
Proceedings of Machine Learning Research 77:359–374, 2017 ACML 2017

Computer Assisted Composition
with Recurrent Neural Networks

Christian Walder christian.walder@data61.csiro.au
Data61 at CSIRO, Australia.

Dongwoo Kim dongwoo.kim@anu.edu.au

Australian National University.

Editors: Yung-Kyun Noh and Min-Ling Zhang

Abstract

Sequence modeling with neural networks has lead to powerful models of symbolic music
data. We address the problem of exploiting these models to reach creative musical goals,
by combining with human input. To this end we generalise previous work, which sampled
Markovian sequence models under the constraint that the sequence belong to the language
of a given finite state machine provided by the human. We consider more expressive
non-Markov models, thereby requiring approximate sampling which we provide in the form
of an efficient sequential Monte Carlo method. In addition we provide and compare with a
beam search strategy for conditional probability maximisation.

Our algorithms are capable of convincingly re-harmonising famous musical works. To
demonstrate this we provide visualisations, quantitative experiments, a human listening test
and audio examples. We find both the sampling and optimisation procedures to be effective,
yet complementary in character. For the case of highly permissive constraint sets, we find
that sampling is to be preferred due to the overly regular nature of the optimisation based
results. The generality of our algorithms permits countless other creative applications.

Keywords: Music, sequence models, composition, neural networks.

1. Introduction

Algorithmic music composition has intrigued a wide range of thinkers, from times as distant
as the earliest days of modern computing, and beyond. As early as 1843, Ada Lovelace
famously speculated that a computer “might compose elaborate and scientific pieces of music
of any degree of complexity or extent” (Menabrea and Lovelace, 1843). Still earlier, around
1757, there famously existed a number of musical games which used dice along with precise
instructions, to generate musical compositions (Nierhaus, 2008).

Much work has focused on machine learning methods, which combine musical examples
with generic inductive principles, to generate new examples. For a survey of more recent
advancements we recommend e.g. Fernandez and Vico (2013); Nierhaus (2008). By restricting
to a highly structured and regular musical form, and providing a large number of training
examples, we may obtain convincing musical results even with rather music-agnostic models
(Sturm et al., 2015). Alternatively, with smaller datasets, more structured models are
required, such as the hidden Markov model investigated by Allan and Williams (2005). Both
of these methods lead to relatively convincing musical results. However, the plausibility of

c© 2017 C. Walder & D. Kim.

Walder Kim

the results comes at the cost of variety. It is unreasonable to expect such approaches to give
rise to interesting new musical forms.

Unmanned machine learning algorithms capable of divining interesting new musical
forms may arise, but this is far from a reality at the time of writing. In any case, hybrid
man-machine systems are a promising avenue for exploration. The high level goal is a system
for the partial specification of music, which relinquishes precise control for other gains.1

In this work, we investigate the combination of machine learning music models with
human input. Our approach is most closely related to the work of Papadopoulos et al. (2015),
who impose the constraint that the resulting sequence be a member of a language defined by
a finite state machine. This is a rather general constraint which provides a rich language for
human creativity via the partial specifications of music. In that work, the close relationship
between Markov models and finite state machines was used to derive a simple but exact
belief propagation algorithm. Here, we relax the constraint that our underlying sequence
model be Markovian, and instead make use of approximate sampling techniques, namely
that of sequential Monte Carlo (SMC) (Gordon et al., 1993; Doucet and Johansen, 2009).
In addition to sampling, we compare and contrast with a maximum conditional probability
approach based on a beam search. (given the finite state machine constraint).

By allowing models which are not low-order Markovian, we obtain algorithms which are
applicable to a broad range of more expressive probabilistic models of music. Concretely,
here we adopt the Long Short-Term Memory (LSTM) based neural network sequence
model (Hochreiter and Schmidhuber, 1997). By exploiting advances in massively parallel
computing architectures, this class of models has proven remarkably effective in a range of
domains, most notably natural language modeling (see e.g. Chelba et al. (2013)). Given the
similarities between music and natural language (Patel, 2010), it is unsurprising that the
LSTM is a natural model for music data. This was noted by Hochreiter and Schmidhuber
(1997) in the original LSTM paper, and subsequently investigated by Eck and Schmidhuber
(2002). This line of work has been taken up by a number of researchers, with recent examples
including e.g. Boulanger-Lewandowski et al. (2012); Walder (2016), the latter approach
being the one we adopt here.

In section 2 we set the problem up and motivate our solution. We provide technical
details of the approximate sampling method in section 3. Section 4 provides results including
a visual illustration, quantitative investigation, human listening test, and audio examples.
We conclude in section 5.

