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Abstract

Imbalanced data poses a serious challenge for many machine learning and data mining
applications. It may significantly affect the performance of learning algorithms. In digital
marketing applications, events of interest (positive instances for building predictive models)
such as click and purchase are rare. A retail website can easily receive a million visits every
day, yet only a small percentage of visits lead to purchase. The large amount of raw data
and the small percentage of positive instances make it challenging to build decent predictive
models in a timely fashion. In this paper, we propose an adaptive sampling strategy to
deal with this problem. It efficiently returns high quality training data, ensures system
responsiveness and improves predictive performances.
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1. Introduction

Businesses see growing benefits from big data and machine learning. Marketers use machine
learning to target specific customer segments, e.g., customers who are likely to purchase
some product. Financial industries can use machine learning for fraud detection. In prac-
tice, however, the problem of imbalanced data (the size of one class is significantly larger
than another) often emerges. Some applications, such as fraud detection Phua et al. (2004)
biomedical applications Oh et al. (2011) and anomaly detection Chandola et al. (2009), are
susceptible to severe data imbalance. In the digital marketing field, the data imbalance
problem is ubiquitous as events of interest are typically just a small portion of the overall
population. For example, in a seven day period, a retail website got over 42 million visits,
but only received about 16 thousand purchases. When businesses want to predict which
customer will make a purchase, these customers who made purchases are defined as positive
instances and the rest are defined as negative instances, then a predictive model (e.g. lo-
gistic regression) can be learned using the data. In this case, the ratio of positive/negative
instances is less than 1:2500. The imbalance problem can be even worse; when selecting
higher return customers with “revenue ≥ 100”, the ratio is below 1:10000. Since the size of
the negative class is much larger than the positive class, we also call the negative class the
“majority class”, and the positive class the “minority class”. In general, standard learn-
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ing algorithms expect balanced class distributions. When dealing with severely imbalanced
data, they tend to overfit training data and perform unfavorably on unseen data He and
Garcia (2009).

In the literature, the data imbalance problem can be classified into two types: intrinsic
and extrinsic He and Garcia (2009). Intrinsic refers to the imbalance resulting from the
nature of the data such as the above mentioned example of retail data. Extrinsic refers
to imbalances due to other causes such as time and storage. For instance, a data stream
is balanced overall yet its minority instances are not i.i.d. (independent and identically
distributed). Taking digital marketing data as an example, the distribution of purchasing
events is not i.i.d.. Because visits in different time periods could have different probability
of placing orders, due to various factors such as customer behavior and time zone (geo-
location) differences.

Because the amount of data is huge, it is too expensive to use all data to train a
predictive model. Not only that, just loading all data instances from disks already has a big
impact on system responsiveness. Therefore in order to ensure the system to be responsive
for its users, we have to use a portion (sample) of data, rather than the entire data, to train
predictive models. Due to the nature of big data, even a small portion of data contains
a large number of data instances. For example, 0.1% of a data set of size 200 million has
200k (2× 105) instances. This is usually enough for building a decent predictive model if it
contains enough minority instances. However, taking a sample of data makes the imbalance
problem even worse: 1. the absolute number of positive instances will be significantly
reduced; 2. if the data is not i.i.d. distributed, the percentage of positive instances in a
random sample could be even less than the original data. Due to the limited number of
positive instances, different random samples could have quite different positive instances.
Consequently, models estimated using these different samples will have high variances and
are unlikely to be repeatable. In this paper, we propose an adaptive sampling scheme,
which helps to handle large scale data that are severely imbalanced, e.g., website traffic
data with hundreds of millions of visits but few events of interest. The adaptive sampling
module generates more balanced data samples efficiently, yielding more repeatable and
reliable predictive models.

2. Related Work

Kubat and Matwin Kubat et al. (1997) proposed to tackle the imbalance problem by down-
sampling the majority class while keeping the minority class. Ling and Li Ling and Li
(1998) combined under-sampling of majority class with over-sampling of minority class.
However, this does not significantly help minority class recognition Chawla et al. (2002).
The Synthetic Minority Over-sampling Technique (SMOTE) algorithm Chawla et al. (2002)
improves class balance by creating synthetic positive instances using interpolation. It is
widely used because of its effectiveness and simplicity. One problem is that these algo-
rithms need to know the ratio between the minority class and the majority class a priori,
in order to set how much over-sampling/under-sampling should be done and how many
synthetic instances to create. Users of our system can set all kinds of target variables, e.g.,
“place an order” or “spend over 1000 dollars”, to build predictive models for their business
goals. The ratio will be different for different target variables, thus it will not be readily
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available without scanning the data, which may be expensive. In addition, the SMOTE
algorithm may not be suitable for digital marketing data, where the data has a high dimen-
sionality (hundreds to thousand) as they cover all aspects of customer visits, including both
numerical and categorical attributes (variables), for example: “Page views”, “Time”, “Ge-
olocation”(e.g., “Japan”), “Browser type”(e.g., “Firefox 42.0”) and “Campaign type”(e.g.,
“discount 20%”). It has been shown that SMOTE is less effective for high dimensional
data Wallace et al. (2011) Blagus and Lusa (2012). Moreover, SMOTE operates on the
entire available data. It would be too costly if we apply them directly on the original raw
data. One solution is to take a random sample of the original data first, then apply the
SMOTE algorithm to make it more balanced. However, this is not very helpful as we will
show in the experiments section. The reason can be explained using the previous data as
an example. With a positive/negative ratio of 1:2500, a sample of 200k instances will only
have ∼ 80 positive instances. Statistics literature Harrell et al. (1984) states that one needs
a decent number of minority instances to have stable logistic regression estimates, “one in
10” is the minimum requirement and “one in 20” rule has been suggested Steyerberg and
Eijkemans. For example, to use regression analysis on 40 predictor variables, 40× 20 = 800
minority instances are needed to avoid overfitting. Obviously, due to the high dimension-
ality of our data, 80 instances are too few to capture the distribution of the positive class.
So it is impractical to generate enough reliable positive instances using interpolation.

