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Abstract

We introduce a novel kernel that models input-dependent couplings across multiple latent
processes. The pairwise joint kernel measures covariance along inputs and across differ-
ent latent signals in a mutually-dependent fashion. A latent correlation Gaussian process
(LCGP) model combines these non-stationary latent components into multiple outputs by
an input-dependent mixing matrix. Probit classification and support for multiple observa-
tion sets are derived by Variational Bayesian inference. Results on several datasets indicate
that the LCGP model can recover the correlations between latent signals while simultane-
ously achieving state-of-the-art performance. We highlight the latent covariances with an
EEG classification dataset where latent brain processes and their couplings simultaneously
emerge from the model.

Keywords: Gaussian process, non-stationary kernel, cross-covariance, latent variable
modelling

1. Introduction

Gaussian processes (GP) are Bayesian non-parametric models that explicitly characterize
the uncertainty in the learned model by describing distributions over functions (Rasmussen
and Williams, 2006). These models assume a prior over functions, and subsequently the
function posterior given the data can be derived. The prior covariance plays the key roles of
both regularising the model by determining its smoothness properties, and characterising
how the underlying function varies in the input space.

Recently, there has been interest in deriving non-stationary covariance kernels, where
the general signal variances or the intrinsic kernel parameters – such as the lengthscales in
the squared exponential or Matérn kernels – are input-dependent (Gibbs, 1997; Paciorek and
Schervish, 2004; Adams and Stegle, 2008; Tolvanen et al., 2014; Heinonen et al., 2016). For
instance, in geostatistical applications, a non-stationary kernel can both model a difference
in the covariance along or across geological formations (Goovaerts, 1997). Input-dependent,
heteroscedastic noise models have also been studied in single-task (Goldberg et al., 1997;
Le et al., 2005; Kersting et al., 2007; Quadrianto et al., 2009; Lazaro-Gredilla and Titsias,
2011; Wang and Neal, 2012) and in multi-task settings (Rakitsch et al., 2013).
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In multi-task learning Gaussian processes are utilized by modeling the output covari-
ances between possibly several latent functions (Yu et al., 2005; Bonilla et al., 2007; Alvarez
et al., 2010; Álvarez et al., 2012). In latent function models1 the outputs are linear com-
binations of multiple underlying latent functions (Teh and Seeger, 2005; Schmidt, 2009).
In Gaussian Process Regression Networks (GPRN) the mixing coefficients of multiple inde-
pendent latent signals are input-dependent Gaussian processes as well, leading to a general
multi-task framework that adaptively combines latent signals into outputs along the input
space (Wilson et al., 2012).

The main contribution of this paper is to introduce a mutually-dependent Hadamard
product kernel that combines a covariance structure between the latent signals that depends
on the inputs, with an input kernel that depends on the latent signal indices. The signal
and input kernels are interdependent, conditional on each other. This is in contrast to
earlier Kronecker-based joint kernels where inputs and latent signals would be assumed
independent. The kernel generalizes Wishart processes (Wilson and Ghahramani, 2011) into
cross-covariances for input-dependent correlation structure, and a non-stationary Gaussian
kernel (Gibbs, 1997) for measuring input-space correlations at specific latent signals. We
deploy this kernel to extend the GPRN framework by a non-stationary cross-covariance
function for the latent signals.

Furthermore, the proposed latent correlation Gaussian process (LCGP) incorporates
multiple latent signals that are linearly combined into multiple outputs in an input-dependent
fashion. The latent signals have a structured Wishart-Gibbs model that leads to non-
stationary signal variances. We account for both regression, and Probit-based classifica-
tion. Finally, the model is extended for multiple observation sets, where each observation
is modeled by a separate latent model with shared latent correlations. In such a model, the
latent correlations effectively regularize the latent models of each observation. Variational
Bayesian inference with whitened gradients is derived for a scalable implementation.