2. Set-up and Motivation

2.1. Required Background

We take the model of Walder (2016) as our starting point, and while this work is a necessary
accompaniment to the present work for those wishing to replicate our results, the present
paper stands alone in the sense that it may be applied to any model which factorises in
the causal manner subsection 2.2 described below. Furthermore, the finite state machine

1. I will argue that today’s composers are more frequently gardeners than architects and, further, that the
composer as architect metaphor was a transitory historical blip — Eno (2011).

360

Computer Assisted Composition

description

a) symbolic music data with five events

b)

x x x x x1 2 3 4 5

t t t t t1 2 3 4 5

dd d d d1 2 3 4 5

conditional x4|x1:3, t1:5, d1:5 available in (2)

c)

x x x x x1 2 3 4 5

t t t t t1 2 3 4 5

dd d d d1 2 3 4 5

all but x2 and x3 are observed

Figure 1: An overview of our system: please refer to section 2 for more details on the
background. Symbolic music consisting of five events (row a — note that the
rests or silences are not counted) is represented by a sequence of five note names
(roughly speaking, indices into a piano keyboard) x1:5, along with start times t1:5
and durations d1:5. Following Walder (2016) we model the conditional x1:5|t1:5, d1:5,
with a causal factorisation over x1:5 as indicated by the diagram (row b), and the
equation (2). Row c depicts the simplest setting we consider, wherein the human
input amounts to the partial observation of the sequence x1:5 (see subsection 3.1).
In the case depicted in row c, we infer some fixed subset of the notes (here, x2
and x3), given the values for all the other variables. The resulting conditional
x2, x3|x1, x4, x5, t1:5, d1:5 is non-trivial due to observed future values, which are
not directly handled by the conditionals which we explicitly model via the causal
factorisation (2). In rows b–c the box around t1:5 and d1:5 is meant to denote that
the out-going arrow(s) emanate from all the variables in the box.

constraint formalism we adopt is closely related to Papadopoulos et al. (2015), which we
also recommend as background material.

361

Walder Kim

2.2. Assumed Music Model

We represent a musical composition by a set of n triples, {(xi, ti, di)}ni=1 ⊂ X ×T ×T . Here,
X represents the set of possible pitches (from the 12-tet western musical system, including
both the note name and octave). The set T represents time, with ti and di denoting the
start time and duration of the i-th note event, respectively.

Following Walder (2016), we assume throughout that the timing information is given, so
that we have a model p({xi}ni=1 |n, {(ti, di)}

n
i=1). This model p is based on a reduction to a

non-Markov sequence model. This means that (for some particular ordering of the indices,
see Walder (2016)) neglecting the conditioning on {(ti, di)}mi=1, we have

p(x1:n) =

n∏
i=1

fi(xi|x1:i−1), (1)

where the conditionals fi are represented explicitly.

2.3. Assumption of Fixed Rhythmic Information

Ideally we would model the rhythmic structure, but this turns out to be rather challenging.
Indeed, modeling pitches given the rhythmic structure is already rather non-trivial, so
it is reasonable to subdivide the problem. Note that some authors have modeled timing
information, by assuming e.g.

1. A simple note on/off representation on a uniform temporal grid as in e.g. Boulanger-
Lewandowski et al. (2012), which assumed a temporal resolution of an eighth note.
This has the drawback of not distinguishing, say, two eighth notes from a single quarter
note (which has length two eighth notes).

2. Rather than explicitly processing each time step on a fixed temporal grid, one may
model time increments as in Colombo et al. (2016); Simon and Oore (2017). In this
case sampling conditionally given constraints as is our present focus becomes more
technical. Indeed, point process machinery (Daley and Vere-Jones, 2003) is required,
due to the variable dimension of the parameter space (that is, the number of notes).
The sampling problems analogous to the present work become highly non-trivial in
that case. This is the subject of ongoing work, and beyond the present scope.

Short of developing the second approach, assuming fixed timing has the advantage of allowing
arbitrarily complex rhythmic structures. In this way, rather than fully modeling an overly
simplistic music representation, we partially model a more realistic music representation.
Once we have satisfactorily modeled timing, our methods and findings may be generalised to
the full joint distribution, as we can always employ the chain rule of probability to decompose

p (n, {xi, tt, di}ni=1) = p({xi}ni=1 |n, {(ti, di)}
n
i=1)× p(n, {(ti, di)}

n
i=1), (2)

where the first factor on the r.h.s. is our present concern.

362

Computer Assisted Composition

2.4. Finite State Machine Constraint Formulation

3. Sequential Monte Carlo Details

We describe detailed sequential sampling methods. In subsection 3.1 we consider partially
observed sequences, and then in subsection 3.2 we extend this to more general constraints
represented by an arbitrary finite state machine. Throughout this section we neglect
conditioning on the start times ti and durations di, as they are fixed throughout.

3.1. Partially Observed Sequences

Let x1:n be a sequence drawn from the non-Markov process with discrete state-space X .

p(x1:n) ∝ γn(x1:n) =
n∏

i=1

fi(xi|x1:i−1),

where γn is an un-normalised probability distribution which can be factorised into the
conditionals fi, each of which depends on all of the previous states x1:i−1.

