
Proceedings of Machine Learning Research 77:113–128, 2017 ACML 2017

Multi-view Clustering with Adaptively Learned Graph

Hong Tao taohong.nudt@hotmail.com

Chenping Hou hcpnudt@hotmail.com

Jubo Zhu ju bo zhu@aliyun.com

Dongyun Yi dongyun.yi@gmail.com

College of Science, National University of Defense Technology, Changsha, Hunan, 410073, China

Editors: Yung-Kyun Noh and Min-Ling Zhang

Abstract

Multi-view clustering, which aims to improve the clustering performance by exploring the
data’s multiple representations, has become an important research direction. Graph based
methods have been widely studied and achieve promising performance for multi-view clus-
tering. However, most existing multi-view graph based methods perform clustering on the
fixed input graphs, and the results are dependent on the quality of input graphs. In this
paper, instead of fixing the input graphs, we propose Multi-view clustering with Adap-
tively Learned Graph (MALG), learning a new common similarity matrix. In our model,
we not only consider the importance of multiple graphs from view level, but also focus on
the performance of similarities within a view from sample-pair level. Sample-pair-specific
weights are introduced to exploit the connection across views in more depth. In addition,
the obtained optimal graph can be partitioned into specific clusters directly, according to its
connected components. Experimental results on toy and real-world datasets demonstrate
the efficacy of the proposed algorithm.

Keywords: Multi-view Clustering, Graph-based Learning, Sample Pair Significance

1. Introduction

In many real-world applications, such as video surveillance and image retrieval, heteroge-
neous features can be obtained to represent the same instance. For example, an image can
be characterized by various descriptors, such as SIFT (Lowe (2004)), histograms of oriented
gradients (HOG) (Dalal and Triggs (2005)), GIST (Oliva and Torralba (2001)) and local
binary pattern (LBP) (Ojala et al. (2002)); a webpage can be described by its content, the
text of webpages linking to it, and the link structure of linked pages. Since these hetero-
geneous features summarize the objects’ characteristics from distinct perspectives, they are
regarded as multiple views of the data. Multi-view learning, which explores the informa-
tion from different views to improve the learning performance, has become an important
research direction (Xu et al. (2013); Hou et al. (2017)).

Clustering is the task to partition objects into meaningful groups without label informa-
tion. To properly integrate the information from multiple views, many multi-view clustering
approaches have been proposed (Chaudhuri et al. (2009); Kumar and Daumé (2011); Liu
et al. (2013); Cai et al. (2013)). Among these methods, a number of graph based multi-view
clustering algorithms were presented with good performance. Kumar et al. (2011) extended
spectral clustering for multi-view learning by co-regularizing the clustering hypotheses to
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make graphs from different views agree with each other. With a nonnegative constraint on
the relaxed cluster assignment matrix, Cai et al. (2011) developed the multi-modal spectral
clustering (MMSC) algorithm to learn a commonly shared graph Laplacian matrix. Based
on bipartite graph, Li et al. (2015) utilized local manifold fusion to integrate heterogeneous
features and proposed a new large-scale multi-view spectral approach (MVSC). Nie et al.
(2017) proposed a multi-view clustering method with adaptive neighbors (MLAN), this
method performs clustering and local structure learning simultaneously.

Despite the efficacy of graph based multi-view clustering methods, there still exists some
limits. On one hand, some methods conduct the subsequent procedures based on the given
similarity matrices without modifying them. Thus, the clustering results are dependent
on the quality of the input graphs. To solve this problem, Nie et al. (2016) proposed a
constrained laplacian rank (CLR) model to learn a new similarity matrix based on the
given initial affinity matrix. By imposing rank constraint on the corresponding Laplacian
matrix, the resultant similarity matrix has c exact connected components (c is the number
of clusters) and each component corresponds to a cluster. However, CLR is developed in
single-view setting and is inapplicable to dealing with multiple graphs simultaneously.