We highlight the model with several datasets where interesting latent signal covariance
models emerge, while retaining or improving the state-of-the-art regression and classification
performance. Multi-observation classification is demonstrated on EEG data from a large
set of scalp measurements from several subjects, where the model is able to learn the
covariance model between the underlying brain processes. In simulation studies, we show
that our model is capable of accurately learning the latent variable correlations.

2. Latent Correlation Gaussian Process

We consider M -dimensional observations y(x) ∈ RM over N data points (x1, . . . , xN ). We
denote vectors with boldface symbols, matrices with capital symbols and block matrices
with boldface capital symbols. In this section we first construct the multi-output regression
model for y(x), and then develop a novel kernel for latent variables in such a model as our
main contribution. Section 3 further extends the framework into a classification setup.

1. Coined as linear models of coregionalisation (LCM) in geostatistics literature (Goovaerts, 1997).

456



Mutually-Dependent Hadamard Kernel

2.1. Multi-output regression

Following Wilson et al. (2012), we model the M -dimensional outputs y(x) ∈ RM as an
input-dependent mixture of Q latent signals u(x) ∈ RQ via a mixing matrix B(x) ∈ RM×Q,

y(x) = f(x) + e = B(x)
(
u(x) + ε

)
+ e, (1)

where e = e(x) is zero-mean M -dimensional Gaussian observation noise and ε = ε(x) is
zero-mean Q-dimensional latent noise

e ∼ N (0, ω−1f I), ωf ∼ Gamma(αf , βf ),

ε ∼ N (0, ω−1u I), ωu ∼ Gamma(αu, βu) .

We model both the latent variables u as well as the elements of the mixing matrix B
as Gaussian processes. A GP prior φ(x) ∼ GP(µ(x), k(x, x′)) defines a distribution over
functions φ(x) with expectation E[φ(x)] = µ(x) and covariance of the values between points
x and x′ is cov[φ(x), φ(x′)] = k(x, x′). A set of function values φ = (φ(x1), . . . , φ(xN ))T

follows a Gaussian φ ∼ N (µ,K) with Kij = k(xi, xj) and µi = µ(xi).
The mixing matrix B(x) is an M × Q matrix of independent Gaussian processes over

outputs m and latent signals q,

Bmq(x) ∼ GP(0, kb(x, x
′)). (2)

The kernel kb(x, x
′) between two input points x and x′ determines how mixing of latent

signals into outputs evolves along the input space. For instance, with temporal data the
mixing matrix allows time-dependent linear combinations of the outputs. The full model is
depicted in Figure 2. Next, we proceed to derive a kernel for the latent variables u.

2.2. Wishart-Gibbs Hadamard Product Kernel

The latent signals up(x) are functions of the signal index p and input x. We propose to
encode the latent signals u(x) as mutually dependent Gaussian processes over pairs of inputs
(x, x′) and signals (p, q),

up(x) ∼ GP
(
0, Axx′(p, q)Kpq(x, x

′)
)
, (3)

such that the joint covariance cov[up(x), uq(x
′)] = Axx′(p, q)Kpq(x, x

′) is a product of signal
and input similarities. Both similarities depend on each other to produce a non-stationary
joint covariance.

The pairwise, mutually dependent Hadamard kernel k(x, x′, p, q) = Axx′(p, q)Kpq(x, x
′)

encodes a rich similarity between input x of latent signal p and x′ of latent signal q as
the product of the two conditional kernels. The kernel Axx′(p, q) encodes signal similarity
between inputs x and x′, while the kernel Kpq(x, x

′) denotes input similarity at latent signals
p and q. Since the two kernels depend on each other, a simple model such as Kronecker
kernel product (Stegle et al., 2011) is not suitable. Both kernels can be interpreted as cross-
covariances. The Gibbs kernel Kpq restricts the flexibility of the Wishart kernel Axx′ (See
Figure 1).
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Figure 1: Illustration of the proposed kernel. Top: The input-dependent signal kernel
Axx′(p, q) and signal-dependent input kernel Kpq(x, x

′) are mixed into a rich and
flexible pairwise combined kernel. Bottom: A standard Kronecker kernel between
signals and inputs can not reproduce dependent correlations.

