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Abstract

A probabilistic query may not be estimable from observed data corrupted by missing values
if the data are not missing at random (MAR). It is therefore of theoretical interest and prac-
tical importance to determine in principle whether a probabilistic query is estimable from
missing data or not when the data are not MAR. We present algorithms that systemati-
cally determine whether the joint probability distribution or a target marginal distribution
is estimable from observed data with missing values, assuming that the data-generation
model is represented as a Bayesian network, known as m-graphs, that not only encodes the
dependencies among the variables but also explicitly portrays the mechanisms responsible
for the missingness process. The results significantly advance the existing work.

Keywords: Missing Data, Bayesian network

1. Introduction

Missing data occur when some variable values are missing from recorded observations. It is a
common problem across many disciplines including artificial intelligence, machine learning,
statistics, economics, and the health and social sciences. Missing data pose a major obstacle
to valid statistical and causal inferences in a broad range of applications. There is a vast
literature on dealing with missing data in diverse fields. We refer to Mohan et al. (2013);
Mohan and Pearl (2014a) for a review of related work. Most work in machine learning
assumes data are missing at random (MAR) Rubin (1976); Little and Rubin (2002), under
which likelihood-based inference (as well as Bayesian inference) can be carried out while
ignoring the mechanism that leads to missing data.

In principle, however, to analyze data with missing values, we need to understand the
mechanisms that lead to missing data, in particular whether the fact that variables are
missing is related to the underlying values of the variables in the data set. Indeed some work
in machine learning explicitly incorporates missing data mechanism into the model Jaeger
(2006); Marlin et al. (2007, 2011). Recently Mohan et al. (2013) have used directed acyclic
graphs (DAGs) or Bayesian networks to encode the missing data model, called m-graphs, by
representing both conditional independence relations among variables and the mechanims
responsible for the missingness process. M-graphs provide a general framework for inference
with missing data when the MAR assumption does not hold and the data are categorized
as missing not at random (MNAR). Whether a DAG model or MAR assumption is testable
with missing data is studied in Mohan and Pearl (2014b); Tian (2015). A graphical version
of MAR defined in terms of graphical structures is discussed in Tian (2015).
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Recovering from Missing Data

One important research question under this graphical model framework is: Is a target
probabilistic query estimable from observed data corrupted by missing values given a missing
data model represented as a m-graph? It is known that when the data are MAR, the joint
distribution is estimable. On the other hand, when the data are MNAR, a probabilistic
query may or may not be estimable depending on the query and the exact missing data
mechanisms. For example, consider a single random variable X and assume that whether
the values of X are missing is related to the values of X (e.g., in a salary survey, people
with low income are less likely to reveal their income). The model is MNAR and we can
not estimate P (X) consistently even if infinite amount of data are collected. In practice
it is important to determine in principle whether a target query is estimable from missing
data or not. Several sufficient conditions have been derived under which probability queries
of the form P (x, y) or P (y|x) are estimable Mohan et al. (2013). Mohan and Pearl (2014a)
extended those results and further developed conditions for recovering causal queries of the
form P (y|do(x)). Shpitser et al. (2015) formulated the problem as a causal inference problem
and developed a systematic algorithm called MID for estimating the joint distribution.

In this paper we develop algorithms for systematically determining the recoverability
of the joint distribution and any target marginal distributions from missing data in m-
graphs. The results are significantly more general than the sufficient conditions in Mohan
et al. (2013); Mohan and Pearl (2014a). Compared to the MID algorithm in Shpitser
et al. (2015) we treat the problem in a purely probabilistic framework without appealing to
causality theory, and our algorithm can cover models where MID may fail to work.

The paper is organized as follows. Section 2 defines the notion of m-graphs as introduced
in Mohan et al. (2013). Section 3 formally defines the notion of recoverability from missing
data and briefly reviews previous work. Section 4 presents some basic results that will
facilitate developing algorithms for recovering probability distributions. Section 5 presents
our algorithm for recovering the joint distribution and Section 6 presents our algorithm for
recovering marginal distributions. Section 7 concludes the paper.

2. Missing Data Model as a Bayesian Network

Bayesian networks are widely used for representing data generation models Pearl (2000);
Koller and Friedman (2009). Mohan et al. (2013) used DAGs called m-graphs, to represent
both the data generation model and the mechanisms responsible for the missingness process.
In this section we define m-graphs, mostly following the notation in Mohan et al. (2013).

Let G be a DAG over a set of variables V ∪R where V is the set of observable variables
and R is the set of missingness indicator variables introduced in order to represent the
mechanisms that are responsible for missingness. In this paper we consider models with no
unobserved latent variables, known as Markovian models. We assume that V is partitioned
into Vo and Vm such that Vo is the set of variables that are observed in all data cases and
Vm is the set of variables that are missing in some data cases and observed in other cases.1

Every variable Vi ∈ Vm is associated with a variable RVi ∈ R such that, in any observed
data case, RVi = 1 if the value of corresponding Vi is missing and RVi = 0 if Vi is observed.

