter 9 0 0 0 31 0 0 0 0 0 0 0 0 0
baby1 0 0 0 0 0 40 0 0 0 0 0 0 0 0
baby2 0 0 0 0 0 0 40 0 0 0 0 0 0 0
mwo 14 0 0 0 0 0 0 26 0 0 0 0 0 0
bbjam 0 0 0 0 0 0 0 0 40 0 0 0 0 0
nbjam 0 0 0 0 0 0 0 0 0 60 0 0 0 0
spy1 0 0 0 0 0 0 0 0 0 0 40 0 0 0
spy2 0 0 0 0 0 0 0 0 0 0 0 40 0 0
spy3 0 0 0 0 0 0 0 0 0 0 0 0 40 0
rc 6 0 0 0 0 0 0 0 0 0 0 0 0 34

Predicted Label
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spy2 0 0 0 0 0 0 0 0 0 0 0 40 0 0
spy3 0 0 0 0 0 0 0 0 0 0 0 0 40 0
rc 0 0 0 0 0 0 0 2 0 0 0 0 0 38

Predicted Label

Table 1: The confusion matrix of a basic CNN classifier (left) and a baseline classifier (right).
The classification accuracy is 97% with CNN and 79% with the baseline.

4.1. Baseline

We present a baseline classifier based on the current state of the art method AirShark (Rayanchu
et al., 2011), modified to match the somewhat different raw data recorded by the Ekahau
device. Specifically, we use the "spectral signature" feature to describe each device’s spec-
trum use and their angular difference as a similarity metric. AirShark describes 8 features in
total, but some of them are based on aspects of the sampling unavailable to us (e.g. <1ms
"inter-pulse time" for Bluetooth, 16.66ms sweeping pattern for microwave ovens).

The split into training and testing datasets was performed as detailed in section 3.1,
except that no overlap between the samples was used. In the training phase, the average
spectral sample was calculated over the section of data where we could be sure the device was
turned on. A separate "off" signature was created by merging all spectral samples where de-
vices were known to be off. This signature could be seen to represent the background/device
noise detected during measurements. Then, the spectral signature ŝ was calculated as

ŝ =
s

‖s‖
,

where s is a vector representing the power in each bin, or in other words, the spectral sample
in the form of a unit vector.

Detection was performed by calculating the angular difference between all training sig-
natures and the spectral signature of the testing windows and picking the signature with
the smallest angle. The results are presented in Table 1. The baseline classifier has issues in
particular with devices that are not constantly transmitting (RC, MWO) or are frequency
hopping (MIC, HEAD). Though the devices are turned on, the spectral samples might not
contain signal from the device, or might not stand out distinctly enough within the testing
window. This would explain the confusion with respect to background samples ("off").

4.2. Experiment 1: Interference Classification on Sufficiently Large Data

To demonstrate the performance of the proposed CNN architecture we compare it against
the baseline described above. We use a maximally large number of training instances to
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Figure 3: Classification accuracy on the multiclass classifier for each device when the train-
ing data from that device was included in training the whole network (blue) or
just used to train the outer layer (orange).

show how the basic classification model operates when the number of training labels is
not critically low. The proposed model achieves 2% error rate compared to 21% error
for the baseline, indicating a clear qualitative difference. Analysis (see Table 1) reveals
that the baseline is accurate for some devices, but difficulties with a few devices lower the
overall accuracy dramatically. Furthermore, we see that the majority of the mistakes for the
proposed method is in classifying some microwave oven samples as "off". This is explained
by the way microwave ovens modulate their power by switching the magnetron off, and
hence the predictions can be considered to be correct and the ground truth labels wrong.

To further illustrate the proposed CNN, we run an additional experiment where we train
the model only on a subset of devices, and then extend it to new devices by only re-training
the last layer of the network to classify a new device not available during training. To do well
in this task the convolutional layers must have learned rich internal representation capturing
essential properties of interfering devices. It also paves way towards practical maintainable
detection tool, as needing to re-train the whole model from scratch when learning to recognize
a new type of a device saves computation time. For each device, we trained the network
with data from all the other devices and then used the training data from that device to
retrain only the outer layer. The results are presented in Figure 3. With most devices, we
reach equal or nearly equal classification accuracies to when the whole network was trained
with that data, indicating that the above claims are true for the proposed architecture.