Our goal is to compute the posterior of x1:n with partial observations x̃. Let zi be 1 if xi
is observed and 0 otherwise. The posterior distribution of the unobserved part is:

p({xi}i:zi=0|{x̃j}j:zj=1, z1:n) =
p(x1:n)

p({xj}j:zj=1)

∝
∏n

i=1 fi(xi|x1:i−1)∑
xi∈X ,∀i:zi=0

∏n
i=1 fi(xi|x1:i−1)

,

where we let x1:n be the full sequence with the partial observations. Even though our state
space X is finite, näıvely evaluating the probability of a partially observed sequence would
involve computing |X |

∑
i(1−zi) terms, so that the computational cost is exponential with

respect to the number of unobserved notes.
To resolve this computational problem, we develop employ a standard particle filter

approach (Doucet and Johansen, 2009, section 3.2). One can approximate the posterior of x1:n
by importance sampling with fully factorised proposal distribution q(x1:n) =

∏n
i=1 qi(xi|x<i),

so that

γn(x1:n) = wn(x1:n)q(x1:n)

p(x1:n) =
wn(x1:n)q(x1:n)∑

xi∈X ,∀i=1,2,...,nwn(x1:n)q(x1:n)
.

With S samples x
(s)
1:n from q(x1:n), the posterior can be approximated by an empirical

measure of the samples:

p(x1:n|z1:n) =
S∑

s=1

wn(x
(s)
1:n)∑S

s′=1wn(x
(s′)
1:n)

δ
x
(s)
1:n

(x1:n).

363

Walder Kim

The weight of each sample x
(s)
1:n ∼ q(x1:n) is:

wn(x
(s)
1:n) =

γn(x
(s)
1:n)

q(x
(s)
1:n)

=

∏n
i=1 fi(x

(s)
i |x

(s)
1:i−1)

q(x
(s)
1:n)

=
γ̃n−1(x

(s)
1:n−1)

q(x
(s)
1:n−1)︸ ︷︷ ︸

,wn−1(x
(s)
1:n−1)

×
fn(x

(s)
n |x(s)1:n−1)

qn(x
(s)
n |x(s)<n)︸ ︷︷ ︸

,wn(x
(s)
n)

. (3)

The above recursion defines the particle filter scheme (Doucet and Johansen, 2009). For our
particular case of partial observations x̃, we define the proposal

qi(xi|x<i, z1:i) =

[
δx̃i(xi)

]zi[
fi(xi|x(s)1:i−1)

]1−zi
, (4)

so that our proposal always proposes x̃j whenever the sampler encounters the partial

observation. Then from (3) we have that the weight of sample x
(s)
i ∼ qi(xi) is

wi(x
(s)
i) ∝

{
1 zi = 0

fi(x
(s)
i |x

(s)
1:i−1) zi = 1

(5)

This expression is intuitive: we sample in temporal order using our original (unconstrained)
model, and re-weight our particles only when encountering an observed symbol (or constraint),
giving more weight to those particles whose history better agrees with the observed symbol,
as measured by the conditional fi. This algorithm is a special case of that of the following
subsection, for which pseudo-code is provided as algorithm 1.

3.2. General Constraints

Here we extend the set-up of the previous section to the more general case of sampling
with the hard constraint that the sampled sequence lie within a given regular language. In
particular, we wish to sample from

p(A)(x1:n) , p(x1:n|x1:n ∈ L(A))

∝

{
p(x1:n) x1:n ∈ Ln(A),

0 otherwise.
(6)

Here, Ln(A) is the set of sequences of length n generated by finite state machine A =
〈Q,Σ, δ, q0, F 〉, where Q is a set of states, Σ an alphabet of actions, δ the transition function
linking a state q ∈ Q and a label a ∈ Σ to the successor state q′ = δ(q, a), q0 ∈ Q the initial
state, and F ⊆ Q the set of terminal states. We have X = Σ in our case. Similarly to
Papadopoulos et al. (2015) we rewrite

p(A)(x1:n) ∝
n∏

i=1

fi(xi|x1:i−1)hi(x1:i),

364

Computer Assisted Composition

where

hi(x1:i) =

{
1 x1:i ∈ Li(A),

0 otherwise,

Papadopoulos et al. (2015) transformed their similar problem into one involving the Cartesian
product of the domain of the xi and the state space of A to obtain a tree structured factor
graph for which belief propagation is efficient. We are interested in non-Markov p and hence
have nothing to gain from such a transformation. Instead, we simply encode the language
membership constraint via the general functions hi and proceed with SMC as usual.2