1. We assume we could partition the V variables into Vo and Vm based on domain knowledge (or modeling
assumption). In many applications, we have the knowledge that some variables are always observed in
all data cases.
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We require that R variables may not be parents of variables in V , since R variables are
missingness indicator variables and we assume that the data generation process over V
variables does not depend on the missingness mechanism. For any set S ⊆ Vm, let RS

represent the set of R variables corresponding to variables in S.
The DAG G provides a compact representation of the missing data model P (V,R) =

P (V )P (R|V ), and will be called a m-graph of the model. The m-graph depicts both the
dependency relationships among variables in V and the missingness mechanisms. See Fig-
ures 1 and 2 for examples of m-graphs. We use solid circles to represent always observed
variables in Vo and R, and hollow circles to represent partially observed variables in Vm.

3. Recoverability from Missing Data

Given a m-graph and observed data with missing values, it is important to know whether we
can in principle compute a consistent estimate of a given probabilistic query q (e.g. P (x)).
If q is deemed to be not estimable (or recoverable) then it is not estimable even if we have
collected infinite amount of data. Next we formally define the notion of recoverability.

In any observation, let S ⊆ Vm be the set of observed variables (i.e., values of vari-
ables in Vm \ S are missing). Then the observed data is governed by the distribution
P (Vo, S,RVm\S = 1, RS = 0). Formally

Definition 1 (Recoverability) Given m-graph G, a target probabilistic query q is said
to be recoverable if q can be expressed in terms of the set of observed positive probabilities
{P (Vo, S,RVm\S = 1, RS = 0) : S ⊆ Vm} - that is, if qM1 = qM2, for every pair of mod-

els PM1(V,R) and PM2(V,R) compatible with G with PM1(Vo, S,RVm\S = 1, RS = 0) =

PM2(Vo, S,RVm\S = 1, RS = 0) > 0 for all S ⊆ Vm.

This collection of observed probabilities {P (Vo, S,RVm\S = 1, RS = 0) : S ⊆ Vm} has been
called the manifest distribution and the problem of recovering probabilistic queries from the
manifest distribution has been studied in Mohan et al. (2013); Mohan and Pearl (2014b,a);
Shpitser et al. (2015).

Example 1 In Fig. 1, the manifest distribution is the collection {P (X,Y,RX = 0, RY =
0), P (X,RX = 0, RY = 1), P (Y,RX = 1, RY = 0), P (RX = 1, RY = 1)}.

3.1. Previous work

When data are MAR, it is known that the joint distribution is recoverable. We have
R⊥⊥Vm|Vo

2 (see Mohan et al. (2013); Tian (2015) for graphical definition of MAR), and the
joint is recoverable as P (V ) = P (Vm|Vo)P (Vo) = P (Vm|Vo, R = 0)P (Vo).

When data are MNAR, the joint P (V ) may or may not be recoverable depending on
the m-graph G. Mohan and Pearl (2014a) presented a sufficient condition for recovering
probabilistic queries by using sequential factorizations (extending ordered factorizations
in Mohan et al. (2013)). The basic idea is to find an order of variables, called admissible
sequence, in V ∪R such that P (V ) could be decomposed into an ordered factorization or sum
of it such that every factor is recoverable by using conditional independence relationships.

2. We use X⊥⊥Y |Z to denote that X is conditionally independent of Y given Z.
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Figure 1: A m-graph that is MNAR. P (X,Y ) is recoverable. We use solid circles to rep-
resent always observed variables in Vo and R, and hollow circles to represent
partially observed variables in Vm.

Example 2 We want to recover P (X,Y ) given the m-graph in Fig. 1. The order X <
RY < Y induces the following sum of factorization:

P (x, y) =
∑
rY

P (x|rY , y)P (rY |y)P (y) = P (y)
∑
rY

P (x|rY )P (rY ), (1)

where both P (y) = P (y|RY = 0) and P (x|rY ) = P (x|rY , RX = 0) are recoverable.

The main issue with the sequential factorization approach is that it is not clear in
general whether an admissible sequence exists or how to find an admissible sequence (even
deciding whether a given order is admissible or not does not appear to be easy). Several
sufficient conditions for recovering the joint P (V ) and queries such as P (x|y) are given
in Mohan et al. (2013); Mohan and Pearl (2014a) which may handle problems for which
no admissible sequence exists. For example, one condition says P (V ) is recoverable if no
variable X is a parent of its corresponding RX and there are no edges between the R
variables. Shpitser et al. (2015) formulated the problem as a causal inference problem and
used techniques developed for the problem of identification of causal effects to develop a
general algorithm for recovering the joint P (V ). In this paper we develop algorithms for
systematically recovering the joint P (V ) and marginal distributions. We treat the problem
in a purely probabilistic framework without appealing to causality theory.

