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Abstract

In this work, we present a deep convolutional pyramid person matching network (PPMN)
with specially designed Pyramid Matching Module to address the problem of person re-
identification. The architecture takes a pair of RGB images as input, and outputs a sim-
iliarity value indicating whether the two input images represent the same person or not.
Based on deep convolutional neural networks, our approach first learns the discriminative
semantic representation with the semantic-component-aware features for persons and then
employs the Pyramid Matching Module to match the common semantic-components of
persons, which is robust to the variation of spatial scales and misalignment of locations
posed by viewpoint changes. The above two processes are jointly optimized via a unified
end-to-end deep learning scheme. Extensive experiments on several benchmark datasets
demonstrate the effectiveness of our approach against the state-of-the-art approaches, es-
pecially on the rank-1 recognition rate.

Keywords: Person re-identification, Pyramid Matching Module, Unified end-to-end deep
learning scheme

1. Introduction

The task of person re-identification (Re-ID) is to judge whether two person images rep-
resent the same person or not and it has widely-spread applications in video surveillance.
There are two challenges posed by viewpoint changes: the variation of a person’s pose and
misalignment.

Many existing methods solve the challenges above by extracting cross-view invariant
features Weinberger and Saul (2009) Koestinger et al. (2012) Ahmed et al. (2015) Li et al.
(2014) Varior et al. (2016). These methods focus on extracting local features including
the hand-crafted features and deep learning features from horizontal stripes of a person
image, and fuse them into a description vector as the representation. Though these meth-
ods usually work under the assumption up to a slight vertical misalignment, they ignore
the typically widely existing horizonal misalignment. From the perception of humans, the
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Figure 1: An example of misalignment for the component “bag” in two different images
where the feature maps are extracted with the GoogLeNet.

images captured by two cameras for the same person should have many common com-
ponents (body-part, front and back pose, belongings) so that people can decide whether
the two input images represent the same person or not. Based on this principle, methods
like DCSL Zhang et al. (2016) employ deep convolutional networks to learn the correspon-
dence among these components and have shown a promising performance. DCSL uses the
deep convolutional networks like GoogLeNet Szegedy et al. (2015) to extract the semantic-
components representation. For bottom layers, the discriminative region in each feature
map learned by DCSL corresponds to one component of a person such as bag, head, and
body. For high layers, the learned regions still keep their shapes and spatial locations while
they are abstract. However, the feature regions of the same components from two views for
the same person seldom have the consistent spatial scales and locations because of view-
point changes. For example, the component “bag” is located in the opposite sides in the two
images in Figure 1. Consequentely, the existing methods like DCSL ignore this problem.

To address the challenges above, in this work, we present a deep convolutional pyra-
mid person matching network (PPMN). Pyramid matching based on convolution operation
is employed to compute the responses of the same semantic-component in different im-
ages. To further capture the variation of the spatial scale and location misalignment, we
exploit the flexible kernel-size convolution operation to guarantee that the most of semantic-
components are matched in the same subwindows. Since the convolution operation with
large kernels increases the parameters and computation, we propose to reduce the compu-
tation complexity by introducing the atrous convolution structure Chen et al. (2016), which
has been used in some convNet-based tasks such as image segmentation, object detection,
and can provide a desirable view of perception without increasing parameters and compu-
tation by introducing zeros between the consecutive filter values. In particular, we employ
the multi-rate atrous convolution layers to construct the Pyramid Matching Module and
produce the correspondence representation between the semantic-components. With the
correspondence representation, we learn the final similiarity value to decide whether the
two input images represent the same person or not.
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The proposed framework is evaluated on three real-world datasets. Extensive experi-
ments on these benchmark datasets demonstrate the effectiveness of our approach against
the state-of-the-art, especially on the rank-1 recognition rate.

The main contributions of this paper are as follows:
(1) We propose an end-to-end deep convolutional framework to deal with the problem of

person Re-ID. Image representation learning and cross-person correspondence learning are
jointly optimized to enable the image representation to adapt to the task of perosn Re-ID.