Now, we generalise (4) of by choosing

q(A)(xi|x1:i−1) =
1

Zq(x1:i−1)
fi(xi|x1:i−1)hi(x1:i), (7)

where Zq(x1:i−1) =
∑

xi∈X fi(xi|x1:i−1)hi(x1:i). The re-sampling weights are derived similarly
to (3), yielding (up to an irrelevant constant to which SystematicResample (Carpenter et al.,
1999) of algorithm 1 is invariant):

w
(A)
i (x

(s)
i) = Zq(x1:i−1)

=
∑
x̃i∈X

fi(x̃i|x(s)1:i−1)hi(x̃
(s)
1:i), (8)

where x̃
(s)
1:i is the concatenation of x

(s)
1:i−1 and x̃

(s)
i . Hence (8) reduces to (5) for unary

constraints. The above expression is intuitive — if all the hi(x̃
(s)
1:i) are one, the weights are

one so we sample from p without modification. In other cases, we give greater weight to
those particles for which the total probability mass of admissible continuations is greater.
The overall procedure is summarised by algorithm 1.

For concreteness, we provide two examples of finite state machine formulation. It is not
crucial to understand these examples in detail however, as we may also formulate our user
constraints by specifying the hi of Equation 3.2 directly.

Example 1 (Sequence with unary constraints) We impose unary constraints at each
time i of length-n sequence. Take A = 〈Q,Σ, δ, q0, F 〉, where each time i has one-to-one
corresponding state qi. Let Xi be a set of acceptable notes at time i. With transition function
δ(qi, xi+1) = qi+1 if xi+1 ∈ Xi+1, we only allow notes in Xn+1 and rejects notes not in Xi+1.
Furthermore choose the terminal states F to be {qn}. Hence, machine A only accepts length-
n sequences which satisfy predefined unary constraints Xi. For example, in the partially
observed sequence case, Xi = {x̃i} if zi = 1 and Xi = X if zi = 0. Note that this partially
observed constraint is a special case of general unary constraints where Xi consists of single
observation x̃i.

Example 2 (Prohibit repeated notes) One can disallow consecutive positions from hav-
ing the same note as follows. Let the number of states be equal to the number of possible
notes |X |, and each state qx be indexed by x. Choose the transition function δ(qxi , xj) = qxj

if xi 6= xj. A only accepts sequences which does not have the same two consecutive notes.

2. However, since we only ever append an xi to a given particle, we may leverage the finite state machine
formulation of A in order to evaluate the hi, typically in O(1).

365

Walder Kim

Particle Filter

50

75

m
id

i

part 1

50

75

part 2

50

75

part 3

0 10 20 30 40 50
time (quarter notes)

50

75

part 4 0.2

0.4

0.6

0.8

1.0

fin
al

pa
th

 d
ist

rib
ut

io
n

Beam Search

60

80

m
id

i

part 1

60

80

part 2

60

80

part 3

0 10 20 30 40 50
time (quarter notes)

60

80

part 4 0.2

0.4

0.6

0.8

1.0

fin
al

pa
th

 d
ist

rib
ut

io
n

Figure 2: Visualisation of the final state of the particle filter (upper) and beam search
(lower), with S = 2048 paths. In both cases the fourth part (lowest sub figure)
is fixed to the original from Corelli’s Trio Op 1 No 1 (which actually contains
four midi tracks) provided by Boulanger-Lewandowski et al. (2012); hence the
fourth part appears above as a deterministic distribution, with probability mass
one on a single note at each time step. The pitches (vertical axis) of Parts
1–3 were unconstrained, to be determined by our algorithms. For the particle
filter, the plotted distribution is a sequential Monte Carlo approximation of the
filtering distribution (which, given that we consider the final time step, is also the
smoothing distribution). For the beam search, the plotted distribution is simply
the set of the candidate paths maintained by the deterministic search algorithm
at its final step. Note that the part numbers, which corresponding to the axes
above, and which come from the original composition, are used only for plotting
and not by our algorithms.

Following Papadopoulos et al. (2015) we formulate human input as the constraint that
the sequence x1:n belong to the language of an arbitrary finite state machine, A. This has
the advantage of being extremely general, yet amenable to belief propagation (for Markov

366

Computer Assisted Composition

p as in Papadopoulos et al. (2015)), and particle filtering/beam search (as in the present
work).

The experiments in section 4 utilise a fraction of the generality of this approach. We
envisage a rich set of constraints which users may experiment with to discover interesting
new music, and our algorithms facilitate this. One might enforce the repetition of patterns,
transform relationships between sub-sequences (such as inversion / retrograde), and so on,
with arbitrarily complex implications such as odd poly-metrical patterns, etc. Concrete
examples are given by Roy and Pachet (2013), which imposes metrical structure, and
Papadopoulos et al. (2016), which avoids the exact repetition of training sub-sequences.

3.3. Harmonisation by Sampling / Optimisation

We consider two alternative means of incorporating the constraint of the previous subsection.
The first is conditional sampling, from p(x1:n|x1:n ∈ L(A)), where L(A) is the set of
sequences A can generate. The second is maximisation of the same conditional probability
with respect to x1:n.