4. Utility Lemmas

In this section, we present some basic results that will facilitate developing algorithms for
recovering probability distributions. We will then use these results to develop algorithms for
recovering the joint P (V ) and any target marginal distributions. We believe these results
provide a foundation for solving other recoverability related tasks (such as recovering a
target conditional distribution P (y|x) or causal query P (y|do(x))).

First we reformulate the given observed probabilities.

Proposition 2 Given the manifest distribution {P (Vo, S,RVm\S = 1, RS = 0) : S ⊆ Vm},
the set of probabilities P ∗ = {P (Vo, S,RVm\S , RS = 0) : S ⊆ Vm} are recoverable.
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Proof For any rVm\S values, let T be the set of variables in Vm \ S for which rT = 0, then
rVm\(S∪T ) = 1. We have P (Vo, S,RVm\S , RS = 0) is recoverable as

P (vo, s, rVm\S , RS = 0) =
∑
t

P (vo, s ∪ t, RVm\(S∪T ) = 1, RS∪T = 0) (2)

It turns out that it is much easier to work with the set of probabilities P (Vo, S,RVm\S , RS =
0) than with P (Vo, S,RVm\S = 1, RS = 0). Therefore in the following, to recover a prob-
abilistic query q, we attempt to express q in terms of the set of observed probabilities
P ∗ = {P (Vo, S,RVm\S , RS = 0) : S ⊆ Vm}.

Example 3 In Fig. 1, instead of the manifest distribution given in Example 1, we work
with the set of observed distributions:
P ∗ = {P (X,Y,RX = 0, RY = 0), P (X,RX = 0, RY ), P (Y,RX , RY = 0), P (RX , RY )}.

In order to determine the recoverability of a probabilistic query from the set of observed
distributions, the basic idea is to express observed P (Vo, S,RVm\S , RS = 0) in a “canonical”
form of the chain rule factorization of Bayesian networks. For the joint distribution we have

P (v) =
∏
i

P (vi|pai), (3)

and for the observed complete data case, we have

P (vo, vm, R = 0) = P (v)P (R = 0|v) =
∏
i

P (vi|pai)
∏
j

P (RVj = 0|parVj )
∣∣
R=0

, (4)

where Pai and ParVj represent the parents of Vi and RVj in G respectively. We obtain that

P (V ) is recoverable if every factor P (vi|pai) is recoverable (or every factor P (RVj = 0|parVj )

is recoverable). In general, for S ⊆ Vm we have

P (vo, s, rVm\S , RS = 0) =
∑
vm\s

∏
i

P (vi|pai)
∏
j

P (rVj |parVj )
∣∣
RS=0

. (5)

We ask the question: given the expression in Eq. (5), is a factor P (rVj |parVj ) or P (vi|pai)
computable in terms of given P (vo, s, rVm\S , RS = 0)? What functions of those factors
P (rVj |parVj ) and P (vi|pai) are computable in terms of given P (vo, s, rVm\S , RS = 0)? It

turns out similar questions have been studied in dealing with Bayesian networks with unob-
served latent variables in Tian and Pearl (2002a,b). Here we assume the variables in Vm \S
are latent variables and extend the results in Tian and Pearl (2002a,b) to our situation.
The basic idea is that the summation of products in (5) may be decomposed into a product
of summations based on so-called c-components such that each summation is computable
from P (Vo, S,RVm\S , RS).

In the sequel, we present basic results regarding what quantities are recoverable in
terms of P (vo, s, rVm\S , RS = 0) as expressed in Eq. (5). The results are not presented in
the framework of m-graphs, rather in the (more general) framework of Bayesian networks
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with unobserved latent variables (since we believe they are potentially useful in other re-
lated problems.). These results (lemmas) will facilitate developing algorithms for recovering
probability distributions.

First we introduce some useful concepts mostly following the notation in Tian and Pearl
(2002b). Let G be a Bayesian network structure over O ∪L where O = {O1, . . . , On} is the
set of observed variables and L = {L1, . . . , Ln′} is the set of unobserved latent variables.
We will often use the notation G(O,L) when we want to make it clear which set of variables
in G are latent. The observed probability distribution P (O) can be expressed as:

P (o) =
∑
l

∏
{i|Oi∈O}

P (oi|paOi)
∏

{i|Li∈L}

P (li|paLi), (6)

where the summation ranges over all the L variables. The set of latent variables L can
be partitioned into a set of c-components H1, . . . ,Hm by assigning two variables Li and
Lj to the same c-component Hk if and only if there exists a path or edge between Li and
Lj in G such that (i)every internal node of the path is in L, or (ii) every node in O on
the path is head-to-head (→ Oi ←) Tian and Pearl (2002b). The partition of latent L
variables then defines a partition of the observed O variables into c-components S1, . . . , Sk

as follows. If Oi has a latent parent in Hj then Oi is in c-component Sj corresponding
to Hj . If Oi has no latent parent, then it forms a c-component Sj = {Oi} by itself, and
we set the corresponding latent c-component Hj to be an empty set. We will say that the
Bayesian network G(O,L) is partitioned into c-components (S1, H1), . . . , (Sk, Hk). For any
c-component (S,H) we define the quantity Q[S,H] to denote the following function 3

Q[S,H](o) =
∑
h

∏
{i|Oi∈S}

P (oi|paOi)
∏

{i|Li∈H}

P (li|paLi), (7)

where the summation ranges over all the latent variables in H. Q[S,H](o) is a function
of some subset of variables in O. Note for S = {Oi} and H = ∅, we have Q[{Oi}, ∅] =
P (oi|paOi). For convenience, we will often write Q[S,H](o) as Q[S,H].

