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Abstract

Deep convolutional neural networks (CNNs) have become one of the most successful
methods for image processing tasks in past few years. Recent studies on modern residual
architectures, enabling CNNs to be much deeper, have achieved much better results thanks
to their high expressive ability by numerous parameters. In general, CNNs are known to
have the robustness to the small parallel shift of objects in images by their local recep-
tive fields, weight parameters shared by each unit, and pooling layers sandwiching them.
However, CNNs have a limited robustness to the other geometric transformations such
as scaling and rotation, and this lack becomes an obstacle to performance improvement
even now. This paper proposes a novel network architecture, the weight-shared multi-stage
network (WSMS-Net), and focuses on acquiring the scale invariance by constructing of
multiple stages of CNNs. The WSMS-Net is easily combined with existing deep CNNs,
enables existing deep CNNs to acquire a robustness to the scaling, and therefore, achieves
higher classification accuracy on CIFAR-10, CIFAR-100 and ImageNet datasets.

Keywords: Image Classification, Scale Invariance, Convolutional Neural Network, Shared
Weights

1. Introduction

Convolutional neural networks (CNNs) (LeCun et al., 1989) have made great achievements
in the tasks of image classification and image processing (Zeiler and Fergus, 2014; Ser-
manet et al., 2014). They have already been employed for practical applications in various
situations. The CNNs are known to be robust to small parallel shift thanks to their archi-
tecture (LeCun et al., 1989): Units in a CNN have their own local receptive fields, share
weight parameters with other units, and are sandwiched by pooling layers. A brief history
of CNNs can be found in the results of the ImageNet Large Scale Visual Recognition Com-
petition (ILSVRC) (Russakovsky et al., 2014), which is a competition for image processing
algorithm using machine learning. After an 8-layer CNN, AlexNet (Krizhevsky et al., 2012),
recorded the highest accuracy in ILSVRC 2012, the 19-layer CNN, VGG (Simonyan and
Zisserman, 2015), and 22-layer CNN, GoogLeNet (Szegedy et al., 2015), updated the state-
of-the-art results in 2014 by deepening the network and increasing the number of internal
weight parameters to expand the expressive ability of the network. A further deep neu-
ral network model, ResNet (He et al., 2016), recorded the highest accuracy in ILSVRC
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Figure 1: Conceptual explanation of scale invariance in the weight-shared multi-stage net-
work (WSMS-Net). Image A provides the local features of an automobile such as
the shapes of the tires, windows, headlights, and license plate in the first stage.
Similar features are detected in the resized version of image B, a part of a sports
car, in the second stage thanks to the shared weight parameters.

2015. This new model has more than 100 convolution layers and new shortcut connections
that do not perform convolution. This architecture propagates the gradient through the
shortcut connections and overcomes the gradient vanishing problem (Schmidhuber, 2015;
Bengio, 1994; Glorot and Bengio, 2010), which limits the performance of the deep neural
networks. In 2016, a model based on ResNet also broke the record (Zagoruyko and Ko-
modakis, 2016). Many studies have focused on devising the structure of CNNs to prevent
the gradient vanishing problem (e.g., DenseNet by Huang et al. (2016a)).

In contrast, CNNs still have a limited robustness to geometric transformations other
than a parallel shift, and this problem has no established solution. In addition to parallel
shift, the main geometric transformations of objects in images are scaling and rotation (Le
et al., 2010). Scaled and rotated objects in images are recognized incorrectly by CNNs
or at least require parameters in addition to those for recognizing the original objects,
which limits the expressive ability of CNNs. Several previous studies tried to acquire the
invariance by combining with geometric transformation layers (Max et al., 2015; Gregor
et al., 2015). These layers require the localization of an object, repeated computations for
a single image, or computations between all-to-all pairs of pixels. Therefore, they require
extensive computation time and are not suitable for combination with deep CNNs.