On the other hand, those methods combining different views only consider the diversity
of view contributions, but ignore the quality of pairwise relationships within the same view.
In practice, the noise is usually non-homogeneously distributed, similarities of different
sample pairs within the same view might also have varied capability for distinguishing
the true cluster structure. Thus, sample pair significance analysis is very important for
learning the detailed connection across views. Instead of treating similarities of different
sample pairs equally (using the same weight for a certain view), a promising choice is to
assume that different similarities usually have distinct weights according to their sample pair
significance. Specifically, we introduce sample-pair-specific weights to measure the sample
pair significance. How to adaptively learn these sample-pair-specific weights is crucial to
find the right clustering structure. Self-paced learning (SPL) (Kumar et al. (2010); Jiang
et al. (2014)), which incorporates samples from ‘easy’ to ‘complex’ into the training process
by adaptively assigning them weights, offers a feasible strategy for addressing this problem.
There are two weighting manners in SPL, i.e., hard weighting and soft weighting. Soft
weighting is demonstrated more effective in previous studies (Xu et al. (2015); Zhao et al.
(2015)) and also fits our setting better. Hence, we transplant the soft weighting manner of
SPL into multi-view graph based clustering.

In this paper, based on CLR, we propose Multi-view clustering with Adaptively Learned
Graph (MALG), considering both `1-norm and `2-norm distances. Specifically, given ini-
tial affinity matrices from multiple views, we attempt to learn a new common similarity
matrix with explicit clustering structure by forcing rank constraint on the corresponding
Laplacian matrix. Meanwhile, both the quality diversity of multiple graphs and the sam-
ple pair significance within a certain graph are taken into consideration by introducing the
sample-pair-specific weights. Based on the above two aspects, the resulting model is able
to adaptively learn a new common similarity matrix and exploit the connection between
different views in more depth.

There are several benefits of our approach: The proposed approach modifying the sim-
ilarity matrix during each iteration until reach to the optimal one, and the outputted
similarity matrix explicitly give the clustering result; The sample-pair-specific weights are
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first employed to measure the quality of similarities of different sample pairs for multi-view
graph based clustering; The proposed objective functions can be solved by a simple yet
effective algorithm; The clustering performance of the proposed method is examined on toy
and real-world datasets and our approach outperforms other related methods in most cases.

2. Related Works

We first introduce the notations used in this paper. Matrices and vectors are written as
boldface uppercase letters and boldface lowercase letters respectively. For matrix M, the
i-th row and the ij-th element of M are denoted as mi and mij , respectively. The trace of
matrix M is denoted by Tr(M). The transpose of matrix M is denoted as MT . The `1-
norm and `2-norm of vector v is denoted by ‖v‖1 and ‖v‖2, the Frobenius and the `1-norm
of matrix M are represented as ‖M‖F and ‖M‖1 respectively. 1 denotes a column vector
with all ones, and the identity matrix is denoted by I.

2.1. CLR Revised

Given an initial similarity matrix A ∈ Rn×n, CLR aims to learn a new similarity matrix S ∈
Rn×n with exact c connected components, where n is the number of data points and c is the
number of clusters. The Laplacian matrix related to S is defined as LS = DS− (ST +S)/2,
where DS is a diagonal matrix with i-th diagonal element as

∑
j (sij + sji)/2. There is an

important property of the Lapalcian matrix as follows (Chung (1997)).

Theorem 1 The multiplicity c of the eigenvalue 0 of the Laplacian matrix LS is equal to
the number of connected components in the graph associated with S.

Based on this observation, Nie et al. (2016) constrained the rank of LS to be n − c,
and proposed the following CLR model for graph based clustering with both `1-norm and
`2-norm distances:

JCLR−`1 = min∑
j sij=1,sij≥0,rank(LS)=n−c

‖S−A‖1, (1)

JCLR−`2 = min∑
j sij=1,sij≥0,rank(LS)=n−c

‖S−A‖2F . (2)

It has been shown that CLR achieves superior performance for clustering (Nie et al.
(2016)). Note that the CLR method only works for single-view data. It cannot deal with
graphs from multiple views simultaneously.

2.2. SPL

By stimulating the learning process of humans, Bengio et al. (2009) proposed curriculum
learning to learn a model by gradually including samples into training from easy to com-
plex. Instead of using the predetermined curriculum, Kumar et al. (2010) derived the SPL
framework to learn the curriculum and the model simultaneously. The general SPL model
includes a weighted loss term on all samples and a regularizer term imposed on weights:

min
Θ,w∈[0,1]n

n∑
i=1

wili(Θ) + f(w;λ), (3)
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where li(Θ) denotes the loss function of i-th sample, Θ represents the model parameter,
w = [w1, · · · , wn]T denote the weight variables reflecting the samples’ importance, f(w;λ)
is the self-paced regularizer, and λ is a parameter. There are two kinds of regularization in
SPL: one assigns binary weights to samples (hard regularization), and the other allocates
real-valued weights (soft regularization). In real-world applications, the noise contained in
data is usually non-homogeneously distributed. Under this circumstance, it has been shown
that soft weighting is more effective (Zhao et al. (2015); Xu et al. (2015)).