The nature of (1) is such that given a partial sequence x1:i−1 we may keep track of a
latent variable (the LSTM state vector) in order to compute fi(xi|x1:i−1) in time independent
of i. The state vector may also be updated in time independent of i, when a new element xi
is appended. This structure makes SMC the natural choice for sampling, since it only ever
requires extending a given sequence by a single element. Section 3 provides the details. This
approach is in contrast to e.g. Hadjeres and Pachet (2017), wherein a simpler conditional
independence structure is assumed (a local dependency network), making sampling simpler
but precluding the modelling of longer range dependencies as captured by the LSTM.

Similarly, beam search methods are natural for maximising the conditional probability.
In this case we maintain S candidate paths, and extend each path by one new element each
time step, for all feasible continuations, retaining the S most probable resulting sequences.

4. Results

Throughout the experiments, we employ finite state machines which merely fix certain notes
xi to given values, and prevent unison intervals from occurring within a single part (which
would be impossible to play on the piano, for example).

4.1. Visualisation

A well known difficulty in particle filtering is the collapsing of the particles to a small number
of unique paths. We observe little evidence of this in our setting however, which features a
reasonable degree of uncertainty in the final particle distribution (Figure 2, upper plot). As
expected, the beam search (Figure 2, lower plot) behaves very differently, with the majority
of the solutions being identical other than at a few isolated temporal intervals.

4.2. Quantitative Investigation

Both the beam search and particle filter algorithms have a single key free parameter S, the
number of paths to store, which trades accuracy for computation time. In this subsection,
we investigate this trade-off. For computational reasons, we restricted our analysis to the

367

Walder Kim

100 101 102 103

number of paths

3.0

2.5

2.0

1.5

1.0
m

ea
n

pe
r-n

ot
e l

og
 p

ro
ba

bi
lit

y

Ground truth filtering log probability

100 101 102 103

number of paths

1.6

1.4

1.2

1.0

0.8

0.6

m
ea

n
pe

r-n
ot

e l
og

 p
ro

ba
bi

lit
y

Best log probability

1 / 4 fixed parts (particle filter)
1 / 4 fixed parts (beam search)

2 / 4 fixed parts (particle filter)
2 / 4 fixed parts (beam search)

3 / 4 fixed parts (particle filter)
3 / 4 fixed parts (beam search)

4 / 4 fixed parts

Figure 3: The effect of increasing the number of paths. Left: the filtering probability of the
fixed (ground truth) parts, and right: the best (maximum) probability sequence
found by the algorithm. The vertical axis is the mean log probability per musical
note under our sequence model. The mean +/- one standard error of this quantity
is depicted, taken over the 16 pieces we consider, multiplied by the C4

m choices of
fixed parts, where the number m of fixed parts ranges from 1 to 4 and is denoted
by the color. The beam search is plotted in solid lines and the particle filter in
broken lines. See subsection 4.2 for the details.

sixteen shortest pieces (by number of notes) from those pieces in the MuseData test set from
Boulanger-Lewandowski et al. (2012) which consist of exactly four voices (all of which turned
out to be Bach chorales). For each piece, and for m ∈ {1, 2, 3, 4}, we fixed m of the voices to
that of the original piece, and applied our algorithms to choose the remaining (4−m) parts.
We did this in all C4

m possible ways, plotting in Figure 3 the mean and standard error over
all 16× C4

m possibilities of two different quantities, as a function of the number of paths S.
The two quantities depicted are:

1. Figure 3 l.h.s.: the filtering probability of the fixed parts — in the notation of
subsection 3.2 the mean of the log of

S∑
s=1

w(x
(s)
<i)∑S

s′=1w(x
(s′)
<i)

fi(xi|x(s)<i),

for all i corresponding to the fixed voices. For the particle filter, this is an SMC
approximation of the probability of the ground truth for the fixed voices conditional on

previous observed values for the fixed voices. For the beam search we let w(x
(s)
<i) = 1,

and the quantity heuristically measures how well the set of candidate paths agree with
the fixed voices on average.

2. Figure 3 r.h.s.: the probability of the best complete harmonisation found by the
algorithm. For the beam search, this is the log probability of the final path obtained

368

Computer Assisted Composition

0 1 2 3
number of fixed parts (out of four)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Bi
no

m
ial

 P
ro

b[
"o

ur
s b

ett
er

 th
an

 o
rig

in
al"

]

90% Confidence Intervals

beamsearch
particlefilter

Figure 4: Results from the listening test described in subsection 4.3. We plot 90% confi-
dence intervals for the probability that our results are preferred to the original
compositions from which they were derived. The horizontal axis is the number of
parts which were fixed to the values in the original composition. We see that with
the provision of just one part from the original piece, we score approximately as
well as the original composer (i.e. p = 0.5), namely Bach.

by the search algorithm. For the particle filter, we take the most likely solution from
the final set of particles.

