
JMLR: Workshop and Conference Proceedings 80:1–3, 2017 ACML 2017

Multi-Task Structured Prediction for Entity Analysis:
Search-Based Learning Algorithms (Supplementary

Material)

Chao Ma machao@eecs.oregonstate.edu

Janardhan Rao Doppa† jana@eecs.wsu.edu

Prasad Tadepalli tadepall@eecs.oregonstate.edu

Hamed Shahbazi shahbazh@eecs.oregonstate.edu

Xiaoli Fern xfern@eecs.oregonstate.edu

School of EECS, Oregon State University, Corvallis, OR 97331, USA

†School of EECS, Washington State University, Pullman, WA 99164, USA

Editors: Yung-Kyun Noh and Min-Ling Zhang

Appendix A.

A.1. Beam Search Inference Algorithm

Algorithm 1 is the beam search inference algorithm for structured prediction. The beam
search explores the search space guided by a scoring function of the form w ·Φ(x, y) until it
reaches a locally optimal state with a corresponding output ŷ. Each search step picks the
best node in the beam according to the scoring function, and generates all its successors
obtained by changing some output variable yji of the parent state to a different value in
the domain of that variable. It replaces the expanded node in the beam with the successor
states, sorts the beam by the scoring function, and then drops all nodes beyond the beam
width.

Algorithm 1 Beam Search Inference

Input: x: structured input, Φ(x, y): joint feature function, (I, Succ): search space definition,
b: beam width, w: weights of features
Output: ŷ, the best scoring output

1: Initialization: y0 = I(x) and Beam← {y0}
2: repeat
3: ŷ ← arg maxy∈Beam w · Φ(x, y) // Selection
4: Beam← Beam \ {ŷ} // Remove the node selected for expansion
5: Candidates← Beam ∪ Succ(ŷ) // Expansion
6: Beam← Top-b scoring outputs in Candidates // Pruning
7: until max steps or local optima is found
8: return best scoring output ŷ

c© 2017 C. Ma, J.R. Doppa, P. Tadepalli, H. Shahbazi & X. Fern.

Ma Doppa Tadepalli Shahbazi Fern

A.2. Pruning Algorithms

Here we provide the pseudocode for the two pruning strategies described in Section 4.3.

Algorithm 2 Score-Agnostic Pruning Function Learning
Input: D: training examples, α: pruning parameter
Output: P , action pruning function

1: Initialization: R← ∅
2: for i = 1 to MAX do
3: for each training example (x, y∗) do
4: if i == 1 then
5: R ← R∪ { (GOOD(I) > BAD(I)) }
6: else
7: AP ← Top-α |A(I)| actions from A(I) scored using P // pruning action space
8: M ← GOOD(I) ∩ A−P // where we define A−P = A(I) \ AP

9: if M is not empty then
10: M ′ ← Top-|M | actions from BAD(I) ∩ AP scored using P
11: R ← R∪ { (M > M ′) }
12: end if
13: end if
14: end for
15: P ← Rank-Learner(R)
16: end for
17: return P

Algorithm 3 Score-Sensitive Pruning Function Learning
Input: D: training examples, α: pruning parameter, w: weights of the scoring function
Output: P : action pruning function

1: P0 ← Random function
2: for i = 1 to MAX do
3: Initialization: R← ∅
4: for each training example (x, y∗) do
5: APi−1 ← Top-α |A(I)| actions from A(I) scored using Pi−1 // pruning action space
6: ŷi ← Beam-Search-Inference(x,w,APi−1) // do structured prediction
7: Mi ⊂ A(I) is the set of actions corresponding to the mistakes in ŷi
8: if Mi is not empty then
9: M ′i ←

⋃i
j=1Mj // avoid these actions

10: PREF ← GOOD(I) ∪ Top-(
∣∣APi−1

∣∣−|GOOD(I)|) actions from BAD(I) \M ′i scored by Pi−1

11: R ← R∪ { (PREF > M ′i) }
12: end if
13: end for
14: Pi ← Rank-Learner(R)
15: end for
16: return PMAX

2

Multi-Task Structured Prediction

A.3. Testing Accuracy of Cyclic Algorithms

In this section, we present a study of the testing accuracy with different test cycles for
the two different cyclic algorithms: Unshared-Wt-Cyclic and Shared-Wt-Cyclic. Figure
1 shows Hamming accuracy of the ACE05 development set w.r.t. the number of testing
cycles for the two cyclic algorithms. The left figure is for Unshared-Wght-Cyclic, and the
right is for Shared-Wght-Cyclic. The current model we use for testing is trained using 10
training cycles. In each figure, each curve corresponds to one task ordering. The curves
shows that, irrespective of the task ordering, the best testing accuracy can be reached after
3 to 4 testings cycles, and is stable afterwards. Since there is no accuracy loss for increasing
the number of cycles, we can do as many cycles as there is time for. In our experiments,
we stopped the iterations once more than 95% of the predicted outputs did not change in
the previous two cycles.

 0.876
 0.878
 0.88

 0.882
 0.884
 0.886
 0.888
 0.89

 0.892
 0.894

 0 2 4 6 8 10

O
ve

ra
ll

H
am

m
in

g
A

cc
ur

ac
y

Testing Cycles

ACE 2005 Dev Set

CR→NER→EL
CR→EL→NER
NER→CR→EL
NER→EL→CR
EL→CR→NER
EL→NER→CR

 0.86
 0.862
 0.864
 0.866
 0.868
 0.87

 0.872
 0.874
 0.876
 0.878

 0 2 4 6 8 10

O
ve

ra
ll

H
am

m
in

g
A

cc
ur

ac
y

Testing Cycles

ACE 2005 Dev Set

CR→NER→EL
CR→EL→NER
NER→CR→EL
NER→EL→CR
EL→CR→NER
EL→NER→CR

Figure 1: Hamming accuracy on ACE05 Dev w.r.t. testing cycles for Unshared-Wght-Cyclic (left) and

Shared-Wght-Cyclic (right).

3

	
	Beam Search Inference Algorithm
	Pruning Algorithms
	Testing Accuracy of Cyclic Algorithms