3. Multi-view Clustering with Adaptively Learned Graph

3.1. The Proposed Formulation

Let A(v) ∈ Rn×n denote the similarity matrix from the v-th views (v = 1, · · · , V ). In multi-
view clustering, the clustering results of different views should be consistent. We assume
there is a common shared similarity matrix S which has exact c connected components.
Thus, in the multi-view setting, Eq. (1) and Eq. (2) can be extended to the following
formulations:

min
S|

∑
j sij=1,sij≥0,rank(LS)=n−c

V∑
v=1

∥∥∥S−A(v)
∥∥∥

1
, (4)

min
S|

∑
j sij=1,sij≥0,rank(LS)=n−c

V∑
v=1

∥∥∥S−A(v)
∥∥∥2

F
. (5)

As different views may have distinct physical meanings, treating multiple graphs equally
is often difficult to find the optimal solution. What is more, the above two formulations fail
to measure the differences in individual sample pairs within and across views. In order to

bridge this gap, we introduce sample-pair-specific weights w
(v)
ij ≥ 0 into the multi-view graph

based clustering model. Considering both `1-norm and `2-norm distances, the objective
functions of MALG are formulated as follows:

min
S,{W(v)}Vv=1

V∑
v=1

∥∥W(v) � (S−A(v))
∥∥

1
+ f(W(v);λ)

s.t.
∑

j sij = 1, sij ≥ 0, rank(LS) = n− c,
W(v) ∈ [0, 1]n×n, 1 ≤ v ≤ V,

(6)

min
S,{W(v)}Vv=1

V∑
v=1

∥∥∥√W(v) � (S−A(v))
∥∥∥2

F
+ f(W(v);λ)

s.t.
∑

j sij = 1, sij ≥ 0, rank(LS) = n− c,
W(v) ∈ [0, 1]n×n, 1 ≤ v ≤ V,

(7)

where W(v) = (w
(v)
ij )1≤i,j≤n is composed of the weights of n× n elements in the v-th view,√

W(v) calculates element-wise square root of W(v) (i.e., the so-called Hadamard’s root), �
is the element-wise product (Hadamard product) operation of matrices, f(W(v);λ) denotes
the regularizer imposed on the weights, and λ is a parameter. The first term in Eq. (6) or
(7) is the weighted loss between the learned similarity and their input values across different
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views. Weights of high-quality similarities are encouraged to be larger in order to obtain
small losses.

In order to learning the weights w
(v)
ij automatically during the optimization process,

following Xu et al. (2015), the regularization term f(W(v);λ) is set as follows:

f(w
(v)
ij ;λ) = ln (1 + e−λ − w(v)

ij )(1+e−λ−w(v)
ij ) + ln (w

(v)
ij )w

(v)
ij − λw(v)

ij . (8)

The optimal weight of the (ij)-th element in the similarity matrix in the v-th view can be
obtained by solving

min
w

(v)
ij ∈[0,1]

w
(v)
ij l

(v)
ij + f(w

(v)
ij ;λ), (9)

where l
(v)
ij represents |s(v)

ij − a
(v)
ij | or (s

(v)
ij − a

(v)
ij )2 for the convenience of notation. Setting

the derivative with respect to w
(v)
ij to zero, then we have

w
(v)
ij

∗
=

1 + e−λ

1 + el
(v)
ij −λ

. (10)

It is worth to note that Eq. (10) can be regarded as an adapted logistic function, which
inherits the merits of logistic function and provides probabilistic weights.

By combining Eqs. (6) - (7) and (8) respectively, we obtain the resulting objective
functions. The learned common similarity matrix S can be used for clustering directly
according to Tarjan’s strongly connected components algorithm (Tarjan (1972)).