The importance of the c-components partition lies in that each Q[Si, Hi], called a c-
factor, is computable in terms of P (O). The following result is from Tian and Pearl
(2002a,b):

Lemma 3 Assuming a Bayesian network G(O,L) is partitioned into c-components
(S1, H1), . . . , (Sk, Hk), we have

(i) P (O) is decomposed into

P (o) =
∏
i

Q[Si, Hi].

3. Note Tian and Pearl (2002a,b) defined quantity Q[S] for any set S ⊆ O to denote the following function

Q[S](o) =
∑
l

∏
{i|Oi∈S}

P (oi|paOi)
∏

{i|Li∈L}

P (li|paLi),

where the summation ranges over all the L variables. It can be shown that Q[S,H] = Q[S,L] = Q[S].
The reason we introduce a new notation in this paper is because we are considering situations in which the
latent variables L vary (we treat Vm\S as latent when considering P (vo, s, rVm\S , RS = 0)) and therefore
for the same S its corresponding H varies, while in Tian and Pearl (2002a,b), the latent variables L are
fixed and given S the corresponding H is fixed.
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(ii) Let a topological order over O be O1 < . . . < On, and let O≤i = {O1, . . . , Oi} be the
set of variables ordered before Oi (including Oi), for i = 1, . . . , n, and O≤0 = ∅. Then each
Q[Sj , Hj ], j = 1, . . . , k, is computable from P (O) and is given by

Q[Sj , Hj ] =
∏

{i|Oi∈Sj}

P (oi|o≤i−1). (8)

Example 4 Assume that X and Y are latent variables in Fig. 1. We have

P (rX , rY ) = [
∑
x

P (rY |x)P (x)][
∑
y

P (rX |rY , y)P (y)] = Q[RY , X]Q[RX , Y ], (9)

and with the topological order being RY < RX , Q[RY , X] and Q[RX , Y ] are computable
from P (RX , RY ) as

Q[RY , X](rY ) = P (rY ), (10)

Q[RX , Y ](rX , rY ) = P (rX |rY ). (11)

In this paper, the observed distributions are in the form of P (vo, s, rVm\S , RS = 0) as ex-
pressed in Eq. (5). To utilize Lemma 3 we consider variables in Vm\S as latent variables, and
assume that G(Vo∪S∪R, Vm \S) is partitioned into c-components (C1, H1), . . . , (Cm, Hm).
Then we obtain

P (vo, s, rVm\S , RS = 0) =
∏
i

Q[Ci, Hi]
∣∣
RS=0

(12)

Example 5 In Fig. 1, we have

P (y, rX , RY = 0) =
∑
x

P (rX |RY = 0, y)P (RY = 0|x)P (y)P (x)

= P (rX |RY = 0, y)P (y)[
∑
x

P (RY = 0|x)P (x)]

= P (rX |RY = 0, y)P (y)Q[RY = 0, X]. (13)

With X being latent, G({Y,RX , RY }, {X}) is partitioned into three c-components (RX , ∅),
(Y, ∅), and (RY , X).

In lieu of Lemma 3(ii), we ask a similar question: given the expression in Eq. (12), is a
factor Q[Ci, Hi] computable in terms of given P (vo, s, rVm\S , RS = 0)? The main difference
with the situation in Lemma 3 is that variables in RS are assuming a fixed value. Next we
extend Lemma 3 to the situation that we are not given P (O) but P (O \ S, S = 0) for some
S ⊂ O. For any set C, let An(C) denote the union of C and the set of ancestors of the
variables in C.

Lemma 4 Assuming a Bayesian network G(O,L) is partitioned into c-components
(S1, H1), . . . , (Sk, Hk), we have, for any S ⊆ O,
(i)

P (O \ S, S = 0) =
∏
i

Q[Si, Hi]
∣∣
S=0

. (14)
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(ii) If Sj ∩ An(S) = ∅, that is, Sj contains no ancestors of S (nor variables in S), then
Q[Sj , Hj ]

∣∣
S=0

is computable from P (O \ S, S = 0). In this case, letting a topological order
over O be O1 < . . . < On such that non-acestors of S is ordered after ancesters of S, i.e.,
An(S) < O \An(S), then Q[Sj , Hj ]

∣∣
S=0

is given by

Q[Sj , Hj ]
∣∣
S=0

=
∏

{i|Oi∈Sj}

P (oi|o≤i−1)
∣∣
S=0

. (15)

Proof By Lemma 3, (i) holds and each Q[Sj , Hj ]
∣∣
S=0

can be expressed by Eq. (15). If Sj

contains no ancestors of S, then all variables in Sj are ordered after S. As a consequence
S ⊆ O≤i−1 and therefore P (oi, o

≤i−1)
∣∣
S=0

is computable from P (O\S, S = 0) by marginal-

ization and each term P (oi|o≤i−1)
∣∣
S=0

in Eq. (15) is computable from P (O \ S, S = 0).