(2) The proposed framework maps a person’s semantic-components to the deep feature
space and employs the pyrimid matching strategy based on the atrous convolution to identify
the common components of the person.

2. Related Work

In the literature, most existing efforts of person Re-ID are mainly carried in two aspects:
the discriminative representation learning and the effective matching strategy learning. For
image representation, a number of approaches pay attention to designing robust descriptors
againist misalignments and variations. Early studies employ hand-crafted features includ-
ing HSV color histogram Farenzena et al. (2010), SIFT Zhao et al. (2013), LBP Li and
Wang (2013) features or the combination of them. Recently, several deep convolutional
architectures Li et al. (2014) Zhang et al. (2016) have been proposed for person Re-ID and
have shown significant improvements over those with hand-crafted features.

For matching strategy, the essential idea behind metric learning is to find a mapping
function from the feature space to the distance space so as to minimize the intra-personal
variance while maximizing the inter-personal margin. Many approaches have been proposed
based on this idea including LMNN Weinberger and Saul (2009) and KISSME Koestinger
et al. (2012). Recently, some efforts jointly learn the representation and classifier in a uni-
fied deep architecture. For example, patch-based methods Ahmed et al. (2015) Li et al.
(2014) decompose images into patches and perform patchwise distance measurement to find
the spatial relationship. Part-based methods Varior et al. (2016) divide one person into
equal parts and jointly perform bodywise and partwise correspondence learning since the
pedestrians keep upright in general. Different from all the above efforts which focus on
feature distance measurement, our proposed method aims at learning the semantic corre-
spondence of semantic-components based on the semantics-aware features and is robust to
the variation and misalignment posed by viewpoint changes.

3. Our Architecture

Figure 2 illustrates our network’s architecture. The proposed architecture extracts the
semantics-aware representations for a pair of input person images. The features are then
concatenated to feed into the Pyramid Matching Module to learn the correspondence of
semantic-components. Finally, softmax activations are employed to compute the final de-
cision which indicates the probability that the image pair represents the same person. The
details of the architecture are explained in the following subsections.
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Figure 2: The proposed architecture of the deep convolutional Pyramid Person Matching
Network (PPMN). Given a pair of person images as input, the parameters-shared
GoogLeNets generate the semantics-aware representation. The semantic compo-
nents such as bag and head are visible in the output of Conv1 layer. With the
extracted features, the Pyramid Matching Module learns the correspondence of
these semantic components based on multi-scale artrous convolution layers. Fi-
nally, softmax activations give the final decision of whether the image pair depicts
the same person or not.

3.1. Learning representation for Images

The ImageNet-pretrained GoogLeNet employed in this work is able to capture the semantic
features for most of objects in this task as the ImageNet dataset contains a large number
of object types for more than 100000 concepts. In our architecture, these semantic features
are extracted with two parameter-shared GoogLeNets for a pair person images, respectively.
As shown in Figure 2, the GoogLeNets have been adapted to the Re-ID task by finetuning
on a Re-ID dataset and decompose the person image into many semantic components such
as bag, head, and body. It is apparent to recognize the particular components from the
visualization of bottom layers’ output like Conv1 layer. These components’ visualizations
for higher layers such as Conv5 layer are more abstract but still keep the shapes and spatial
locations. For notational simplicity, we refer to the convNet as a function fCNN (X;θ),
which takes X as input and θ as parameters. Given an input pair of images resized to
160× 80 from two cameras, A and B, the GoogLeNets output 1024 feature maps with size
10× 5 separately as the representations of images. We denote this process as follows:

{RA,RB} = {fCNN (IA;θ1), fCNN (IB;θ1)} (1)

where RA and RB denote the representations of images IA and IB, respectively. θ1 are
the shared parameters.
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3.2. Pyramid Matching Module using Atrous Convolution

Based on the semantic representations of persons, the problem of person matching is reduced
to a problem of the matching for the semantic-components. However, the challenges are the
variations of spatial scales and the misalignments of locations for the semantic-components
posed by viewpoint changes. As shown in Figure 1, the same bag belonging to the same
person is located on the right side in one image but the left side in the other image.