Qualitatively, the results are as expected, with each algorithm dominating in the setting it
is intended for: the particle filter is superior in terms of the filtering probability, while the
beam search produces more probable solutions.

Interestingly, given sufficiently large S, the best log probability exceeds the ground truth
(4/4 fixed parts, red line). This indicates that either we are doing better than the original
composer, or the probability under p does not fully reflect perceived quality. The listening
test in subsection 4.3 indicates that the latter is of course most likely, although this does
not necessarily imply that p is inadequate — see subsubsection 4.3.2 and footnote 4.

Quantitatively, we see that around S = 500 paths are necessary in order to obtain good
solutions (that the particle filter continues to improve for greater S in terms of the Figure 3
right hand side plot is to be expected since the algorithm does not explicitly search for the
most likely sequence). The required number of paths is significantly more than reported
by Sutskever et al. (2014), who observed marginal gains for S > 2. Broadly speaking,
this difference is to be expected: locally, the best musical harmonisation may be highly
ambiguous, requiring many paths to be maintained in order for the future fixed (or observed)
notes to have a reasonable chance of resolving well in the musical sense. The machine
translation problem considered by Sutskever et al. (2014) is less ambiguous, and furthermore
future symbols (words) are not conditioned on as in our setting.

369

Walder Kim

Hyper-link Description

(a) melody original melody line in isolation

(b) original complete original composition

(c) beam search melody line + beam search

(d) particle filter melody line + particle filter

Table 1: Sample output based on the first movement of the Quartet No. 7 in E flat major
by Mozart. In (a) the original melody line is rendered by itself with a piano timbre.
In (b)—(d), three additional parts are rendered with a distinct classical guitar like
timbre.

4.3. Human Listening Test

We also investigated the effectiveness of our algorithms as judged by human evaluators, via
an on-line survey using the Amazon Mechanical Turk3.

4.3.1. Methodology

As the basis for the survey, we generated harmonisations as in the previous subsection 4.2,
with the number of candidate paths S set to 4096. We excluded two of the sixteen pieces
previously considered, due to the extended use of pure pedal point (repeating of a single note)
in three out of four voices of the original compositions, leading to uninteresting constraints
in the majority of cases. For each of the remaining fourteen pieces and for m ∈ {0, 1, 2, 3},
we harmonised the pieces with m out of four voices fixed. As before, we did this all C4

m

possible ways, for both the particle filter and beam search methods. Each such output was
compared with the original piece from which it was derived. This comparison was performed
by ten unique human subjects per piece (not the same ten for each piece; there were 67
unique respondents). This gave a grand total of 14×

∑3
n=0C

4
n× 2× 10 = 4200 comparisons,

or — figuring conservatively at one minute per test — approximately 72 hours of listening.
Each experiment presented the original and derived piece in random order, and asked the
participant to decide which sounds better overall?

To improve data quality we included two participant filters. First, we presented pieces
with random notes drawn from uniform distribution over a four octave range, and excluded
subjects who failed to do better than random at selecting the original piece over the random
piece. Second, we tried to filter insincere subjects who responded in a very short time.

4.3.2. Findings

A summary of the results is presented in Figure 4, which presents frequentist confidence
intervals on the unknown binomial probability (Brown et al., 2002) of choosing our pieces as
preferable to the original. Note that a probability (vertical axis) of greater than one half
would imply that our results are on average preferable to the original piece.

3. http://www.mturk.com

370

https://soundcloud.com/user-920800058/mozartqrtetsk160-midi1-01midmelody
https://soundcloud.com/user-920800058/mozartqrtetsk160-midi1-01midoriginal
https://soundcloud.com/user-920800058/mozartqrtetsk160-midi1-01midbeamsearch
https://soundcloud.com/user-920800058/mozartqrtetsk160-midi1-01midparticlefilter
http://www.mturk.com

Computer Assisted Composition

Retained Part Particle Filter Beam Search

4 (melody) hyperlink (∼ d) hyperlink (c)

3 hyperlink hyperlink

2 hyperlink hyperlink

1 (bass) hyperlink hyperlink

Table 2: Sample output based on the first movement of the Quartet No. 7 in E flat major by
Mozart. Similarly to Table 1 (please see the corresponding caption), we retained a
single part as composed by Mozart, and replaced the pitches in the remaining 3
voices. Retained Part : the part which we left unchanged from the original, from 4
(highest pitch) to 1 (lowest); Particle Filter: the sampling result; Beam Search:
the beam search result. (c) is identical to that of Table 1, while (∼ d) is similar to
(d) from Table 1, but used a different random seed.