Example 6 Consider the m-graph in Fig. 1. Eq. (12) becomes, for S = {Y }, Eq. (13).
By Lemma 4, c-factors P (rX |RY = 0, y) and P (y) are computable from P (y, rX , RY = 0)
because neither of RX or Y is an ancestor of RY . We also obtain that Q[RY = 0, X] is
recoverable by virtue of both P (rX |RY = 0, y) and P (y) being recoverable.

Now for S = {X} with Y considered a latent variable, we have

P (x, rY , RX = 0) = P (rY |x)P (x)[
∑
y

P (RX = 0|rY , y)P (y)], (16)

where none of the three c-factors is computable from P (x, rY , RX = 0) because RY , X, and
RX are all ancestors of RX .

For S = ∅ with both X and Y considered latent variables, P (rX , rY ) can be expressed
as in Eq. (9) and both Q[RY , X] and Q[RX , Y ] are computable from P (RX , RY ) based on
Lemma 4 (or 3 as shown in Example 4).

5. Recovering the Joint

Equipped with Lemmas 3 and 4, we are now ready to develop a systematic algorithm for
recovering the joint distribution P (V ). We have that P (V ) is recoverable if every factor
P (vi|pai) in Eq. (3) is recoverable. Alternatively, from Eq. (4) P (V ) is recoverable if every
factor P (RVj = 0|parVj ) is recoverable.

There exist simple graphical conditions by which we can quickly recover P (vi|pai) or
P (RVj |parVj ). For example, the following proposition is straightforward.

Proposition 5 P (S|S′) is recoverable if S ∪ S′ ⊆ Vo ∪R.

A necessary condition for recovering P (RVj = 0|parVj ) is also known.

Proposition 6 Mohan et al. (2013) P (RVj = 0|parVj ) is not recoverable if Vj is a parent

of RVj

We summarize several easy-to-use recoverability conditions in the following proposition.
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Figure 2: P (X,Y, Z) is recoverable.

Proposition 7 P (RVj |paorVj , pa
m
rVj

, parrVj
), where PaorVj

, PamrVj
, and ParrVj

are the parents

of RVj in G that are V o variables, V m variables, and R variables respectively, is recoverable
if one of the following holds:

1. PamrVj
= ∅.

2. PamrVj
is a subset of the set of Vm variables corresponding to ParrVj

.

3. RVj has no child.

4. None of RPamrVj
is a descendant of RVj .

Proof Conditions 1 and 2 are straightforward and used extensively in Mohan et al. (2013);
Mohan and Pearl (2014b,a).

Conditions 3 and 4: P (RVj |paorVj , pa
m
rVj

, parrVj
) is a c-factor in P (Vo, S,RVm\S , RS = 0)

for S = PamrVj
. Then P (RVj |paorVj , pa

m
rVj

, parrVj
) is recoverable by Lemma 4 since RVj is not

an ancestor of RS .

Based on the conditions 3 and 4 in Proposition 7, we present the following novel sufficient
condition for recovering P (V ).

Theorem 8 P (V ) is recoverable if no variable X is a parent of its corresponding RX , and
for each RX , either it has no child, or none of the R variables correponding to its Vm parents
are descendants of RX .

Example 7 P (X,Y, Z) is recoverable in Fig. 2 by Theorem 8.

In general when these simple recoverability conditions are not applicable, we would like
to develop a systematic algorithm for recovering the joint P (V ). The basic idea is to attempt
to recover each P (vi|pai) or P (RVj |parVj ) by applying Lemma 4 to observed probabilities

P (Vo, S,RVm\S , RS = 0). First we study an example.
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Example 8 In the m-graph in Fig. 1, P (x, y) = P (x)P (y) is recovered if both P (x) and
P (y) are recovered. P (y) can be recovered from P (y, rX , RY = 0) as shown in Example 6.
However P (x) is not computable from P (x, rY , RX = 0) (see Eq. (16)) because X is an
ancestor of RX . On the other hand Q[RX , Y ] in Eq. (16) has been shown to be computable
from P (RX , RY ) in Example 4. We rewrite Eq. (16) as:

P (x, rY , RX = 0)

Q[RX , Y ]
∣∣
RX=0

= P (rY |x)P (x). (17)

Now P (x) is computable from the recoverable quantity on the left-hand-side of the above
equation as

P (x) =
∑
rY

P (x, rY , RX = 0)

Q[RX , Y ]
∣∣
RX=0

. (18)

Intuitively, P (rY |x) and P (x) are c-factors of the subgraph over {RY , X} formed by re-
moving the variables RX and Y from the original m-graph, and both are recoverable by
Lemma 3.