To deal with the challenges, we employ the atrous convolution with multi-scale kernels
to construct a module called Pyramid Matching Module based on the pyramid matching
strategy. We give two examples in Figure 3 to explain how this module works. On the
left column, the component “head” has the similiar spatial shapes and locations in the two
images. It is easy to learn the correspondence between the two feature maps with a general
convolution operation to compute the responses of two feature regions in closely located
windows in the two images, respectively, called the field-of-views, while the component
“bag” has completely different shapes and locations in the two images, respectively, and
thus has different field-of-views. Consequently, a larger field-of-view is required for the
convolution in the latter case. Accordingly, we employ the atrous convolution for a large
field-of-view.

For the semantic-components with large misalignment, the atrous convolution ignores
the features of the regions for the corresponding semantic components from two feature
maps by introducing zeros as weights, and only computes the responses of the correspond-
ing semantic components that are misaligned. Also, the atrous convolution layers compute
the responses for the feature maps without decreasing the resolution of the feature maps and
without increasing the number of parameters, resulting in without increasing the computa-
tion costs. The Pyramid Matching Module includes three branches 3×3 atrous convolution
with rate 1, 2 and 3, respectively, which provides the field-of-view with size 3 × 3, 5 × 5,
7×7, respectively. With the images concatenated as {RA,RB}, the proposed module com-
putes the correspondence distribution denoted as SPPM = {Sr=1, Sr=2, Sr=3}, in which
the value of each location (i, j) indicates the correspondence probability at that location. r
is the rate of atrous convolution. We formulate this matching strategy as follows:

SPPM = {Sr=1,Sr=2,Sr=3}
= fCNN ({RA,RB}; {θ12,θ22,θ32})
= fCNN ({RA,RB};θ2}) (2)

where θr2(r = 1, 2, 3) are the parameters of the matching branch with rate r. We use
θ2 = {θ12,θ22,θ32} as the parameters of our module.

We fuse the concatenated correspondence maps SPPM with the learned parameters θ3,
which indicates the weights of different matching branches, and output the fused corre-
spondence representation Sfusion. Inspired by Zhang et al. (2016), we further downsample
Sfusion by the max-pooling operation so as to preserve the most discriminative correspon-
dence information and align the result in a larger region. Then, we obtain the final corre-
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Figure 3: Illustration of the correspondence learning with Pyramid Matching Module. Left:
the component “head” has the similiar spatial shapes and locations. Right: the
component “bag” has the completely different shapes and locations. We match
the components above by computing their responses in the corresponding windows
and take the convolutions with a multi-scale field-of-view, which are robust to the
misalignments of locations and variations of scale posed by viewpoint changes.

spondence representation Sfinal:

Sfinal = fCNN ({Sr=1,Sr=2,Sr=3};θ3)
= fCNN ({fCNN ({RA,RB}; {{θ12,θ22,θ32},θ3}}
= fCNN ({RA,RB};θ2,θ3} (3)

3.3. The unified framework and Learning

We apply two fully connected layers to encode the correspondence representation Sfinal
with an abstract vector of size 1024. The vector is then passed to a softmax layer with
two softmax units S(Sfinal;θ4): namely S0(Sfinal;θ4) and S1(Sfinal;θ4). We represent
the probability that the two images in the pair, IA and IB, are of the same person with
softmax activations computed on the units above:

p =
exp(S1(Sfinal;θ4))

exp(S0(Sfinal;θ4)) + exp(S1(Sfinal;θ4))
(4)
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We reformulate this approach as a unified framework with θ = {θ1, {θr2},θ3,θ4}, where
r = 1, 2, 3 based on Eqs.1 - 3 :

S(Sfinal,θ4) = fCNN ({Sr=1,Sr=2,Sr=3};θ4,θ3)
= fCNN ({IA, IB};θ4,θ3, {θr2},θ1)
= fCNN ({IA, IB};θ) (5)

We optimize this framework by minimizing the widely used cross-entropy loss over a training
set of N pairs:

Lθ = − 1

N

N∑
n=1

[ln log pn + (1− ln) log(1− pn)] (6)

where ln is the 1/0 label for the input pair, which represents the same person or not.