In this paper, we propose a novel network architecture called the weight-shared multi-
stage network (WSMS-Net). In contrast to ordinary CNNs, which are built by stacking
some convolution layers, a WSMS-Net has a multi-stage architecture consisting of multiple
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ordinary CNNs arranged in parallel. A conceptual diagram of the WSMS-Net is depicted
in Fig. 1. Each stage of the WSMS-Net consists of all or part of the same CNN: The weight
of each convolution layer in each stage is shared with those of the corresponding layer of
the other stages. Each stage is given a scaled image of the original input image. The
features extracted at all stages are integrated at the integration layer and used for image
classification. Thanks to this architecture, similar features are extracted, even from objects
of different scales at the various stages, and thereby, the same objects of different scales are
classified into the same class. We apply the WSMS-Net to existing deep CNNs and evaluate
them on the CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and ImageNet (Russakovsky et al.,
2014) datasets. The experimental results demonstrate that the use of WSMS-Net signifi-
cantly improves the classification accuracy of the original deep CNNs by enabling them to
acquire scale invariance or at least the robustness to the scaling of objects.

2. Related Works

2.1. Deep CNNs

The CNNs have been introduced with the shared weight parameters, the limited receptive
fields, and the pooling layers (LeCun et al., 1989), inspired by the biological architecture of
the mammalian visual cortex (Hubel and Wiesel, 1968; Fukushima, 1980). Thanks to this
architecture, CNNs suppress increases in the number of weight parameters and are robust
to the parallel shift of objects in images. In recent years, CNNs have made remarkable
improvements in image classification with the increasingly deeper architectures. However,
by stacking more and more convolution layers in CNNs, the gradient vanishing problem
arises (Schmidhuber, 2015; Bengio, 1994; Glorot and Bengio, 2010). In general, CNNs use
the back-propagation algorithm (LeCun et al., 1989). When the network becomes very deep,
the gradient information from the output layer does not pass well to the input layer and
other layers near the input, and learning does not progress. Against the vanishing gradient
problem, ResNet (He et al., 2016) and DenseNet (Huang et al., 2016a) were proposed
as network architectures that enable learning with even deep architecture. From 2015,
following ResNet, many ideas and new architectures have been proposed (He and Zhang,
2016; Zagoruyko and Komodakis, 2016; Huang et al., 2016b; Targ et al., 2016; Han et al.,
2016). The basic structure of ResNet is called a residual block, which is composed of two
convolution layers and a shortcut connection that does not pass through the convolution
layers: The shortcut connection simply performs identity mapping. The result obtained
from the usual convolution layers is denoted by F (x), and the shortcut connection output
is denoted by x. The output obtained from the whole block is F (x) + x. In deep CNNs,
the gradient information can vanish at the feature extraction point in the convolution layer.
However, by adding an identity mapping here, the gradient information can be transmitted
without any risk of vanishing. ResNet needs no extra parameters, and the gradient can be
calculated in the same manner as the conventional CNNs.

DenseNet (Densely Connected Convolutional Network) (Huang et al., 2016a) is a net-
work that improves the concept of ResNet (He et al., 2016). Its image classification accuracy
is superior to that of ResNet. As its name implies, the structure of DenseNet connects lay-
ers densely. In addition, the output of the shortcut is not added to but is concatenated
with the output of a subsequent convolution layer in the channel direction of the feature
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map. The number of the channels of the feature map increases linearly as the network is
deepened, and the number k of the increased channels per layer is called the growth rate.
The basic architecture of DenseNet is called a dense block, and the whole network of a
DenseNet is built by stacking the dense block. The size of the feature map in a single dense
block is fixed, and the shortcuts are not connected across each dense block. Instead, a 1×1
convolution layer that does not change the size and the number of channels of the feature
map is placed after a dense block for cushioning, followed by a 2×2 pooling layer that thins
out the feature map. The main idea of these networks is an addition of extra connections,
which propagate the gradient information successfully and enable robust learning even with
100 or more convolution layers.

Although the development of new these networks, CNNs still do not have an established
solution to geometric transformations such as scaling and rotation. Lack of invariance to
these transformations is an obstacle to the progress of deep CNNs.

2.2. Deep CNNs Robust Against Geometric Transformations

Several studies have tried to address geometrical transformations using neural networks (Max
et al., 2015; Gregor et al., 2015). The Spatial Transformer Network (STN) and Deep Re-
current Attentive Writer (DRAW) infer parameters such as position and the angle of the
geometric transformation of an object in an image and correct the shape of the object by
using neural networks. They are general and powerful approaches to make a network ro-
bust against geometric transformations. However, the STN requires additional CNNs to
localize and correct an object in an image. DRAW requires repeated computations between
all-to-all pairs of pixels of the input and output images to adjust parameters gradually for
each image. They need many additional parameters and computation time and therefore
are not suitable for combining with deep CNNs.