In order to recover P (vi|pai) or P (RVj |parVj ), we will often need to first recover some

other c-factors. We propose a systematic algorithm REQ for recovering an arbitrary c-factor
Q[C,H] presented in Fig. 3. REQ works by (i) attempting to recover Q[C,H] from an
observed P (Vo, S,RVm\S , RS = 0) (in which Q[C,H] potentially forms a c-factor) by using
algorithm REQP, and (ii) attempting to recover every factor P (x|paX) within Q[C,H] =∑

h

∏
X∈C∪H P (x|paX). The algorithm REQP attempts to recover Q[C,H] from a given

P (Vo, S,RVm\S , RS = 0) based on Lemma 4 by systematically reducing the problem to
simpler one in subgraphs, e.g. by removing irrelevant non-ancestors or removing other
recoverable c-factors. The detailed explanations and motivation of the steps in REQ and
REQP are given in the soundness proof of the algorithms (following Theorem 9).

We can recover the joint P (v) by recovering every P (vi|pai) using REQ. However, we
observe that it is often the case that to recover all P (vi|pai), we will often first need to
recover many P (RVj = 0|parVj ) for RVj being a descendant of some Vi (the opposite is not

true). Therefore for the purpose of recovering the joint P (v) it is often more efficient to
recover all P (RVj = 0|parVj ) instead. Our algorithm REJ-M for recovering the joint P (V )

is presented in Fig. 4. REJ-M works by attempting to recover each P (RVj = 0|parVj ) using

REQ and finally computing P (v) from Eq. (4).

Theorem 9 Algorithm REJ-M is sound. That is, if REJ-M returns an expression for P (v)
then P (v) is correctly recovered.

Proof From Eq. (4), REJ-M is sound if REQ is sound. Next we show the soundness of
REQ.

Step 3 attempts to use simple conditions in Propositions 5-7 to recover Q[C,H].
Step 4 specifies the smallest S such that Q[C,H] could potentially form a c-factor in

G(O, Vm \S). Step 5 then attempts to recover Q[C,H] from observed P (Vo, S,RVm\S , RS =
0) using algorithm REQP.
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Procedure REQ(Q[C,H], goals)
INPUT: m-graph G, observed distributions P ∗, query c-factor Q[C,H],

goals stores the list of queried c-factors in the recursive calls to avoid loops,
proved: a global variable storing the list of recovered c-factors.

OUTPUT: Expression for Q[C,H] or FAIL

1. IF Q[C,H] is in proved, THEN RETURN Q[C,H] expression.

2. IF Q[C,H] is in goals, THEN RETURN FAIL; ELSE add Q[C,H] to goals.

3. IF any of Propositions 5-7 is applicable, THEN add Q[C,H] to proved and RETURN
expression for Q[C,H].

4. Assume that Q[C,H] is a function over W . Let S = W ∩ V m, O = Vo ∪ S ∪R.

5. CALL REQP(G(O, Vm \ S), P (Vo, S,RVm\S , RS = 0), Q[C,H], goals).
IF Q[C,H] is recovered, add Q[C,H] to proved and RETURN Q[C,H] expression.

6. IF H is empty, RETURN FAIL; ELSE for every P (x|paX), X ∈ C ∪H,
CALL REQ(P (x|paX), goals)
IF P (x|paX) is not recovered, RETURN FAIL

Add Q[C,H] to proved and RETURN Q[C,H] =
∑

h

∏
X∈C∪H P (x|paX).

Procedure REQP(G′, P ′, Q[C,H], goals)
INPUT: Bayesian network G′(O,L), distribution P ′(O \ S, S = 0), query c-factor Q[C,H],

list of queried c-factors goals.
OUTPUT: Expression for Q[C,H] or FAIL

1. IF (C,H) forms a c-component in G′ and C ∩ An(S) = ∅, THEN RETURN Q[C,H]
recoverable as given in Lemma 4.

2. Let T = (An(C)∪An(S))∩O and D = O \ T . IF D 6= ∅, THEN let G′′ be the graph
resulting from removing D from G′ and RETURN REQP(G′′,

∑
D P ′, Q[C,H], goals).

3. For each c-component (Ci, Hi) i = 1, . . . , k of G′ such as Ci ∩An(S) = ∅: Q[Ci, Hi] is
recovered by Lemma 4. Let G′′ be the graph resulting from removing all Ci, Hi, i =
1, . . . , k from G′. RETURN REQP(G′′, P ′/

∏k
i=1Q[Ci, Hi], Q[C,H], goals).