3.2. Optimization

Denote σi(LS) as the i-th smallest eigenvalue of LS. Since LS is positive semi-definite, we

have σi(LS) ≥ 0. So the constraint rank(LS) = n − c will be ensured if
c∑
i=1

σi(LS) = 0.

According to Ky Fan’s Theorem (Fan (1949)), we have

c∑
i=1

σi(LS) = min
F∈Rn×c,FTF=I

Tr(FTLSF) (11)

Hence, with a large enough γ, problems (6) and (7) are equivalent to the following problems:

min
S,F,{W(v)}Vv=1

V∑
v=1

∥∥W(v) � (S−A(v))
∥∥

1
+ 2γTr(FTLSF) + f(W(v);λ)

s.t.
∑

j sij = 1, sij ≥ 0,FTF = I,F ∈ Rn×c,
W(v) ∈ [0, 1]n×n, 1 ≤ v ≤ V,

(12)

min
S,F,{W(v)}Vv=1

V∑
v=1

∥∥∥√W(v) � (S−A(v))
∥∥∥2

F
+ 2γTr(FTLSF) + f(W(v);λ)

s.t.
∑

j sij = 1, sij ≥ 0,FTF = I,F ∈ Rn×c,
W(v) ∈ [0, 1]n×n, 1 ≤ v ≤ V.

(13)
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The optimal solution to these two problems will make equation
c∑
i=1

σi(LS) = 0 holds.

The problems (12) and (13) can be solved in an alternating fashion, i.e., dividing vari-
ables into disjoint blocks and alternatively optimizing one of them with the others fixed.

Fix S and F, update {W(v)}Vv=1. When S and F is fixed, W(v) is optimized by solving
the following problem,

min
W(v)

∑
1≤i,j≤n

{
w

(v)
ij l

(v)
ij + f(w

(v)
ij ;λ)

}
, (14)

where l
(v)
ij = |s(v)

ij − a
(v)
ij | for problem (12) or l

(v)
ij = (s

(v)
ij − a

(v)
ij )2 for problem (13) with the

current obtained S. This optimization is separable with respect to each w
(v)
ij , and thus can

be easily solved by Eq. (10).

Fix S and {W(v)}Vv=1, update F. When S and {W(v)}Vv=1 are fixed, problems (12) and
(13) are transformed into

min
F∈Rn×c,FTF=I

Tr(FTLSF). (15)

The optimal solution F is formed by the c eigenvectors that correspond to the c smallest
eigenvalues of LS.

Fix {W(v)}Vv=1 and F, update S. Respectively, problems (12) and (13) become

min
S|

∑
j sij=1,sij≥0

V∑
v=1

∑
i,j

w
(v)
ij |sij − a

(v)
ij |+ γ

∑
i,j

‖fi − fj‖22 sij , (16)

and

min
S|

∑
j sij=1,sij≥0

V∑
v=1

∑
i,j

w
(v)
ij (sij − a(v)

ij )2 + γ
∑
i,j

‖fi − fj‖22 sij , (17)

where fi denotes the i-th row (i = 1, · · · , n) of F.
As there is no dependence between different is, the above two problems can be solved

for each individual i:

min∑
j sij=1,sij≥0

V∑
v=1

∑
j

w
(v)
ij |sij − a

(v)
ij |+ γ

∑
i,j

‖fi − fj‖22 sij , (18)

min∑
j sij=1,sij≥0

V∑
v=1

∑
j

w
(v)
ij (sij − a(v)

ij )2 + γ
∑
i,j

‖fi − fj‖22 sij . (19)

Denote bij = ‖fi − fj‖22, and denote bi as a vector with the j-th element as bij (same for

si, a
(v)
i and w

(v)
i ), then problems (18) and (19) can be written in vector form as

min
sTi 1=1,si≥0

V∑
v=1

∥∥∥diag(w
(v)
i )(si − a

(v)
i )
∥∥∥

1
+ γsTi bi, (20)
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min
sTi 1=1,si≥0

V∑
v=1

∥∥∥∥diag(

√
w

(v)
i )(si − a

(v)
i )

∥∥∥∥2

F

+ γsTi bi, (21)

where diag(x) returns a diagonal matrix with the elements of x on the main diagonal.
Using the iterative re-weighting method (Nie et al. (2016)), problem (20) can be ad-

dressed by solving the following problem iteratively:

min
sTi 1=1,si≥0

V∑
v=1

Tr(si − a
(v)
i )

T
U(v)(si − a

(v)
i )+γsTi bi, (22)

where U(v) is a diagonal matrix with the j-th diagonal element as

u
(v)
jj =

w
(v)
ij

2|s̃ij − a(v)
ij |

, (23)

and s̃ij is the current solution. For problem (21) with the `2-norm distance, denote U(v) =

diag(w
(v)
i ), then it can also be unified in the form of problem (22).