The most clear result is that with no fixed parts, the beam search algorithm tends to
produce inferior results. This is in line with the experience of our informal experimentation
with the beam search approach which, in the absence of fixed notes to condition on, tended
to produce overly regular patterns featuring long sequences of repeated notes, etc. This
is not an erroneous result, but rather a natural consequence of maximising the sequence
probability, rather than sampling from the distribution.4 It is worth noting that this
overly regular behaviour of the beam search may be observed not only in that case of
unconditional sampling, but also in pieces where the parts being conditioned on feature
sufficiently protracted periods of inactivity, during which the beam search is relatively
unconstrained (see the illustrative examples in subsection 4.4).

The particle filter does only slightly worse than parity with no fixed parts, but this effect
is not significant based on these tests. Our own informal experimentation indicated that the
fully unconstrained (no fixed parts) particle filter tends to occasionally finish pieces with
poorly resolved harmonic movements — an observation partially corroborated by Figure 4.
Interestingly, both algorithms perform well given even a single fixed part to condition on
(with the particle filter performing slightly but consistently better overall). This is a broadly
satisfactory result, which indicates the possibility of constructing convincing musical results
by specifying a single voice (out of four), along with the rhythmic structure of the piece.

4.3.3. Discussion

One goal of our work is to create tools which facilitate the advancement of the musical
art form. We believe that this may be be possible, through creative manipulation of the
constraint set by skilled humans. Ideally, we would leverage the super human ability of the
computer to sift through large numbers of possible solutions. In this way, constraint sets

4. Informal thought experiment: consider the stochastic relationship yi = xi + N (0, 1). We imagine the
analogy that the xi represent the timing and the yi the pitch of a set of notes making up a piece. The
most likely yi given an xi is exactly yi = xi, and yet for a set {xi}ni=1 such a perfect straight line is in
some sense highly atypical of a sample from the conditional {yi}ni=1|{xi}ni=1.

371

https://soundcloud.com/user-920800058/particlefilter-3-mozart-qrtets
https://soundcloud.com/user-920800058/beamsearch-3-mozart-qrtets
https://soundcloud.com/user-920800058/particlefilter-2-mozart-qrtets
https://soundcloud.com/user-920800058/beamsearch-2-mozart-qrtets
https://soundcloud.com/user-920800058/particlefilter-1-mozart-qrtets
https://soundcloud.com/user-920800058/beamsearch-1-mozart-qrtets
https://soundcloud.com/user-920800058/particlefilter-0-mozart-qrtets
https://soundcloud.com/user-920800058/beamsearch-0-mozart-qrtets

Walder Kim

Algorithm 1: Sequential Monte Carlo for constrained non-Markov sequences, with system-
atic re-sampling (Carpenter et al., 1999).

function ConstrainedSMC(S, {(fi, hi)}ni=1):
for s← 1, 2, . . . , S do

x(s) ← () initialise with empty sequence
end
for i← 1, 2, . . . , n do

for s← 1, 2, . . . , S do

sample x
(s)
i ∼ q(A)(· |x(s)1:i−1) proposal (7)

x(s) ← (x(s), x
(s)
i) append

ws ←
∑

x̃i∈X fi(x̃i|x
(s)
1:i−1)hi(x̃

(s)
1:i) (8)

end
k1:S = SystematicResample(w1:S)
(x(s))Ss=1 ← (x(ks))Ss=1 duplicate/delete particles

end

return x(1:S) approximate samples x(1:S) from p(A) of (6)

function SystematicResample(w1:S):

ω1:S ← w1:S/
∑S

s=1 ws

sample u ∼ Uniform([0, 1])
ū← u/S; j ← 1; Sω ← ω1

for l← 1, 2, . . . , S do
while Sω < ū do

j ← j + 1
Sω ← Sω + ωj

end
kl ← j
ū← ū+ 1/S

end
return k1:S

which are too complex and tightly coupled for human investigation may yield new musical
forms. Evaluating such a scheme is beyond the present scope, likely requiring an entirely
different approach than the simple listening test undertaken here (see Loughran and O’Neill
(2016) for a discussion of the challenges). These experiments are intended merely to verify
that our system can produce feasible solutions given a simplistic constraint set.

4.4. Illustrative Example

Finally, in Table 1 we provide sample audio output from both the particle filter and beam
search algorithms. To demonstrate the nature of the algorithms, we took a string quartet
by Mozart, fixed the melody line, and re-harmonised the three remaining parts given their
original rhythmic structure (note onset and offset times). The results are typical of the
behaviour of the algorithms. In particular, the beam search produces more repetitive results
than the particle filter.

To demonstrate robustness, Table 2 provides further re-harmonisations. The methodology
is identical to that of the previous paragraph; in this case however we vary which voice was
fixed to the original composition of Mozart, while re-harmonising the remaining three.