3. Weight-Shared Multi-Stage Network

3.1. Weight-Shared Multi-Stage Network Architecture

We propose a novel network architecture called weight-shared multi-stage network (WSMS-
Net) to acquire robustness to object scaling. The basic architecture of WSMS-Net is shown
in Fig. 2. A WSMS-Net consists of S stages, and each stage is just all or part of an ordinary
CNN that can be divided into t convolution blocks for t ≥ S. Each convolution block consists
of some convolution layers. After each convolution block, the feature map is resized to half
at a downsizing layer. The downsizing layer is typically a max pooling (Riesenhuber and
Poggio, 1999), average pooling (LeCun et al., 1989), or convolution layer with a stride of 2,
but this depends on the original CNN: ResNet (He et al., 2016) employs a convolution layer
with a stride of 2 and DenseNet (Huang et al., 2016a) employs trans layer consisting of a
convolution layer with a stride of 1 followed by a 2×2 average pooling layer with a stride of 2,
as mentioned above. The first stage consists of all t blocks while the second stage has the first
(t−1) blocks, the third stage has the first (t−2) blocks, and so on. The convolution blocks at
the same depth of all the stages completely share the weight parameters of the convolution
layers. Note that when batch normalization (Ioffe and Szegedy, 2015) is employed, its
parameters are not shared. The first stage is given the original image, while the second
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Figure 2: Basic WSMS-Net consists of 3 stages. Each conv block consists of some convolu-
tion layers and it is followed by a downsizing layer, at which the feature map sizes
are reduced to half. The weight-shared label indicates that the weight parameters
of all the convolution layers in the same block in each stage are shared with each
other. At concat, the outputs of all the stages are concatenated in the channel
direction.

stage is given the image resized by half by a pooling layer. Similarly, the s-th stage is given
the image resized to half of the size of the image given to the (s−1)-th stage. Therefore, the
sizes of the output feature maps of all the stages are the same. Then, these feature maps
are concatenated in the channel direction at the ends of all the stages. After concatenation,
all of the feature maps are integrated at the integration layer and are used as input to the
last fully connected layer for the classification process. Thanks to these processes, various
features are extracted from the input image of multiple sizes in multiple stages and hence
contribute to the classification.

3.2. Combination with Existing CNNs

By combining with the WSMS-Net, ResNet (He et al., 2016) and DenseNet (Huang et al.,
2016a) are expected to classify the images that could not be dealt with by the original
CNNs. In this paper, WSMS-Net combined with ResNet is called WSMS-ResNet, and
WSMS-Net combined with DenseNet is called WSMS-DenseNet. The number of stages
and the shape of the integration layer should be optimized to construct WSMS-ResNet and
WSMS-DenseNet. The integration layer is an extra layer placed just after the concatenation
layer that concatenates all the feature maps from all the stages, and integrates all the feature
maps before the classification. For comparison, we also introduce a more trivial network
called the multi-stage network (MS-Net). A MS-Net has multiple stages like a WSMS-Net,
but each stage has weight parameters, similar to an ensemble of multiple CNNs (e.g., Zhang
et al. (2016)). MS-Net has many more parameters than WSMS-Net but does not have the
features of WSMS-Net described above.
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Figure 3: Three types of integration layers. With no conv, the concatenated feature map
is directly given to the global pooling layer followed by the last fully connected
layer. 3× 3 conv and 1× 1 conv are literally a 3× 3 convolution layer and a 1× 1
convolution layer, placed between the concatenated feature map and the global
pooling layer.

3.3. Integration Layer

We have not yet described the integration layer in detail. In WSMS-Net, the feature maps
obtained from all the stages are concatenated and are given to the integration layer before
the global pooling layer and the last fully connected layer. We consider several candidates
for an integration layer as shown in Fig. 3. In the simplest way, the integration layer does
nothing, and the last fully connected layer is given a feature vector that is longer than that
of the original network. This integration layer is called no conv hereafter. Otherwise, the
integration layer can be a convolution layer with a k × k kernel and a c output channels.
We evaluated a 3 × 3 convolution layer as the integration layer because both ResNet and
DenseNet mainly employ 3× 3 convolution layers. This integration layer is also called 3× 3
conv. We also evaluated a 1× 1 convolution layer as the integration layer called 1× 1 conv.