Now, we focus on solving problem (22). Let

U =

V∑
v=1

U(v), (24)

pi =
V∑
v=1

U(v)a
(v)
i −

γ

2
bi, (25)

then problem (22) can be further simplified as

min
sTi 1=1,si≥0

sTi Usi − sTi pi. (26)

The Lagrangian function of problem (26) is

L(si, η,βi) =
1

2
sTi Usi − sTi pi − η(sTi 1− 1)− βi

T si, (27)

where η and βi ≥ 0 are the Lagrangian multipliers. According to the KKT condition, the
optimal solution of si is

sij = (
1

uii
η +

1

uii
pij)+, (28)

where (x)+ = max(0, x). Define the following function

gi(x) =
∑
i

(
1

uii
x+

1

uii
pij)+ − 1. (29)

Then according to Eqs. (28) and (29), and the constraint sTi 1 = 1, it holds that

gi(η) = 0. (30)
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That is to say, the value of η is the root of function gi(x). Note that gi(x) is a piecewise
linear and monotonically increasing function, thus its root can be easily found with Newton
method. Once η is solved, the optimal solution to problem (26) can be obtained by Eq.
(28).

As shown in Eq. (23), the U(v) defined for problem (20) is dependent on S and thus
is also an unknown variable. With alternatively updated U(v) and S, problem (20) can be
finally solved. It is proved that this iterative method decreases the objective of problem
(20) in each iteration and will converge to the optimal solution (Tao et al. (2016)). For
problem (21), it can be directly resolved, since there is no dependence between U(v) and S.
The algorithm is described in Algorithm 1.

Algorithm 1 Multi-view Clustering with Adaptively Learned Graph

Input: The similarity matrices for V views {A(1), · · · ,A(V )}, A(v) ∈ Rn×n, number
of clusters c, a large enough γ, the regularization parameter λ, initial similarity matrix
S0 ∈ Rn×n.
Initialization: calculate {l(v)

ij }1≤i,j≤n, v = 1, · · · , V , t← 0
Repeat

1. Update W
(v)
t = (w

(v)
ij,t) according to Eq. (10).

2. Update each row of St by solving problem (20) or (21).
3. Update Ft by solving problem (15).

4. Compute current {l(v)
ij }1≤i,j≤n, v = 1, · · · , V .

5. t← t+ 1.
Until convergence.
Output: The similarity matrix S ∈ Rn×n with exact c connected components.

4. Experiment

In this section, we evaluate MALG on both synthetic and real-world datasets. For simplic-
ity, we denote MALG with `1-norm and `2-norm distances as MALG(`1) and MALG(`2),
respectively.

4.1. Toy Example

We construct a synthetic dataset, which contains three graphs sharing the same nodes
(vertices) but multiple types of interactions. This synthetic dataset has 3 clusters, and each
cluster has 50 members. Fig. 1(a) - 1(c) display the initial similarity matrices from the
three graphs. On each view, two of three clusters entangle with each other. The affinity
data within each block is randomly generated in the range of 0 and 1, while the noise data
is randomly generated in the range of 0 and 0.8 Moreover, to make this clustering task more
challenging, we randomly choose m noise data and set their value to be 1, from View1 to
View3, m is 20, 30, and 40 respectively.

Note that when partitioning data points into groups according to the connected com-
ponents of a graph, we merely care whether a element of the similarity matrix is zero or
not and ignore its detailed values. Thus, we use the adjacent matrix which only contains
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binary values (0 or 1) to represent the pairwise relationships learned by related methods.
We run all methods using the `1-norm distances.

Fig. 1(d) - 1(f ) show the learned pairwise relationships by performing CLR on each
view. It can be observed that single-view CLR fails to find the true clustering structure.