372

Computer Assisted Composition

5. Conclusions

We presented algorithms for combining sophisticated probabilistic models of polyphonic
music with human input. We represent human input as a finite state machine which
accepts allowed compositions. Such a constraint is rather general, and yet amenable both
to sequential Monte Carlo (for sampling from implied conditional distribution) and beam
search optimisation (for maximising the same conditional distribution). We demonstrated
the efficacy of the methods both quantitatively and through a listening experiment with
human subjects. When the constraints are highly permissive, it seems that conditional
sampling should be preferred to probability maximisation, as the latter tends to produce
overly regular results in this case. Furthermore, the two approaches lead to a different style
of musical result, as exemplified by the included audio example.

References

Moray Allan and Christopher K. I. Williams. Harmonising chorales by probabilistic inference.
Advances in Neural Information Processing Systems 17, 2005.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal
dependencies in high-dimensional sequences: Application to polyphonic music generation
and transcription. In International Conference on Machine Learning, 2012.

Lawrence D. Brown, T. Tony Cai, and Anirban DasGupta. Confidence intervals for a
binomial proportion and asymptotic expansions. Annals of Statistics, 30(1):160–201, 2
2002. doi: 10.1214/aos/1015362189.

J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for nonlinear problems.
IEE Proc., Radar Sonar Navig., 146(1):2, 1999.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp Koehn.
One billion word benchmark for measuring progress in statistical language modeling. CoRR,
abs/1312.3005, 2013.

Florian Colombo, Samuel P. Muscinelli, Alex Seeholzer, Johanni Brea, and Wulfram Gerstner.
Algorithmic composition of melodies with deep recurrent neural networks. In Computer
Simulation of Musical Creativity, 2016.

D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes Volume I:
Elementary Theory and Methods. Springer, second edition, 2003. ISBN 0-387-95541-0.

Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing:
Fifteen years later. Handbook of nonlinear filtering, 12(656-704):3, 2009.

Douglas Eck and Juergen Schmidhuber. A first look at music composition using LSTM
recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 2002.

Brian Eno. Composers as gardeners. https://vimeo.com/55969912, 2011. Accessed:
July 2015 (transcripts can be found online).

373

https://vimeo.com/55969912

Walder Kim

Jose D. Fernandez and Francisco J. Vico. Ai methods in algorithmic composition: A
comprehensive survey. J. Artif. Intell. Res. (JAIR), 48:513–582, 2013.

N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEEE Proc. Radar and Signal Processing, 140(2):107–113, 1993.

Gatan Hadjeres and Francois Pachet. Deepbach: a steerable model for bach chorales
generation. In International Conference on Machine Learning, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Roisin Loughran and Michael O’Neill. Generative music evaluation: Why do we limit to
“human”? In Computer Simulation of Musical Creativity, 2016.

Luigi Federico Menabrea and Ada Lovelace. Sketch of the analytical engine invented by
charles babbage. Scientific Memoirs, pages 666–731, 1843.

Lawrence M. Murray, Anthony Lee, and Pierre E. Jacob. Parallel resampling in the particle
filter. Journal of Computational and Graphical Statistics, 2015.

Gerhard Nierhaus. Algorithmic Composition: Paradigms of Automated Music Generation.
Springer Publishing Company, Incorporated, 1st edition, 2008.

Alexandre Papadopoulos, Francois Pachet, Pierre Roy, and Jason Sakellariou. Exact sampling
for regular and markov constraints with belief propagation. In Principles and Practice of
Constraint Programming, pages 341–350, 2015.

Alexandre Papadopoulos, Francois Pachet, and Pierre Roy. Generating non-plagiaristic
markov sequences with max order sampling. In Creativity and Univers. in Language, 2016.

A.D. Patel. Music, Language, and the Brain. Oxford University Press, 2010. ISBN
9780198028772.

Pierre Roy and Francois Pachet. Enforcing meter in finite-length markov sequences. In
AAAI Conference on Artificial Intelligence, 2013.

Ian Simon and Sageev Oore. Performance rnn: Generating music with expressive timing
and dynamics. https://magenta.tensorflow.org/performance-rnn, 2017.

Bob Sturm, João Felipe Santos, and Iryna Korshunova. Folk music style modelling by
recurrent neural networks with long short term memory units. In ISMIR demo, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Neural Information Processing Systems 27, pages 3104–3112, 2014.

Christian Walder. Modelling symbolic music: Beyond the piano roll. In The 8th Asian
Conference on Machine Learning (ACML), pages 174–189, 2016.

374

https://magenta.tensorflow.org/performance-rnn

	Introduction
	Set-up and Motivation
	Required Background
	Assumed Music Model
	Assumption of Fixed Rhythmic Information
	Finite State Machine Constraint Formulation

	Sequential Monte Carlo Details
	Partially Observed Sequences
	General Constraints
	Harmonisation by Sampling / Optimisation

	Results
	Visualisation
	Quantitative Investigation
	Human Listening Test
	Methodology
	Findings
	Discussion

	Illustrative Example

	Conclusions