4. For each c-component (Ci, Hi) of G′ that does not contain C:
IF Q[Ci, Hi] is recovered by REQ(Q[Ci, Hi], goals), THEN let G′′ be the graph
resulting from removing Ci, Hi from G′ and
RETURN REQP(G′′, P ′/Q[Ci, Hi], Q[C,H], goals).

5. RETURN FAIL

Figure 3: Algorithm for recovering a c-factor.
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Algorithm REJ-M
INPUT: m-graph G, observed distributions P ∗

OUTPUT: Expression for the joint P (V ) or FAIL

1. For every Vj ∈ Vm:
call REQ(P (RVj = 0|parVj ), [ ]). IF FAIL, THEN RETURN FAIL

2. RETURN P (v) recovered as P (v) = P (v,R)/
∏

j P (RVj |parVj )
∣∣
R=0

.

Figure 4: Algorithm for recovering the joint P (V ).

Step 6 attempts to recover every factor P (x|paX) within Q[C,H] =
∑

h

∏
X∈C∪H P (x|paX).

If all factors P (x|paX) are recovered, then Q[C,H] is recovered.

Next we show the soundness of REQP which attempts to recover Q[C,H] from observed
P (Vo, S,RVm\S , RS = 0).

Step 1 is the base case which is sound based on Lemma 4.
In Step 2, summing out D from both sides of Eq. (12) is graphically equivalent to

removing variables in D, based on the chain rule of Bayesian networks since all D variables
could be ordered after T variables.

In Step 3 we attempt to recover every c-factor Q[Ci, Hi] recoverable from P (Vo, S,RVm\S , RS =
0) by Lemma 4. In Step 4 we attempt to recover c-factor Q[Ci, Hi] from observed distribu-
tions P ∗ by calling REQ. If Q[Ci, Hi] is recovered, then given

P (o, S = 0) = Q[Ci, Hi]
∏
j 6=i

Q[Cj , Hj ]
∣∣
S=0

, (19)

we obtain

P (o, S = 0)

Q[Ci, Hi]
=
∏
j 6=i

Q[Cj , Hj ]
∣∣
S=0

. (20)

Now the problem of recovering Q[C,H] is reduced to a problem of recovering Q[C,H] from
distribution P (o, S = 0)/Q[Ci, Hi] in the subgraph resulting from removing Ci, Hi from G′.

We fail to recover Q[C,H] if Q[C,H] cannot be recovered by Lemma 4 in Step 1 and
the problem cannot be reduced to a smaller one by Steps 2, 3, or 4.

Example 9 We demonstrate algorithm REJ-M by recovering P (A,B,C,D) in the m-graph
in Fig. 5(a). REJ-M calls for recovering both P (RA = 0|d, b, RB = 0) and P (RB = 0|d, a)
using REQ. P (RA = 0|d, b, RB = 0) is easily recovered by condition 2 or 3 in Proposition 7.
We have S = {A} in Step 4 in REQ(P (RB = 0|d, a), [ ]), which attempts to recover P (RB =
0|d, a) from P (c, d, a, rB, RA = 0) using REQP. We have

P (c, d, a, rB, RA = 0) = P (d|c)P (a)P (rB|d, a)[
∑
b

P (b)P (c|a, b)P (RA = 0|d, b, rB)]. (21)
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Figure 5: P (A,B,C,D) is recoverable in the m-graph in (a).

Step 1 of REQP is not applicable as RB is an ancestor of RA. Steps 2 and 3 are not
applicable either. In Step 4 of REQP, REQ(P (d|c), goals) recovers P (d|c) by Proposition 5.
The problem is reduced to using REQP to recover P (RB = 0|d, a) in Fig. 5(b) from

P (c, d, a, rB, RA = 0)

P (d|c)
= P (a)P (rB|d, a)[

∑
b

P (b)P (c|a, b)P (RA = 0|d, b, rB)]. (22)

C is not an ancestor of RB or RA in Fig. 5(b), and Step 2 of REQP reduces the problem
to using REQP to recover P (RB = 0|d, a) in Fig. 5(c) from∑

c

P (c, d, a, rB, RA = 0)

P (d|c)
= P (a)P (rB|d, a)[

∑
b

P (b)P (RA = 0|d, b, rB)]. (23)

Fig. 5(c) is the same as Fig. 1 for which P (rB|d, a) can be recoverable as shown in Ex-
ample 8. In fact, in Step 4 of REQP, REQ(Q[RA = 0, B], goals) will recover Q[RA =
0, B] =

∑
b P (b)P (RA = 0|d, b, rB) by using REQP to recover it from P (c, d, rA, rB) from

the following∑
c

P (c, d, rA, rB)

P (d|c)
= [
∑
a

P (a)P (rB|d, a)][
∑
b

P (b)P (RA|d, b, rB)], (24)

from which Q[RA, B] is recoverable by Lemma 4 (or 3). Finally the problem is reduced to
recovering P (RB = 0|d, a) from the following

1

Q[RA = 0, B]

∑
c

P (c, d, a, rB, RA = 0)

P (d|c)
= P (a)P (rB|d, a), (25)

from which P (RB = 0|d, a) is recoverable by Lemma 4.