For instance, in EEG data the kernels could signify correlations Att′(p, q) between latent
brain processes p and q at two time points t and t′, while Kpq(t, t

′) is a smooth temporal
kernel that connects events that occur at similar time points. In geospatial applications,
the correlations Axx′(p, q) can encode similarity between two latent ore functions p and q at
two locations x,x′ ∈ R2, for instance between cadmium and zinc concentrations (Goovaerts,
1997). The location kernel Kpq(x,x

′) could encode a smooth spatial proximity. A conven-
tional Kronecker kernel k(x,x′, p, q) = A(p, q)K(x,x′) would assume – in contrast – that
(i) the same spatial proximity K(x,x′) applies to all ore functions p, and (ii) two ore con-
centrations would correlate similarly independent of the location x.

We start forming the joint kernel by considering a non-stationary Gaussian kernel for
the inputs x (Gibbs, 1997),

Kpq(x, x
′) =

√
2`p`q
`2p + `2q

exp

(
−(x− x′)2

`2p + `2q

)
, (4)

which encodes specific lengthscales `1, . . . , `Q for each latent signal. The kernel within a
single latent signal Kpp reduces into a standard Gaussian kernel, while the cross-covariance
similarity Kpq measures similarity of two inputs with different associated lengthscales.
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We base our construction of the mutually dependent covariance structure Axx′(p, q) on
Wishart processes. A Generalized Wishart Process (GWP) prior on a covariance matrix,
that depends on a single variable x, is (Wilson and Ghahramani, 2011)

A(x) =

ν∑
r=1

Lzr(x)zr(x)TLT ∼ GWP(V, ν,Kz),

where V = LLT and all zpr(x) ∼ GP(0,Kz(x, x
′)) are independent Gaussian processes for

p = 1, . . . , Q and r = 1, . . . , ν. The kernel Kz determines the change of A(x) in the input
space. From this formulation we define our joint kernel, such that we preserve the GWP
marginal for A(x) by extending the GWP into cross-covariances of two variables, as

Axx′(p, q) = zp(x)T zq(x
′), (5)

where we have for each element of zp(x) ∈ Rν a GP prior (See Figure 1). With this choice
the prior expectation of the covariance is the identity matrix.

The resulting covariance of up(x) is then a product of covariance between inputs at
signals p and q, and a covariance between signals at inputs x and x′. This covariance can
be seen marginally from two perspectives,

up ∼ NN (0, A(p, p) ◦Kpp)

u(x) ∼ NQ(0, A(x) ◦ P ),

where up ∈ RN is a single latent signal that follows a Normal distribution weighted by
variances A(p, p), and u(x) ∈ RQ contains all Q latent signals at input x and follows a
Normal distribution with generalized Wishart process prior, scaled by the matrix Ppq =√

2`p`q
`2p+`

2
q
. The element-wise, or Hadamard, product of x and y is denoted by x ◦ y.

The joint covariance over the concatenated column vector of all latent signals u ∈ RQN
is a block matrix

cov(u,u) =
(
ZiZ

T
j ◦Kij

)N
i,j=1

+ Ωu = ZZT ◦KQ + Ωu

where Zi is aQ×ν matrix, and Z = (Z1, . . . , ZN )T . TheQ×Q kernelKij = (Kpq(xi, xj))
Q
p,q=1

gives the signal similarities at inputs xi and xj , the block matrix KQ = (Kij)
N
i,j=1 collects

them into (N × N) blocks of kernel values, and finally the noise matrix is Ωu = ω−1u IQN ,
introducing the latent noise directly into the covariance of the u’s. The resulting joint
input-output covariance ZZT ◦KQ consists of N ×N block matrices of size Q×Q. See Fig-
ure 1 for a visualisation. The kernel matrix AQ is positive semi-definite (PSD) as an outer
product, and the Gaussian kernel is PSD as well (Gibbs, 1997). The Hadamard product
AQ◦KQ retains this property. We refer to this kernel as the Wishart-Gibbs cross-covariance
(WGCC).