4. Experiments

4.1. CIFAR-10 and CIFAR-100 Classification by WSMS-DenseNet

WSMS-DenseNet for CIFAR-10 and CIFAR-100 In this section, we combined a
DenseNet (Huang et al., 2016a) with a growth rate k = 24 with WSMS-Net to con-
structed a WSMS-DenseNet, and evaluated WSMS-DenseNet for CIFAR-10 and CIFAR-100
datasets (Krizhevsky, 2009). CIFAR-10 and CIFAR-100 are datasets of 32×32 RGB images
of natural scene objects: Each consists of 50,000 training images and 10,000 test images.
Each image is manually given one of 10 class labels in CIFAR-10, while each image is
given one of 100 class labels in CIFAR-100: The number of images per class is reduced
in CIFAR-100. The DenseNet (k = 24) was reported as the model achieving the second
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Table 1: Test Error Rates of WSMS-DenseNet on the CIFAR-10/CIFAR-100.

C10+ C100+

network growth rate #params Error(%) #params Error(%)

DenseNet 24 27.2M 3.74 27.2M 19.25
DenseNet 26 31.9M 3.82 31.9M 18.94

MS-DenseNet (1 × 1 conv) 24 41.3M 4.18 41.3M 18.70
WSMS-DenseNet (no conv) 24 27.4M 4.54 27.8M 20.11
WSMS-DenseNet (3 × 3 conv) 24 32.7M 3.54 32.7M 19.16

WSMS-DenseNet (1 × 1 conv) 24 28.0M 3.51 28.0M 18.45

highest classification accuracy among the results of CIFAR-10 and CIFAR-100 datasets in
the original study. The original DenseNet (k = 24) has three dense blocks, and the sizes
of the feature map are 32 × 32, 16 × 16, and 8 × 8 in the first, second, and third dense
blocks, respectively. There are 3 channels at the input, which is increased to 16 channels
by the convolution layer placed before the first dense block. Moreover, the growth rate k
is increased by 24 at every convolution layer. Each dense block consists of 32 convolution
layers. Therefore, the total number of the channels is 16 + 24 × 32 × 3 = 2, 320. After
the third dense block, global average pooling is performed, resulting in a 2,320-dimensional
feature vector that is given to the last fully connected layer for classification.

We constructed WSMS-DenseNet of growth rate k = 24 by combining the DenseNet
with WSMS-Net. An overall diagram of WSMS-DenseNet is depicted in Fig. 4. Each dense
block of the DenseNet was treated as a convolution block of the WSMS-Net, and we set the
number of stages to 3. The final numbers of the channels for the first, second, and third
stages were 16 + 24× 32× 3 = 2, 320, 16 + 24× 32× 2 = 1, 552, and 16 + 24× 32× 1 = 784,
respectively. We set the number c of the channels of the final feature map to 128: The
feature map was projected to 8 × 8 feature maps of 128 channels through the integration
layer of 3×3 conv or 1×1 conv before the global pooling layer. The hyperparameters and the
other structure parameters of the WSMS-DenseNet followed those of the original DenseNet
(k = 24). All the images were normalized with the mean and variance of each filter, and
4 pixels padding on each side, 32 × 32 cropping and random flipping in the horizontal
direction were employed as further data normalization and data augmentation (Lee et al.,
2015; Romero et al., 2015; Springenberg et al., 2015). Batch normalization (Ioffe and
Szegedy, 2015) and ReLU activation function (Nair and Hinton, 2010) were used. The
weight parameters were initialized following the algorithm proposed in the reference (He
et al., 2016). WSMS-DenseNet was trained using the momentum SGD algorithm with the
momentum parameter of 0.9 and the weight decay of 10−4 over 300 epochs. The learning
rate was initialized to 0.1, and then, it was reduced to 0.01 and 0.001 at the 150th and the
225th epochs, respectively. Note that, of the experimental condition, only the mini-batch
size was changed (from 64 to 32) owing to the capacity of the computer we used: This
change could potentially degrade the classification accuracy of the WSMS-DenseNet.