This example is used to demonstrate the MID algorithm in Shpitser et al. (2015), which
is the most general algorithm in the literature for recovering the joint. However, there
exist examples (Figure 1a in Shpitser and Robins (2016)) where MID fails to recover a
recoverable joint 4, while we have tested that our algorithm REJ-M is able to recover the
joint in Figure 1a in Shpitser and Robins (2016) (due to the space limitation, we will not
show the derivation process in this paper).

4. Shpitser and Robins (2016) claims they have an improved algorithm over MID that can cover the example,
but does not present it in their article.
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Algorithm REM-M
INPUT: m-graph G, observed distributions P ∗, query distribution P (C)
OUTPUT: Expression for P (C) or FAIL

1. Let the c-components of G(C,An(C) \ C) be (A1, B1), . . . , (Ak, Bk).

2. For every Q[Ai, Bi]:
Call REQ(Q[Ai, Bi],[ ]). IF FAIL, THEN RETURN FAIL.

3. RETURN P (C) recoverable as P (c) =
∏

iQ[Ai, Bi]

Figure 6: Algorithm for recovering marginal distribution P (C) for C ⊂ V .

X

X
R

Y R
Z

Y Z

R

Figure 7: P (X,Z) is recoverable although P (X,Y, Z) is not recoverable.

6. Recovering Marginal Distributions

In this section we present a systematic algorithm for recovering an arbitrary marginal dis-
tribution P (C) for C ⊂ V . The basic idea is again to express P (C) in its canonical form of
c-factor factorization. We have

P (c) =
∑
v\c

∏
i

P (vi|pai) =
∑

an(C)\c

∏
i,Vi∈An(C)

P (vi|pai) =
∏
i

Q[Ai, Bi], (26)

where we assume An(C) \C are latent variables and G(C,An(C) \C) is partitioned into a
set of c-components (Ai, Bi). We obtain that P (C) is recoverable if each c-factor Q[Ai, Bi]
is recoverable. The result is summarized as a systematic algorithm REM-M for recovering
P (C) presented in Fig. 6.

Example 10 We demonstrate algorithm REM-M by recovering P (X,Z) in the m-graph in
Fig. 7. Note that since RY is a child of Y , the joint P (X,Y, Z) is not recoverable. Following
REM-M we have

P (x, z) = P (x)
∑
y

P (z|y)P (y|x) (27)

We call REQ attempting to recover P (x) and Q[Z, Y ] =
∑

y P (z|y)P (y|x) respectively.
P (x) is recovered by calling REQP to recover P (x) from P (x, rY , rZ , RX = 0) and then
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using Lemma 4. REQ calls REQP attempting to recover Q[Z, Y ] from

P (x, z, rY , RX = 0, RZ = 0)

= P (x)[
∑
y

P (z|y)P (y|x)P (rY |y,RX = 0, RZ = 0)]P (RX = 0)P (RZ = 0). (28)

Since RY is not an ancestor of other variables, Step 2 of REQP reduces the problem to
recovering Q[Z, Y ] from

P (x, z,RX = 0, RZ = 0) = P (x)Q[Z, Y ]P (RX = 0)P (RZ = 0), (29)

which says Q[Z, Y ] is recoverable by Lemma 4.

We believe REM-M is the first systematic algorithm for recovering marginal distribu-
tions. It is a significant advance over the existing sufficient conditions in the literature
Mohan et al. (2013); Mohan and Pearl (2014a).

7. Conclusion

It is of theoretical interest and importance in practice to determine in principle whether a
probabilistic query is estimable from missing data or not when the data are not MAR. In
this paper we present algorithms for systematically determining the recoverability of the
joint distribution and marginal distributions from observed data with missing values given
an m-graph. We have also developed new simple sufficient conditions that could be used to
quickly recover the joint. It is natural to ask whether the algorithms REJ-M and REM-M
are complete, that is whether the output of FAIL corresponds to that P (V ) or P (C) is
not recoverable. We are not able to answer this difficult question at this point. We find
the algorithms promising in that they have pinned down situations in which recoverability
seems not possible. The results are significantly more general than the sufficient conditions
in Mohan et al. (2013); Mohan and Pearl (2014a). Compared to the MID algorithm in
Shpitser et al. (2015), we treat the problem in a purely probabilistic framework without
appealing to causality theory. There also exist models where our REJ-M algorithm works
but MID fails. Future work includes investigating the completeness of REJ-M and REM-
M, and developing algorithms for recovering arbitrary probabilistic queries such as P (x|y),
and algorithms for recovering causal queries such as P (y|do(x)). We believe the results
in Section 4 provide a solid foundation for pursuing these tasks. It is also an interesting
research direction how to actually estimate distribution parameters from finite amount of
data if the joint is determined to be recoverable den Broeck et al. (2015).
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