The proposed latent correlation Gaussian process (LCGP) model is a flexible Bayesian
regression model that simultaneously infers the latent signals and their mixing to match
the output processes, while learning the underlying correlation structure of the latent space
using the WGCC kernel. The latent correlations are parameterised by two terms that char-
acterise the input and signal similarities with Gaussian and Wishart functions, respectively.
A key feature of the model is the ability adaptively couple and decouple latent processes
along the input space.
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3. Classification with multiple observations

We further suppose that we have S observations or samples y(s)(x) associated with a class
label, or response, r(s), and assume that all these observations share their latent space. We
then learn separate latent functions u(s) for each sample, while keeping the mixing model
B(x), latent correlations A(x) and KQ, and the noise precisions ωf and ωu shared. The
noiseless sample is then reconstructed as

f (s)(x) = B(x)u(s)(x),

which results in the same likelihood as in eq. (1).
We build a classifier in the latent signal space as a Probit classification model over all

latent signals wTu(s) with Gaussian-Gamma priors, where w ∈ RNQ is a concatenated
column vector of linear weights wp ∈ RN for the Q latent signals. This allows us to reduce
the data dimensionality for classification, as M can potentially be very large. The classifier
is then

r(s) | w,u(s) ∼ Bernoulli(Φ(wTu(s) + b)), (6)

wp | λw ∼ N (0, λ−1w ), λw ∼ Gamma(αw, βw)

b | λb ∼ N (0, λ−1b ), λb ∼ Gamma(αb, βb),

where we index the observations with s, and w and b are the classifier weights and bias,
respectively. The Gaussian CDF is denoted by Φ(·). We additionally assume, for notational
clarity, that all data are observed at the same input points x1, . . . , xN .

Essentially, our model now has two likelihoods for the two types of data, one defined for
the output data in eq. (1) and one for the class labels related to the outputs in eq. (6).

4. Inference

4.1. Variational Bayes

For inference in our Bayesian model we adopt the Variational Bayesian (VB) approach
(Attias, 1999), which is based on maximising a lower bound on the log marginal likelihood
of the data with respect to a distribution q(Θ), where Θ represents all model parameters.
The lower bound is of an easier form than the true posterior distribution p(Θ|D), where
D = (Y (s), r(s))Ss=1 and Y (s) ∈ RM×N . The lower bound is obtained by Jensen’s inequality

log p(D) = log

∫
q(Θ)

p(D,Θ)

q(Θ)
dΘ ≥

∫
q(Θ) log

p(D,Θ)

q(Θ)
dΘ ≡ L(q) .

Typically, a factorised approximation q(Θ) =
∏
i q(θi) is used, where θi are some disjoint

subsets of the variables Θ. It can be shown that the optimal solution that maximizes L(q)
is

q(θi) ∝ exp(〈log p(Θ,D)〉θ−i
),

in which the expectation is taken with respect to all variables except θi. The VB algorithm
consists of iterating through updating each factor q(θi).
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Table 1: VB updates. Here ũ collects u(xi) into a block diagonal matrix, and q(λb) is
analogous to q(λw). Auxiliary variables h have a Gaussian posterior truncated
either to negative or positive values depending on r(s).

Distribution q(·) Parameters

q(u(s)) = N (u(s) | µ(s)
u ,Σu)

Σ−1u = (ZZT ◦KQ + Ω)−1 + 〈ωf 〉〈BTB〉+ 〈wwT 〉
µ
(s)
u = Σu

([
〈h(s)〉 − 〈b〉

]
〈w〉+ 〈ωf 〉〈BT 〉y(s)

)
q(Bm) = N (Bm | µm,Σb)