4. Experiments

4.1. Datasets and Protocol

We compare our proposed architecture with the state-of-the-art approaches on three person
Re-ID datasets, namely CUHK03 Li et al. (2014), CUHK01 Li et al. (2012) and VIPeR Gray
and Tao (2008). All the approaches are evaluated with Cumulative Matching Characteristics
(CMC) by single-shot results, which characterize a ranking result for every image in the
gallery given a probe image. Our experiments are conducted on the datasets with 10 random
initializations in training and the average results are provided.

Table 1 lists the description of each dataset and our experimental settings with the
training and testing splits. The CUHK03 dataset provides two settings named labelled
setting with the manually annotated pedestrian bounding boxes and detected setting with
automatically generated bounding boxes in which some extra misalignments and body part
missing are introduced for a more realistic setting. In this paper, the evaluation results
in both labelled and conducted setting are reported. For the CUHK01 dataset, we report
results on two different settings: 100 test IDs, and 486 test IDs. Among the three datasets,
the VIPeR dataset is relatively small dataset and only contains one image per person in
each view, which make the dataset extremely challenging for deep network architectures.
Following the testing protocol in Ahmed et al. (2015), we pretrain the network using
CUHK03 and CUHK01 datasets, and fine-tune on the training set of VIPeR.

4.2. Training the Network

The proposed architecture is implemented on the widely used deep learning framework
Caffe Jia et al. (2014) with an NVIDIA TITAN X GPU. It takes about 40-48 hours in
training for 160K iterations with batch size 100. We use stochastic gradient descent for
updating the weights of the network. We set the momentum as γ = 0.9 and set the weight
decay as µ = 0.0002. We start with a base learning rate of η0 = 0.01 and gradually decrease
it as the training progresses using a polynomial decay policy with power as 0.5.

Data Augmentation. To make the model robust to the image translation variance
and to further augment the training dataset, for every original training image, we sample 5
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Table 1: Datasets and settings in our experiments. The settings for CUHK01 dataset in-
clude the 100 test IDs and 486 test IDs.

Dataset CUHK03 CUHK01 VIPeR

identities 1360 971 632
images 13164 3884 1264
views 2 2 2

train IDs 1160 871;485 316
test IDs 100 100;486 316

Table 2: Comparison of state-of-the-art results on CUHK03. The cumulative matching
scores (%) at rank 1, 5, and 10 are listed.

Methods
labelled CUHK03 detected CUHK03

r=1 r=5 r=10 r=1 r=5 r=10

KISSME 14.17 37.46 52.20 11.70 33.45 45.69
LMNN 7.29 19.64 30.74 6.25 17.87 26.60

LOMO+LSTM - - - 57.30 80.10 88.30
LOMO+XQDA 52.20 82.23 92.14 46.25 78.90 88.55

FPNN 20.65 50.94 67.01 19.89 49.41 -
ImprovedDL 54.74 86.50 93.88 44.96 76.01 81.85

PIE(R)+Kissme - - - 67.10 92.20 96.60
SICIR - - - 52.17 - -

DCSL(no hnm) 78.60 97.76 99.30
DCSL(hnm) 80.20 97.73 99.17 - - -

PPMN(no hnm) 83.20 97.50 99.25 77.60 96.10 98.60
PPMN(hnm) 85.50 98.20 99.50 80.63 95.62 98.07

images around the image center, with translation drawn from a uniform distribution in the
range [−8, 8]× [−4, 4] for an original image of size 160× 80.

Hard Negative Mining (hnm). The negative pairs are far more than the positive
pairs, which can lead to data imbalance. Also, in these negative pairs, there still exist
scenarios that are hard to distinguish. To address these difficuties, we first sample the
negative sets to get three times as many negatives as positives and train our network.
Then, we use the trained model to classify all the negative pairs and retain those ranked
top on which the trained model performs the worst for retraining the network.
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Table 3: Comparison of state-of-the-art results on CUHK01 dataset. The cumulative
matching scores (%) at rank 1, 5, and 10 are listed.