To validate the efficiency of sample-pair-specific weights in MALG, we compare our
method with combining multiple graphs without weight (denoted as MvCLR-naive) as
shown in Eq. (4) as well as view-weighting CLR (View-CLR for short). The objective
of view-weighting CLR with `1-norm distance is formulated as

min
S,α

V∑
v=1

α(v)
∥∥S−A(v)

∥∥
1

s.t.
∑

j sij = 1, sij ≥ 0, rank(LS) = n− c
V∑
v=1

α(v) = 1, α(v) > 0,

(31)

where α(v) is the weight of the v-th view.
The learned pairwise relationships of MvCLR-naive, View-CLR and MALG are pre-

sented in Fig. 1(g), 1(h) and 1(i), respectively. It can be seen that the performances of
both MvCLR-naive and View-CLR are affected by the noise. The distortion of pairwise
relationships for MvCLR-naive and View-CLR are mainly brought by View3, since it has
the most noise data. In comparison, our proposed MALG eliminates the impact of noise
and obtains the ideal structure for clustering.

4.2. Multi-view Clustering Comparison on Real-world Datasets

In this subsection, we evaluate our approach on five real-world datasets. Since the proposed
method is kind of graph based learning model, we compare it with other related graph based
multi-view clustering algorithms.

In particular, we focus on comparing with following algorithms:

• Best single-view CLR (BestCLR) (Nie et al. (2016)). On each view, the single-view
CLR algorithm is performed in both `1-norm and `2-norm distances. The best results
are reported.

• Co-regularized multi-view spectral clustering (CoRegSC) (Kumar et al. (2011)). This
method co-regularizes the clustering hypotheses from multiple views to enforce each
view to have the same cluster membership. We implement the centroid-based co-
regularization approach.

• Co-trained multi-view spectral clustering (CoTrainSC) (Kumar and Daumé (2011)).
CoTrainSC utilizes the spectral embedding from one view to constrain the affinity
graph used for the other views. By iteratively applying this approach, the clustering
of multiple views tend to be the same. As there is no specific stop criterion, we run
20 iterations.

• Multi-modal spectral clustering (MMSC) (Cai et al. (2011)). MMSC learns a com-
monly shared graph Laplacian matrix by minimizing the differences between the com-
mon Laplacian graph and that of each view.
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Figure 1: Visualization of the toy example. (a) - (c) The generated synthetic input similar-
ity matrices of three views. (d) - (f) The pairwise relationships learned by CLR
on each view. (g) The pairwise relationships learned by MvCLR-naive. (h) The
pairwise relationships learned View-CLR. (i) The pairwise relationships learned
by our MALG. Note that we use the adjacent matrix which contains binary values
(0 or 1) to represent the pairwise relationships of samples.
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• Multi-view spectral clustering (MVSC) (Li et al. (2015)). Local manifold fusion is
adopted to integrate heterogeneous features based on the bipartite graph.

• Multi-view clustering with adaptive neighbors (MLAN) (Nie et al. (2017)). MLAN
performs clustering and local structure learning simultaneously, which is also based
on the property of the Laplacian matrix illustrated in Theorem 1.

The implementations of CLR, CoRegSC, CoTrainSC, MMSC and MLAN are downloaded
from their authors’ homepages.

4.2.1. Datasets Descriptions

The detailed descriptions of the datasets are presented as follows and the statistics of them
are summarized in Table 1.

• 3sources is a multi-view text dataset, collected from three online news sources: BBC,
Reuters, and The Guardian. We use the 169 stories that were reported in all three
sources. Each source corresponds to a view. According to the primary section headings
used across the three news sources, each story was manually annotated with one of the
six topical labels: business, entertainment, health, politics, sport, technology. Since
the original dimension of each view is high (all above 3,000), we first perform PCA
on each view and reduce the dimension to 10 for each view.

• MSRC-v1 dataset contains 240 images in 8 classes. Following Cai et al. (2011), we
select 7 classes composed of tree, building, airplane, cow, face, car, bicycle and each
class has 30 images. We extract five visual features from each image: color moment
(CM) with dimension 48, local binary pattern (LBP) with 256 dimension, HOG with
100 dimension, GIST with 512 dimension, and CENTRIST (Wu and Rehg (2011))
feature with 1320 dimension.