Σ−1b = K−1b + 〈ωf 〉
∑

s〈ũ(s)T ũ(s)〉
µm = Σb〈ωf 〉

∑
s〈ũ(s)Ty

(s)
m 〉

q(w, b) = N
((

w
b

)
| µw,b,Σw,b

) Σ−1w,b =

(
〈uuT 〉+ diag〈λw〉 〈u〉1

1T 〈u〉T S + 〈λb〉

)
µw,b = Σw,b

(
〈u〉〈h〉
1T 〈h〉

)
q(λw) = Gamma(aw, bw) aw = αw + 1

2NQ, bw = βw + 1
2〈||w||

2〉
q(ωf ) = Gamma(aωf

, bωf
) aωf

= αf + 1
2NMS, βf + 1

2〈||y −Bu||22〉
q(h(s)) = T N r(s)(h

(s) | g(s), 1) g(s) = 〈wT 〉〈u(s)〉+ 〈b〉

4.2. VB for the LCGP classification model

We employ the following factorization

q(Θ) =
∏
s

q(u(s))q(h(s))
∏
m

q(Bm)q(ωf )q(w, b)q(λw)q(λb)q(Z), (7)

where q(Bm) factorizes the mixing matrix B row-wise. Most factors have standard dis-
tributions, the update formulas are shown in Table 1. The VB inference procedure is
summarised in Algorithm 1. LCGP can be run with or without the classification part of
the model; without classification the parameters involved are ignored (see Figure 2).

Auxiliary variables h are introduced to make the variational inference tractable for
Probit classification (Albert and Chib, 1993),

h | w,u ∼ N (wTu + b, 1). (8)

Class labels depend on the sign of h, i.e. r = +1 if h > 0. Integrating out h recovers the
Probit likelihood

p(r|w,u) = Bernoulli(r|Φ(wTu + b)). (9)

The posterior q(h) is a truncated Gaussian (Albert and Chib, 1993), which has analytical
formulas for first and second moments.

Finally, q(Z) is updated by optimising the lower bound L(Z) with respect to Z. We
optimise L(Z) using L-BFGS in whitened domain employing a change of variables Ẑ = L−1Z
with the Cholesky of the kernel Kz = LLT to make the optimization more efficient (Kuss
and Rasmussen, 2005; Heinonen et al., 2016), see the Supplementary for details.
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Figure 2: Graphical model of the LCGP.

Algorithm 1: VB for LCGP.

Input: Data Y and r, kernel parameters,
initialized q(·)
while not converged do

q(u(s))← N (µ
(s)
u ,Σu)∀s

Z, ωu ← arg maxZ,ωu
L(Θ)

if do classification then
q(h(s))← T N (g(s), 1)∀s
q(w, b)← N (µw,b,Σw,b)
q(λw)← Gamma(aw, bw)

end
q(Bm)← N (µm,Σb)∀m
q(ωf )← Gamma(aωf

, bωf
)

end

Predictions to new inputs x∗ can be made by applying standard GP formulas to ob-
tain B(x∗), u(x∗) and Z(x∗) based on the optimized variational posterior q(Θ). For new
observation with unkown class label r(s

∗), we can apply the update for q(u(s∗)) without
classification related terms.

5. Related Work

In semiparametric latent factor models (SLFM) the signal f(x) = Bu(x) over M outputs
is a linear combination of Q independent latent Gaussian process signals u(x) with a fixed
mixing matrix B ∈ RM×Q, with appropriate hyperparameter learning (Teh and Seeger,
2005). A Gaussian process regression network (GPRN) (Wilson et al., 2012) extends this
model by considering a mixing matrix B(x) where each element Bpi(x) is an independent
Gaussian process along x.