Classification Results Table 1 summarizes the results of the WSMS-DenseNet (k = 24)
and the original DenseNets. For CIFAR-10, the error rate of our proposed WSMS-DenseNet
with the 1 × 1 conv integration layer is 3.51 %, which is better than the error rate of 3.74
% obtained by the original DenseNet (k = 24). However, the number of parameters of
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Figure 4: WSMS-DenseNet for CIFAR-10 and CIFAR-100 classification. The input is 32×
32 RGB images (32× 32× 3). The dense block is dense architecture of DenseNet.
The sizes of the feature maps are same in each dense blocks. The trans layer
consists of an 1 × 1 convolution layer with a stride of 1 and a 2 × 2 average
pooling layer for downsizing the feature maps. After integration layer, 8 × 8 × c
feature maps are given to the fully connected layer for classification.
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Figure 5: (a) Examples of CIFAR-10 test images misclassified by the DenseNet (k = 24)
and the DenseNet (k = 26) but classified by the WSMS-DenseNet (k = 24, 1 × 1
conv) correctly; (b) Examples of CIFAR-10 test images.

WSMS-DenseNet was increased from 27.2M to 28.0M. For fair comparison, we also eval-
uated DenseNet (k = 26). In spite of the larger increase in the number of parameters,
DenseNet (k = 26) achieved a worse error rate of 3.82 %. These results demonstrate that
an increase in the number of parameters has a limit in the improvement of classification
accuracy. In contrast, our proposed WSMS-Net enables the original DenseNet to achieve
better classification accuracy. The MS-DenseNet achieved an error rate that was worth than
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those of the original DenseNet and WSMS-DenseNet in spite of a massive increase in the
number of parameters, indicating that the improvement of the WSMS-DenseNet is thanks
to the shared parameters rather than the network architecture. Even though the WSMS-
DenseNet has a limited increase in the number of parameters thanks to shared weight
parameters than the MS-DenseNet, both the WSMS-DenseNet and MS-DenseNet have an
equal increase in the number of calculations owing to the second and third stages. There-
fore, we evaluated the number of multiplications over all convolution layers in the original
DenseNet and WSMS-DenseNet. The number of multiplications is about 6,889M for the
original 100-layer DenseNet and 8,454M for the 101-layer WSMS-DenseNet with the 1 × 1
conv integration layer. Hence, our proposed WSMS-DenseNet incurs only a 20 % increase
in the number of multiplications. Also for CIFAR-100, our proposed WSMS-DenseNet with
the 1 × 1 conv integration layer achieved an accuracy that was 18.45 % than the original
DenseNet. DenseNet (k = 26) and the MS-DenseNet also achieved accuracies better than
that of the original DenseNet (k = 24) but worse than that of the WSMS-DenseNet.

To qualitatively evaluate our proposed WSMS-Net, we collected test images from CIFAR-
10 that DenseNet (k = 24) and DenseNet (k = 26) misclassified but WSMS-DenseNet
(k = 24) classified correctly. Random examples of such test images are shown in Fig. 5(a).
Many images in Fig. 5(a) show close-up views of objects with large portions of object
cropped, or they show objects taken against backgrounds in long shot. For comparison,
example images were randomly chosen from all the test images, as shown in Fig. 5(b). A
Comparison between the two groups demonstrates that the WSMS-Net additionally clas-
sifies images showing scaled objects. We conclude that the WSMS-Net has acquired the
scale invariance or is at least more robust to object scaling, and therefore, it achieves better
classification accuracy than the original CNNs in spite of the limited increase in the number
of weight parameters.

4.2. CIFAR-10 and CIFAR-100 Classification by WSMS-ResNet

WSMS-ResNet for CIFAR-10 and CIFAR-100 This section evaluates ResNet (He
et al., 2016) with WSMS-Net for CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) in the same
manner as WSMS-DenseNet. The 110-layer ResNet was reported as the model achieving
the highest accuracy for CIFAR-10 when the reference (He et al., 2016) was published. The
110-layer ResNet has three compartments and each compartment consists of 18 residual
blocks. Sizes of the feature maps are 32 × 32, 16 × 16, and 8 × 8 in the first, second, and
third compartments, respectively. The number of the channels of the feature map is 3 at
the input and increased to 16, 32, and 64 by the convolution layers placed before the first,
second, and third compartments, respectively. After the third compartment, global average
pooling is performed on the 8 × 8 feature map of 64 channels, resulting in an 1 × 1 feature
map of 64 channels, i.e., a 64-dimensional feature vector. This feature vector is given to the
final fully connected layer for classification.