• Caltech101 is an object recognition dataset consisting of 101 categories of images.
We follow previous work (Li et al. (2015)) and select the widely used 7 classes, i.e.
Dolla-Bill, Face, Garfield, Motorbikes, Snoopy, Stop-Sign and Windsor-Chair and get
441 images. The selected dataset is referred to as Caltech101-7. The same five types
of features with MSRC-v1 are extracted.

• Trecvid2003 is a video dataset, which contains 1078 manually labeled video shots
that belong to 5 categories. Each shot is represented as a 1894-dimensional vector of
text features and a 165-dimensional vector of HSV color histogram, which is extracted
from the associated keyframe.

• GRAZ02 is a database for object categorization. It contains images with objects of
high complexity and high intra-class variability. It consists of 365 images with bikes,
311 images with persons, 420 images with cars and 380 images not containing one of
these objects. We extract the following 3 visual features: SIFT, GIST, and LBP.
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Table 1: Statistics of the multi-view datasets used in our experiments.
Dataset Instances Views Clusters

3sources 169 3 6

MSRC-v1 210 5 7

Caltech101-7 441 5 7

Trecvid2003 1078 2 5

GRAZ02 1476 3 4

Table 2: Clustering performance on 3sources.
Methods NMI ACC F-score

BestCLR 0.590(0) 0.651(0) 0.627(0)

CoRegSC 0.204(0.034) 0.433(0.039) 0.360(0.024)

CoTrainSC 0.476(0.037) 0.573(0.030) 0.493(0.039)

MMSC 0.621(0.023) 0.596(0.035) 0.585(0.037)

MVSC 0.314(0.027) 0.505(0.055) 0.444(0.043)

MLAN 0.590(0) 0.586(0) 0.556(0)

MALG(`1) 0.733(0) 0.805(0) 0.795(0)

MALG(`2) 0.746(0) 0.811(0) 0.798(0)

4.2.2. Experiment Setup

The single-view CLR approach is conducted on each view with both `1-norm and `2-norm
distances and the best results are reported. In CLR, MLAN and our proposed MALG,
there is a common parameter γ brought by the Laplacian matrix rank constraint. For
simple implementation and accelerating the convergence speed, we initialize γ = 8 for these
three methods, and decrease it (γ = γ/4) if the connected components of S is greater
than the number of clusters c or increase it (γ = γ ∗ 4) if smaller than c in each iteration.
There is another parameter in our method, i.e., the regularization parameter λ. To obtain
a better model, it is set view-by-view: λ(v) = π(v) + log((π(v))2 + 1)t,where π(v) denotes

the median of the losses l
(v)
ij of all similarities on the v-th view, and t is the number of

iterations. For CoRegSC, CoTrainSC and MMSC, their trade-off parameters are all selected
from {0.01, 0.1, 1, 10, 100}, the best results are reported. For MVSC, the number of salient
points is set as 10% of the number of total samples. On all datasets, each sample is assigned
10 nearest neighbors to construct graph. We use the graph construction method described
in Nie et al. (2016) to initialize the graphs for CLR and our method. Approaches based on
spectral clustering need perform post-processing, such as k-means, to get the final clustering
results. We repeat experiments for 50 times for all methods and report the average results
and the standard deviation.

The clustering performance is measured using three evaluation metrics: clustering ac-
curacy (ACC), normalized mutual information (NMI) and F-score. For all three metrics,
higher value means better clustering quality.
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Table 3: Clustering performance on MSRC-v1.
Methods NMI ACC F-score

BestCLR 0.692(0) 0.790(0) 0.651(0)

CoRegSC 0.772(0.021) 0.841(0.044) 0.745(0.032)

CoTrainSC 0.797(0.029) 0.860(0.053) 0.764(0.039)

MMSC 0.795(0.021) 0.825(0.058) 0.742(0.040)

MVSC 0.531(0.020) 0.613(0.025) 0.485(0.017)

MLAN 0.778(0) 0.810(0) 0.722(0)

MALG(`1) 0.924(0) 0.962(0) 0.924(0)

MALG(`2) 0.906(0) 0.952(0) 0.904(0)

Table 4: Clustering performance on Caltech101-7.
Methods NMI ACC F-score

BestCLR 0.576(0) 0.508(0) 0.428(0)

CoRegSC 0.623(0.032) 0.661(0.037) 0.608(0.034)

CoTrainSC 0.600(0.023) 0.657(0.049) 0.595(0.038)