In geostatistics vector-valued regression with Gaussian processes is called cokriging
(Álvarez et al., 2012). In linear coregionalization models (LCM) latent Gaussian processes
are mixed from latent signals up(x) and uq(x

′) that are independent. In contrast to SLFM,
each signal up(x) is an additional mixture of RQ signals with separate shared covariances
Kq(x, x

′). In the intrinsic coregionalization model (ICM) only a single (Q = 1) latent mix-
ture with a single shared kernel is used, while in SLFM there are multiple latent singleton
(RQ = 1) signals. In spatially varying LCMs (SVLCM) the mixing matrices are input-
dependent, similar to GPRNs (Gelfand et al., 2004). Vargas-Guzmán et al. (2002) used
non-orthogonal latent signals up(x) and uq(x

′) with fixed covariances.
Multi-task Gaussian processes employ structured covariances that combine a task co-

variance with an input covariance. Simple Kronecker products between the covariances
assume that task and input covariances are independent functions (Bonilla et al., 2007;
Stegle et al., 2011; Rakitsch et al., 2013). This is computationally efficient (Flaxman et al.,
2015), but it does not take into account interactions between the tasks and inputs.

In Generalised Wishart Processes (Wilson et al., 2012) an input-dependent covariance
matrix Σ(x) =

∑ν
n=1 zn(x)zn(x)T is a sum of ν outer products. The random variables

zni(x) ∼ GP(0,K(x, x′)) are all independent Gaussian processes. Copula processes also
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Table 2: Results on all datasets. Boldface numbers indicate better method performance.
MAE and MSE refer to the mean absolute and squared errors, respectively. AUC
refers to the area under the ROC curve statistic. For the EEG simulation study,
the Fisher’s method is used to combine p-values from the simulations.

JURA Average MAE Average MSE

LCGP 0.686 ± 0.057 0.804 ± 0.16
GPRN 0.693 ± 0.033 0.801 ± 0.09

EEG: classif. Average AUC1

LCGP 0.830 ± 0.0022
RLDA 0.826 ± 0.0020

EEG: simulation Mean score p-value

Q = 2 0.87 9.62e-10
Q = 3 0.84 4.21e-08
Q = 4 0.87 1.11e-15

1 Paired t-test, p < 0.05.

describe dependencies of random variables by Gaussian processes (Wilson and Ghahramani,
2010). In Bayesian nonparametric covariance regression, covariances of multiple predictors
share a common dictionary of Gaussian processes (Fox and Dunson, 2015).

Finally, Gaussian process dynamical or state-space systems are a general class of discrete-
time state-space models that combine the latent state into time-dependent outputs as
Markov processes (Wang et al., 2005; Damianou et al., 2011; Deisenroth and Mohamed,
2012; Frigola et al., 2014). In Gaussian process factor analysis the outputs are described
as factors that have GP priors, however not modeling the factor dependencies (Lawrence,
2004; Luttinen and Ilin, 2009).

6. Experiments

In the first experiment we show that our model2 can recover the true latent correlations in a
simple simulated-data case, and compare our method with GPRNs, which is a state-of-the-
art multi-output Gaussian process regression model (Wilson et al., 2012). We employ the
mean-field variational inference implementation of GPRN by Nguyen and Bonilla (2013).
Second, we apply our method to the Jura geospatial dataset to elucidate latent ore con-
centration process couplings. Finally, we demonstrate our full modelling framework on an
EEG single-trial classification task, outperforming state-of-the-art regularised LDA in clas-
sification and additionally recovering an interesting latent representation that we further
evaluate in a simulation study. Results from the experiments are summarised in Table 2.

2. Our Matlab implementation can be found on https://github.com/sremes/wishart-gibbs-kernel
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Figure 3: A noisy three-output simulated dataset with high coupling between the outputs
that changes at the origin (see the blue and red lines). The proposed Wishart-
Gibbs kernel obtains much better match to the ground truth.

5 10 15 20

S

0

0.5

1
Q = 2

5 10 15 20

S

0

0.2

0.4

0.6

0.8
Q = 3

5 10 15 20

S

0

0.2

0.4

0.6

0.8
Q = 4

5 10 15 20

S

0

0.2

0.4

0.6

0.8
Q = 5

LCGP

GPRN

Figure 4: The true latent covariances can be recovered more accurately with our method
than with GPRN. The curves show correlation to the true correlation matrix,
over the elements of the recovered correlation matrix, as a function of the (very
small) sample size S. The Q is the number of latent signals.