We constructed WSMS-ResNet by combining the 110-layer ResNet with WSMS-Net and
we set the number of stages 3. An overall diagram of WSMS-ResNet is depicted in Fig. 6
The final numbers of the channels for the first, second, and third stages were 64, 32, and 16,
respectively. The integration layer was given the feature map of 64+32+16 = 112 channels.
With the integration layer of no conv, the feature maps became an 112-dimensional feature
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Figure 6: WSMS-ResNet for CIFAR-10 and CIFAR-100 classification. The resblocks con-
sists of a mass of residual blocks (resblock means residual block). The sizes of
feature maps are same in each mass of resblocks. In 2nd block and 3rd block of 1st
stage, and in 2nd block of 2nd stage, convolution layers with strides of 2 are used
for downsizing of feature maps. These types of a mass of resblock represented as
rectangle having 1

2 circle inside. After integration layer, 8× 8× 128 feature maps
are put in fully connected layer after global pooling layer for classification.

vector through the global average pooling layer. We set c, the number of channels of the final
feature map, to 128. The hyperparameters and other conditions of WSMS-ResNet followed
those used in the original study. The WSMS-ResNet was trained using the momentum SGD
algorithm with the momentum parameter of 0.9, the mini-batch size of 128, and the weight
decay of 10−4 over 164 epochs. The learning rate was set to 0.01, and then, it was changed
to 0.1, 0.01, and 0.001 at the 2nd, the 82nd, and the 123rd epochs, respectively.

Classification Results Table 2 summarizes the results of the WSMS-ResNet and the
original ResNet. Since the original study (He et al., 2016) did not report the results for
CIFAR-100, we evaluated the 110-layer ResNet for CIFAR-100 in addition to the WSMS-
ResNet for comparison. Following the original study (He et al., 2016), we obtained the
mean test error rate of five trials. For CIFAR-10, the error rate of our proposed WSMS-
ResNet with the 1× 1 conv integration layer is 6.36 %: This accuracy is obviously superior
to the error rate of 6.61 % obtained by the original ResNet. However, the number of
parameters of WSMS-ResNet was increased from 1.73M to 1.75M. For fair comparison,
we also evaluated the deeper ResNets of 116-layer and 122-layer. In spite of the increase
in the number of parameters, the deeper ResNets achieved the accuracies at a similar
level to the 110-layer ResNet. These results demonstrate that the increase in the number
of parameters along with the increase in the depth has a limit in the improvement of
classification accuracy. In contrast, our proposed WSMS-Net enables the original ResNet
to achieve better classification accuracy. The MS-ResNet achieved an error rate better than
those of the original ResNet but worse than those of the WSMS-ResNet in spite of a massive
increase in the number of parameters, indicating that the improvement of WSMS-ResNet
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Table 2: Test Error Rates of WSMS-ResNet on the CIFAR-10/CIFAR-100.
C10+ C100+

Network depth #params Error (%) #params Error (%)

ResNet 110 1.73M 6.61 1.73M 28.77
ResNet 116 1.82M 6.60 1.83M 28.34
ResNet 122 1.92M 6.57 1.93M 28.39

MS-ResNet (1 × 1 conv) 111 2.23M 6.41 2.25M 27.23
WSMS-ResNet (no conv) 110 1.73M 7.23 1.74M 28.72
WSMS-ResNet (3 × 3 conv) 111 1.86M 6.41 1.87M 27.16

WSMS-ResNet (1 × 1 conv) 111 1.75M 6.36 1.76M 27.45

is thanks to the shared parameters rather than the network architecture. The number of
multiplications is about 252M in the original 110-layer ResNet and 301M for the 111-layer
WSMS-ResNet with the 1 × 1 conv integration layer. Hence, our proposed WSMS-ResNet
incurs only a 20 % increase in the number of multiplications in the same case as WSMS-
DenseNet.