Methods
CUHK01(100 test IDs) CUHK01(486 test IDs)
r=1 r=5 r=10 r=1 r=5 r=10

KISSME 29.40 60.18 74.44 - - -
LMNN 21.17 48.51 62.98 13.45 31.33 42.25

FPNN 27.87 59.64 73.53 - - -
ImprovedDL 65.00 89.00 94.00 47.53 71.60 80.25

PIE(R)+Kissme - - - - - -
SICIR 71.80 - - - - -

DCSL(no hnm) 88.00 96.90 98.10 - - -
DCSL(hnm) 89.60 97.80 98.90 76.54 94.24 97.49

PPMN(no hnm) 92.10 99.50 99.95 - - -
PPMN(hnm) 93.10 98.80 99.80 77.16 92.80 97.53

4.3. Experimental Results

In this section, we campare PPMN with several recent methods, including both hand-crafted
features based methods: KISSME Koestinger et al. (2012), LMNN Weinberger and Saul
(2009), LOMO+LSTM Varior et al. (2016), LOMO+XQDA Liao et al. (2015); and deep
learning features based methods: FPNN Li et al. (2014), ImprovedDL Ahmed et al. (2015),
Pose Invariant Embedding (PIE(R)+Kissme)Zheng et al. (2017), Single-Image and Cross-
Images Representation learning(SICIR)Wang et al. (2016), DCSL Zhang et al. (2016). We
report the evaluation results in Table 2.

We conduct PPMN on both labelled and detected CUHK03 datasets. From Table 2,
our method achieves an improvement of 5.30% (85.50% vs. 80.20%) on the labelled dataset
and an improvement of 23.33% (80.63% vs. 57.30%) on the detected dataset. Table 3
also illustrates the top recognition rate on CUHK01 dataset with 100 test IDs and 486
test IDs. We see that PPMN achieves the best rank-1, rank-5 recognition rates of 93.10%,
99.50% (vs. 89.60%, 96.90% respectively by the next best method) with 100 test IDs, which
means in most cases we can find the correct person in the first five samples of the queried
and returned results given 100 candidate images. For the settings with 486 test IDs, we
finetune the network on the set of half-CUHK01 with the pre-trained model on CUHK03
and achieve an improvement of 0.62% (77.16% vs. 76.54% ) over DCSL using the same
training protocol on rank-1 recognition rate. The experimental results also demonstrate
the effect of hard negative mining, which provides the absolute gain over 1.00% compared
with the same model without hard negative mining. Following the setup of Ahmed et al.
(2015), we pre-train the network using CUHK03 and CUHK01 datasets, and finetune on
the training set of VIPeR. As shown in Table 4, we see that PPMN achieves the best rank-1,
rank-5, rank-10 recognition rates and an imporvement of 1.20% (45.82% vs. 44.62%) for
rank-1 recognition rate.
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Table 4: Comparison of state-of-the-art results on VIPeR dataset. The cumulative match-
ing scores (%) at rank 1, 5, and 10 are listed.

Methods
VIPeR

r=1 r=5 r=10

KISSME 19.60 48.00 62.20
LMNN - - -

LOMO+LSTM 42.40 68.70 79.40
LOMO+XQDA 40.00 68.13 80.51

FPNN - - -
ImprovedDL 34.81 63.61 75.63

PIE(R)+Kissme 27.44 43.01 50.82
SICIR 35.76 - -

DCSL(hnm) 44.62 73.42 82.59

PPMN(hnm) 45.82 74.68 86.08

5. Conclusion

In this paper, we have developed a novel deep convolutional architecture for person re-
identification. We employ a deep convNet GoogLeNet to map a person’s semantic compo-
nents to the required feature space. Based on the pyramid matching strategy, we design
a module to address the misalignment and variation issues posed by viewpoint changes.
We demonstrate the effectiveness and promise of our method by reporting extensive eval-
uations on various datasets. The results have indicated that our method has a remarkable
improvement over the state-of-the-art literature.
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