6.1. Simulated Data Experiments

6.1.1. Wishart-Gibbs kernel in multi-output GP

We simulated a dataset that contains a clear switch in the coupling of three outputs in
the middle of an interval [−1, 1]. A traditional Kronecker multi-output kernel of form
K = A ⊗ K, with A =

∑
k zkz

T
k and K a Gaussian kernel, cannot model this, but our

proposed Wishart-Gibbs kernel can adapt to this switch point. The data and posterior fit
with both kernels are shown in Figure 3. Our kernel obtains an MSE of 0.44, and Kronecker
kernel 0.60, with a baseline of 1.92 (predicting zero).

6.1.2. Recovering latent covariance with LCGP

We use simple toy data to show that we are able to recover known latent correlation struc-
ture. We generated data with a varying number of latent components Q = 2, . . . , 5 and
amount of samples S = 1, . . . , 20. The mixing matrix was binary such that one output
maps to one latent variable. For simplicity, we only consider LCGP without the classifier.

464



Mutually-Dependent Hadamard Kernel

x1

x
2

Var[u1]

x1

x
2

Cov[u1, u2]

x1

x
2

Var[u2]

Latent covariance

u2

u
1

Scatter u1 vs u2

(a) cov(ui(x), uj(x))

x1

x
2

u1

Latent variables

x1

x
2

u2

(b) ui(x)

B11

B21

B31

B12

B22

Mixing matrix

B32

(c) B(x)

f1

f2

f3

y1

y2

Data reconstruction

y3

(d) y(x) ≈ f(x) =
B(x)u(x)

Figure 5: Results on the Jura data. (a): The learned latent covariance matrix shows an
overall negative correlation over the input space. (b): The learned latent variables
clearly show a negative correlation. (c): The learned input-dependent mixing
matrix. (d): LCGP reconstructs accurately the original data, which is plotted
using a simple linear interpolation of the observed points for comparison.

To assess the accuracy, we measured the correlation between the elements of the true
covariance matrix to the one estimated. With GPRN we computed the empirical covariance
Σ̂ =

∑
s u(s)u(s) T of the latent variables. As the order of the recovered latent variables is

not identifiable, we computed the correlations over all permutations and report the best.
Rotations of the latent space are not accounted for, however. The results in Figure 4 show
that our model can recover the true underlying latent covariance with high correlations.

6.2. Jura

The Jura dataset3 consists of measurements of cadmium, nickel and zinc concentrations in
a region of the Swiss Jura (Goovaerts, 1997). For training we are given the concentrations
measured at 259 locations and for validation the measurements at 100 additional locations.
We set hyperparameters for both our model and GPRN as `u = 0.5 and `b = 1, and for our
model the parameter for the latent correlation lengthscale to `z = 1. We learned the models
with Q = 2 latent variables, which resulted in the best model performance. We report both
the mean squared and absolute errors for the predicted concentrations in Table 2. Our
model performs at the same level as the state-of-the-art competitor GPRN, with slightly
better performance in absolute errors.

Figure 5 shows the inferred model. The latent variables are 2D spatial surfaces on which
the measurement points are indicated as black points. The two latent variables learn differ-
ent geological processes that have an interesting two-pronged correlation pattern that indi-

3. Data available at https://sites.google.com/site/goovaertspierre/pierregoovaertswebsite/

publications/book.
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(a) ZZT ◦KQ (b) u ∼ N (0,ZZT ◦KQ) (c) y ∼ N (Bu, ω−1f I)
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Figure 6: (a): Latent covariances. (b): Latent variables, averaged within each class. (c)
Class-wise averaged EEG data from a subset of 6 channels. (d) LCGP decom-
poses the brain activity to several components, showing the progression over the
EEG scalp map at several time points t. The top figures shows the target class
(+1) and bottom the non-target (-1), for each t.

cates two kinds of negative correlations (the scatter plot). By explicitly modelling the latent
covariance, we are able to see the regions of the input space that contribute to this pattern;
the latent covariances indicate the combined covariance Cpq(x,x

′) = Axx′(p, q)Kpq(x,x
′).