In the case of CIFAR-100, the WSMS-ResNet with 1 × 1 conv integration layer also
surpassed the original ResNet. Unlike the case of CIFAR-10, the deeper ResNets and the
MS-ResNet achieved better results than those of the original ResNet, and the WSMS-
ResNet with 3 × 3 conv integration layer achieved the best result. We consider that the
difference between CIFAR-10 and CIFAR-100 is caused by the complexity of classification
task. Classification of CIFAR-100 is more difficult because of the larger number of classes
and the limited numbers of samples, and thus, requires much more weight parameters than
the classification of CIFAR-10. Therefore, the WSMS-ResNet with 3 × 3 conv integration
layer, having more weight parameters, is simply more advantageous than the WSMS-ResNet
with 1 × 1 conv integration layer. The deeper ResNet and MS-ResNet are also better than
the original ResNet thanks to their large numbers of weight parameters. Anyway, our
proposed WSMS-Net enables the original ResNet to achieve a better classification accuracy
in spite of the limited increase in the parameters even for CIFAR-100.

4.3. ImageNet classification by WSMS-ResNet

WSMS-ResNet for ImageNet This section evaluates ResNet (He et al., 2016) with
WSMS-Net for the ImageNet 2012 classification dataset (Russakovsky et al., 2014). Ima-
geNet consists of 1.28 million training images and 50,000 validation images. Each image is
given one of 1,000 class labels. We used the 50-layer, 101-layer and 152-layer ResNets with
bottleneck architecture. To downsize the feature map at the entrance of each compartment,
a ResNet with the bottleneck architecture modifies the stride of the second of the three
sequential convolution layers to 2, and replaces the shortcut with a 1 × 1 convolution layer
with a stride of 2, while the original ResNet employs pooling layers.

The ResNet is given an N ×M RGB input image. The input image becomes an N
4 × M

4
feature map of 64 channels through a 7 × 7 convolution layer with a stride of 2 and a
subsequent 3×3 max pooling layer with a stride of 2. The remaining part of the ResNet has
four compartments, each consisting of several residual blocks with bottleneck architecture.
The size of the feature maps are N

4 × M
4 , N

8 × M
8 , N

16 × M
16 , and N

32 × M
32 , and the number

of channels of the feature maps are 256, 512, 1,024, and 2,048 for the first, second, third,
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Figure 7: WSMS-ResNet for ImageNet classification. The input is a cropped 224×224 RGB
image (224 × 224 × 3) in this experiment. At the first convolution block in each
stage, a 7 × 7 convolution layer with a stride of 2 and a max pooling layer result
in the feature map of 56×56×64. The resblocks consists of many residual blocks.
The sizes of the feature maps are fixed through the same compartments. At the
entrances of the second and following blocks, convolution layers with strides of
1 and 2 × 2 average pooling layers are used for downsizing of the feature maps;
They are represented as the rectangles having 1

2 circles and convolution layers
inside. After the integration layer, the 7×7× c feature map is given to the global
pooling layer followed by the fully connected layer for classification.

and fourth compartments, respectively. After the fourth compartment, global pooling is
performed, resulting in 1 × 1 feature map of 2,048 channels. This feature vector is given to
the final fully connected layer for 1,000-class classification. The number of residual blocks
are 3, 4, 6, and 3 in the first, second, third and forth compartments of the 50-layer ResNet,
3, 4, 23, and 3 in the 101-layer ResNet, and 3, 8, 36, and 3 in the 152-layer ResNet.

We constructed the WSMS-ResNets by combining the WSMS-Net with 50-layer, 101-
layer, and 152-layer ResNets (He et al., 2016) for the ImageNet dataset with WSMS-Net.
An overall diagram of the WSMS-ResNet for the ImageNet classification task is depicted
in Fig. 7. The number of stages was set to three. The first stage was just the same as the
original ResNet before the global pooling layer. An N ×M input image was downsized to
N
2 × M

2 for the second stage, and was downsized to N
4 × M

4 for the third stage. The second
stage was composed of the first three compartments of the original ResNet, in which the size
of the feature map was N