MMSC 0.698(0.027) 0.696(0.029) 0.661(0.037)

MVSC 0.583(0.029) 0.604(0.047) 0.568(0.046)

MLAN 0.438(0) 0.488(0) 0.444(0)

MALG(`1) 0.739(0) 0.707(0) 0.708(0)

MALG(`2) 0.728(0) 0.664(0) 0.633(0)

4.2.3. Performance Evaluation

The clustering results are presented in Table 2 - 6. We have following observations.
It can be seen that the proposed method achieves the best clustering results in most

cases. As shown in Table 2 and 3, on 3sources and MSRC-v1, our proposed MALG in both
`1-norm and `2-norm distances outperforms the compared approaches significantly in terms
of all the three metrics. Compared with the second best baseline, MALG achieves over 10%
improvements with respect to NMI, ACC and F-score.

Table 4 shows that, on Caltech101-7, despite the performance superiority is not obvious,
MALG still gets the best clustering results when adopting the `1-norm distance.

In terms of ACC and F-score, MALG(`1) obtains the highest scores on Trecvid2003, as
displayed in Table 5. When measuring with NMI, MMSC performs the best, and MALG(`1)
ranks second. On GRAZ02, MALG(`2) and MALG(`1) respectively get the best NMI and
F-score, while MMSC is slightly better than MALG with respect to ACC (Table 6).

Except for Caltech101-7 and GRAZ02, the impact of the utilization of different distances
(`1-norm or `2-norm) in MALG on the clustering results is not markedly on the other three
datasets. On Caltech101-7, MALG(`1) gets higher ACC and F-score values with a obvi-
ous gap compared with that of MALG(`2), whereas on GRAZ02, MALG(`2) outperforms
MALG(`1) in terms of ACC.

MLAN is most closely related with our method, as it is also developed based on the
Laplacian rank constraint. However, in comparison with our method, the clustering results
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Table 5: Clustering performance on Trecvid2003.
Methods NMI ACC F-score

BestCLR 0.219(0) 0.433(0) 0.427(0)

CoRegSC 0.177(0.005) 0.403(0.012) 0.320(0.007)

CoTrainSC 0.215(0.004) 0.420(0.013) 0.343(0.011)

MMSC 0.266(0.030) 0.431(0.032) 0.365(0.018)

MVSC 0.189(0.036) 0.403(0.037) 0.344(0.015)

MLAN 0.194(0) 0.434(0) 0.412(0)

MALG(`1) 0.252(0) 0.497(0) 0.434(0)

MALG(`2) 0.254(0) 0.497(0) 0.435(0)

Table 6: Clustering performance on GRAZ02.
Methods NMI ACC F-score

BestCLR 0.140(0) 0.457(0) 0.363(0)

CoRegSC 0.079(0.001) 0.408(0.006) 0.306(0.001)

CoTrainSC 0.060(0.005) 0.393(0.016) 0.292(0.004)

MMSC 0.142(0.002) 0.477(0.002) 0.356(0.001)

MVSC 0.085(0.001) 0.426(0.002) 0.311(0.000)

MLAN 0.045(0) 0.268(0) 0.396(0)

MALG(`1) 0.153(0) 0.387(0) 0.419(0)

MALG(`2) 0.169(0) 0.475(0) 0.400(0)

obtained by MLAN are much worse. Especially, on Caltech101-7, the NMI (ACC, F-score)
of MALG(`1) improves about 30% (21%, 26%) over that of MLAN. The reason might be
that MALG consider the significance of sample pairs both within view and across views,
while MLAN treat sample pairs within the same view equally.

Note that the standard deviation values of CLR, MLAN and our method are all zeros,
since they need not post-processing with k-means.

5. Conclusion

In this paper, we propose a multi-view graph based clustering method to adaptively learn a
common graph with exact c connected components, which is an ideal structure for clustering.
Instead of treating sample pairs within each view equally, sample-pair-specific weights are
introduced to evaluate the importance of similarities in a particular view. Two objective
functions with both `1-norm and `2-norm distances are formulated, and a simple yet effective
algorithm is derived to solve them. The effectiveness of our method is validated on five real-
world datasets for news article clustering and image clustering. Experimental results show
that the proposed method achieves robust performance and outperforms several related
methods.
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