The diagonal plots of Figure 5a show the variances of the two latent signals, while the off-
diagonal covariance plot indicates the two-pronged negative correlation model between the
geological processes. Finally, the mixing matrices of the two latent components reconstruct
the three ore observation surfaces.

6.3. EEG

Our main motivation for developing the present model was in modelling EEG data. We
demonstrate LCGP on data from a P300 study (Vareka et al., 2014), where the subjects
were shown either a target or non-target stimulus, specifically a green or a red LED flashing,
respectively. The classification task is to classify the stimulus based on the brain measure-
ments. Additionally, we evaluate our modelling approach in a simulation study.
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6.3.1. Classification Results

We evaluate the classification performance using a Monte Carlo cross-validation scheme
where in each fold we randomly sample training and test sets of S = 1000 trials from the full
dataset consisting in total of 7351 trials from 16 subjects. A single trial is the continuous
voltage measurement of M = 19 channels in an EEG cap for 800ms with N = 89 after
filtering and downsampling the time series (Hoffmann et al., 2008). We report the average
area under the ROC curve (AUC) statistic over 100 folds, and compare our method to the
state-of-the-art regularised LDA method implemented in the BBCI toolbox (Blankertz et al.,
2010). Results in Table 2 show that our method performs better than RLDA (p < 0.05).

An example visualization of the model from one of the cross-validation folds is depicted
in Figure 6 for the three first latent signals. Panel (a) indicates the shared variances and
covariances of the latent signals along time. The first and third latent signals have a
monotonically increasing covariance coupling, while the first and second latent signals have
a periodicity in the covariance. The average latent variables of the target and non-target
trials are shown in panel (b). The third latent variable captures a strong dynamic between
time points [0.3, 0.5], which coincides with the expected P300 activity approximately 300 ms
after the stimulus representation. The first two variables show peaks also at approximately
300 ms. In general the positive trials have a remarkably different latent representations than
the negative trials. Panel (c) shows the classifier weights wp for the three latent signals with
the average classification plotted. Finally, a subset of the EEG channels are shown in panel
(d), highlighting the differences in the channel dynamics. In panel (e) the components are
found to be discriminative also when plotted on the scalp map.

6.3.2. Finding the Latent Correlations

In addition to the classification results, we evaluated our modelling approach in a simulation
study to test whether we can find the latent correlations correctly using data that resembles
the real EEG as closely as possible, but where we know the ground truth. To this end, we
simulated datasets from the fitted models, and learn a new model on the simulated data. We
repeated this for varying number of latent variables (Q = 2, 3, 4) with 10 simulations done for
each value of Q. For each simulation we computed the empirical p-value with the hypothesis
that the accuracy of our model is greater than using randomly simulated covariances from
the model. The p-values from the simulations were combined using the Fisher’s method
(Fisher, 1925), with results reported in Table 2. We use again the correlation-based score
for assessing the accuracy as with the toy data case.

7. Discussion

The LCGP is a flexible framework for multi-task learning. We demonstrate in two ex-
periments that our model can robustly learn the latent variable correlations. The model
also achieves state-of-the-art performance in both regression and classification. The added
modeling of the correlations of the underlying latent processes both improves model in-
terpretability, and regularises the model especially with multiple observations. The novel
Wishart-Gibbs cross-covariance kernel encodes mutually-dependent covariances between la-
tent signals and inputs in a parameterised way without being too flexible.
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In place of the non-stationary Gaussian kernel other non-stationary kernels are possible.
Paciorek and Schervish (2006) propose a class of non-stationary convolution kernels con-
taining, for instance, a non-stationary Matérn kernel. For future work coupling the spectral
kernels (Wilson and Adams, 2013) with Wishart correlations is another highly interest-
ing avenue for a general family of dependent, structured kernels. The mutually-dependent
Hadamard kernel would also be interesting to study in context of structured multi-task
learning to model dependent input-output relations.
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