8 × M
8 , N

16 ×
M
16 , and N

32 ×
M
32 in the first, second, and third blocks,

respectively. In addition, the third stage was composed of the first two compartments,
using the N

16 × M
16 and N

32 × M
32 feature maps. The integration layer was given a N

32 × M
32

feature map of 2, 048 + 1024 + 512 = 3, 584 channels. We set c, the number of channels
of the final feature map, to 2,048. Note that the WSMS-ResNets used convolution layers
with strides of 1 followed by 2 × 2 average pooling layers instead of convolution layers
with strides of 2 as depicted in Fig. 8. This experiment evaluated only the integration
layer of 1 × 1 conv because of the results in the previous sections. The hyperparameters
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Figure 8: Difference in downsizing between the original ResNets and our proposed WSMS-
ResNets. The original ResNets use 3 × 3 convolution layers with strides of 2 for
downsizing the feature maps, i.e., 2 × 2 pooling layers followed by convolution
layers with strides of 1. On the other hand, WSMS-ResNets use 3×3 convolution
layers with strides of 1 followed by 2 × 2 average pooling layers.

and other conditions of WSMS-ResNets followed those used in the original study and the
reimplementation by Facebook AI Research posted on https://github.com/facebook/

fb.resnet.torch. Batch normalization and the ReLU activation function were used. The
weight parameters were initialized following the algorithm proposed in He et al. (2016).
The WSMS-ResNets were trained using the momentum SGD algorithm with a momentum
parameter of 0.9, mini-batch size of 256, and weight decay of 10−4 over 90 epochs. The
learning rate was initialized to 0.1 and reduced to 0.01 and 0.001 at the 30th and 60th
epochs, respectively.

Classification Results Table 3 summarizes the results of the WSMS-ResNets and orig-
inal ResNets for ImageNet classification. The classification results of the original ResNets
were cited not from the original study (He et al., 2016) but from the reimplementation
by Facebook AI Research posted on https://github.com/facebook/fb.resnet.torch.
Note that Facebook’s results are better than those shown in the original study (He et al.,
2016). According to Table 3, our proposed 51-layer, 102-layer, and 153-layer WSMS-
ResNets achieved better results than original 50-layer, 101-layer, and 152-layer ResNets,
respectively, with respect to both top-1 and top-5 error rates. The WSMS-ResNets for Im-
ageNet classification have more parameters than the original ResNets. However, the 102-
layer WSMS-ResNet with 52.0M parameters is superior to the original 152-layer ResNet
with 60.2M parameters. This is an evidence that our proposed WSMS-Net improves the
original CNN while maintaining a limited increase in the number of weight parameters.
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Table 3: Single Crop Test Error Rates of WSMS-ResNets on the ImageNet.

Network depth #params top-1 Error(%) top-5 Error(%)

ResNet 50 25.6M 24.01 7.02
WSMS-ResNet (1 × 1 conv) 51 32.9M 23.00 6.45

ResNet 101 44.5M 22.44 6.21
WSMS-ResNet (1 × 1 conv) 102 52.0M 21.91 6.03

ResNet 152 60.2M 22.16 6.16
WSMS-ResNet (1 × 1 conv) 153 67.7M 21.78 5.89

All the results for the CIFAR-10, CIFAR-100, and ImageNet classification tasks demon-
strate that a combination with our proposed WSMS-Net contributes to the various datasets
and architectures of CNNs.

5. Conclusion

In this study, we proposed a novel network architecture for convolutional neural networks
(CNNs) called the weight-shared multi-stage network (WSMS-Net) to improve classification
accuracy by acquiring the robustness to object scaling. The WSMS-Net consists of multiple
stages of CNNs given input images of different sizes. All the feature maps obtained from
all the stages are concatenated and integrated at the ends of the stages. The increases in
the number of weight parameters and computations were limited. The experimental results
demonstrated that the WSMS-Net achieved better classification accuracy and had higher
robustness to object scaling than existing CNN models, while deepening the network is
a limited way to improve classification accuracy. Future works include a more detailed
analysis and experiments how our method works; e.g., visualizing the feature maps in
different stages to ensure that our method can acquire multi-scale features in network,
evaluating our method on controlled datasets containing many scales of images to test the
ability to handle multi-scale objects in detail.
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