4.3. Experiment 2: Semi-supervised Learning

As there are hundreds of possible interfering devices, and collecting accurately labeled train-
ing data from all of those devices is expensive and impractical, we run experiments to see
how much data is required for learning sufficiently accurate models and to evaluate the im-
portance of using unlabeled data points while training the model. We trained the model
with varying sizes of labeled training data where the device was turned on, starting with 4
seconds per measurement up to 72 seconds per measurement, corresponding to roughly all
of the data recorded when the device was supposedly on according to the imprecise timings
used during the data collection. We then compared three alternative methods: Pure super-
vised learning that ignores the unlabeled samples, the classical pseudo-label technique by
Lee (2013), and the structured pseudo-label technique described in Section 3.3.2.
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Figure 4: (Left:) Classification error percentage with different amounts of labeled training
data. With small amounts of labeled data (up to about 20 seconds per measure-
ment), structured pseudo-labels with p = 0.2 (red curve) reduce the test classi-
fication error compared to pseudo-labels or just using labeled data. With larger
amounts of data, all methods perform equally. (Right:) Classification error using
structured pseudo-labels with different values for the regularization parameter p
and different amounts of labeled data. The value p ≈ 0.07, or equivalently λ = 0,
corresponds to regular pseudo-labels and the structured case outperforms it for
all values of p between 0.1 and 0.9.

Figure 4 (left) illustrates the error rates with different amounts of training data. When
using less than 10 seconds of training data for each measurement, using unlabeled samples
clearly helps and imposing the temporal continuity in labels using the structural version
further improves the accuracy. For the case of 6 seconds of data per measurement, the
purely supervised version has an error of 5.8%, which is reduced to 5.0% by using pseudo-
labels and to 4.0% with the structured variant. Also note that when using more than 40
seconds of training data per measurement the accuracy declines – this is because some of the
training labels assumed to be certain are already wrong. The pseudo-label technique does
not help here because it does not modify the training labels, but it could be extended to
mitigate this issue by allowing refinement of the labeled examples as well. Figure 4 (right)
presents the classification error as a function of the regularization parameter p for various
setups, showing that the method is very robust for the choice. The structured variant
outperforms standard pseudo-label (λ = 0 or p = q = 1/14) for any choice of p > q.

To further illustrate the importance of modeling the temporal continuity, we present in
Figure 5 a simulated example of applying the model in sequentially appearing data. We
concatenated randomly chosen measurements into a sequence of continuous measurement,
trained the model using 8 seconds of labeled data for each measurement not included in the
sequence, and visualize the predictions in the real temporal order. Imposing the temporal
constraint both during training and testing clearly reduces isolated misclassified samples
during the time a device is on.
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Figure 5: Performance with pseudo-labels and structured pseudo-labels on a realistic situ-
ation. Imposing the temporal constraint both during training and testing clearly
reduces isolated misclassified samples.

5. Discussion

In this paper, we have presented a solution for identifying non-Wi-Fi radio frequency devices
from spectral data. Wi-Fi operates in an unlicensed spectrum, and thus various devices that
are common in urban environments can affect the performance of the network. Identification
of such interfering devices is important for planning the network configuration as well as for
troubleshooting. There are several challenges related to this. First, there are hundreds of
such devices and thus the classification method needs to be easily adapted for new devices.
In addition, collecting enough data for the training from all these devices is impractical,
and the most natural ways of collecting training data provide ground truth labels for only a
subset of the samples. Therefore, having an algorithm that can be easily trained with small
amounts of labeled data while still utilizing also unlabeled samples is important.

To address these challenges we proposed a convolutional neural network for recognizing
non-Wi-Fi devices, and in particular, proposed a novel semi-supervised learning technique
for learning the model from very scarce training labels. The new technique extends pseudo-
labels (Lee, 2013) for structured sample domains; we presented here the details for outputs
that are smooth in time, but the concept can be generalized for more complex dependencies.

The proposed model was shown to achieve near perfect accuracy in recognizing 13 dif-
ferent devices, even when trained with only a few seconds of labeled data for each device.
With slightly more data the model reaches effectively perfect accuracy, and it does so by
learning a device-independent latent representation that can be generalized for new devices
by merely re-training the last layer of the network. It hence effectively mitigates the main
challenges in training models for detecting wireless interference and acts as a reasonable
starting point for practical production solutions.

Perhaps the core limitation of this work is that because we only have access to train-
ing data with only one device on at a time, we could not evaluate the performance of the
model in setups where more than one device can cause interference. In troubleshooting,
which is the primary use-case for the recording device, detecting isolated interference is typ-
ically sufficient, since it is unlikely that several new devices would start operating within
the network at the same time. For planning purposes a model that can recognize multiple
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overlapping interference signals would be useful. However, interference is typically localized
because of the inverse square law for signal attenuation, and hence multiple interfering de-
vices would have to be co-located to cause simultaneous interference. The proposed solution
generalizes directly for setups with multiple devices on simultaneously, requiring only minor
changes in the overall loss function and the dynamic programming algorithm for assigning
the pseudo-labels, but training and evaluating the model requires collecting more data that
covers combinations of multiple overlapping devices.

Another limitation is that in this work we considered only the problem of detecting the
presence of a device. For improved troubleshooting, it would be valuable to know also the
degree of interference. The model itself is easy to extend to estimate also the signal strength,
the distance to the device, and other related aspects useful for the troubleshooting activity,
but again the core challenge is in collecting the training data; we leave this for future work.
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