Supplementary Material to Whitening-Free Least-Squares Non-Gaussian Component Analysis

Detail of Artificial Datasets

Here, we describe the detail of the artificial datasets used in Section 4.2. The noise components n are generated as follows:

- 1. The *n* is sampled from the centered Gaussian distribution with covariance matrix $\operatorname{diag}(10^{-2r}, 10^{-2r+4r/7}, 10^{-2r+8r/7}, \ldots, 10^{2r})$, where $\operatorname{diag}(\cdot)$ denotes the diagonal matrix.
- 2. The sampled \boldsymbol{n} is rotated as $\boldsymbol{n}'' \in \mathbb{R}^8$ by applying the following rotation matrix $\boldsymbol{R}^{(i,j)}$ for all $i, j = 3, \ldots, 10$ such that i < j:

$$R_{i,i}^{(i,j)} = \cos(\pi/4), \quad R_{i,j}^{(i,j)} = -\sin(\pi/4),$$

$$R_{j,i}^{(i,j)} = \sin(\pi/4), \quad R_{j,j}^{(i,j)} = \cos(\pi/4),$$

$$R_{kk}^{(i,j)} = 1 \ (k \neq i, k \neq j), \quad R_{kl}^{(i,j)} = 0 \ (\text{otherwise}).$$

3. The rotated n is normalized for each dimension.

By this construction, increasing r corresponds to increasing the *condition number* of the data covariance matrix (see Figure 4). Thus, the larger r is, the more ill-posed the data covariance matrix is.

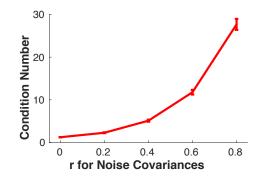


Figure 4: Condition number of the data covariance matrix as a function of experiment parameter r (with non-Gaussian components generated from the Gaussian mixture).