3. Our Approach

In order to achieve the high system performance, both in term of response time and accuracy,
we propose an adaptive sampling scheme which ensures that sufficient minority instances
will be collected efficiently. In addition, the majority class will be uniformly sampled to
address the potential problem that data is not i.i.d..

3.1. Adaptive Sampling Scheme

Our adaptive sampling scheme is summarized in Algorithm 1. It treats data as a stream of
positive and negative instances.

The notation of the algorithm is as follows: N is the target sample size for building a
predictive model, for example 200k. M is the number of parameters to be estimated in the
model, e.g., the number of channels in the attribution model or the number of predictor
variables in the regression model; Nr is the number of desired positive instances, which is
set to be Nr = 50M . In other words, we use a “one in 50” rule to determine the number
of positive instances. It requires more positive instances than the “one in 20” rule, and
we find empirically this leads to reliable model estimation. Nn is the number of negative
instances collected from data so far. Np is the number of positive instances collected from
data so far. Nt is the total number of negative instances scanned so far.

Step 1a keeps accumulating negative instances until the size reaches N − Nr. After
that each incoming negative instance has a Nn/Nt probability of being put into the list
of negative instances. Nn/Nt gradually decreases as Nt increases. Ultimately all negative
instances which have been scanned have the equal probability 1/Nt of being put into the
list. So we get a random sample of negative instances from the original data. Step 1(b)iiB
only happens if the data is abundant with positive instances, i.e., we have collected enough
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Algorithm 1 The adaptive sampling algorithm

1. Check the current data instance to see if it is a positive or negative:

(a) If it is a negative instance, do reservoir sampling Vitter (1985):

i. Nt = Nt + 1.

ii. A. If Nn < N − Nr, add it to the list of negative instances, denote as Ln.
Nn = Nn + 1.

B. Otherwise replace an instance in Ln with the current one:
- Randomly generate an integer i between 0 and Nt − 1.
- If i < Nn, replace Ln[i] with the current negative instance.

(b) If it is a positive instance:

i. If Np < Nr, add it to the list of positive instances, denote as Lp. Np = Np+1.

ii. Otherwise,

A. If Nn + Np ≥ N , the desired data sample has been collected. Combine
Lp and Ln as the final sample, return with success.

B. Else do reservoir sampling for positive instances.

2. If there is no data left, combine Lp and Ln as the final sample (that is the best we
can do), return with warning. Otherwise, move to the next instance and go to 1.

positive instances before the sample has reached the target size. Step 2 exits when the data
is extremely imbalanced, such that the entire raw data does not have the desired number of
positive instances. This is not typical, but occurs sometimes when the criterion for positive
instances is set to be very strict.

In our system, a cluster of machines are used to store and process data, N and Nr are
divided by the number of machines when doing sampling within each machine. Once the
sampling is done in all machines, the result samples are combined into one final sample.
The data instances in this final sample are randomly shuffled before they are fed to the
predictive module for training and testing.

As can be seen from the sampling algorithm:

1. When the data is severely imbalanced (very few positive instances), it will keep scan-
ning, going through a large portion of data, to obtain enough positive instances. In
the worst case when the positive instances are extremely rare, it might scan through
the entire data to collect a more balanced sample. On the other hand, when the data
is less imbalanced, it will stop sampling very early (e.g., stops after only checking 1%
of data) because enough positive instances have been retrieved already.

2. This means that for more balanced data, the algorithm stops early and is very efficient,
while for imbalanced data, the algorithm will run for as long as it takes to find the
desired number of positive instances. In other words, it adapts to the distribution of
the data. It does not matter if the source of imbalance is intrinsic or extrinsic, the
adaptive sampling algorithm handles it without the need to know a priori the ratio
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or the type of imbalance. In comparison, other methods, e.g., under-sampling the
majority class, over-sampling the minority class, Synthetic Minority Over-sampling
Technique (SMOTE), go through the entire data. Scanning the entire data is very
expensive for the kind of big data that our system needs to deal with. For example,
for the small web traffic test data (42 million high dimensional customer visits data),
it takes ∼ 1 minute to scan through the data with our testing setting of a two machine
cluster. Actual data are often 10× or 100× larger, it would surely adversely impact
our customer experiences. The proposed adaptive algorithm only needs to scan the
entire data when absolutely necessary (the case of extremely rare positive instances).
Most of the time, it finishes earlier and ensures the effectiveness and efficiency of the
system.

3. More formally, suppose the number of instances in the raw data is n, the size ratio
between the minority/majority classes is r, the complexity of SMOTE is O(n). The
proposed algorithm is O(Nr/r), which is usually much less than O(n). Using the
previous web traffic data as an example, when building a model using 40 predictor
variables, Nr = 50 × 40 = 2000, if the ratio is 1/2500, Nr/r = 5 × 106, which is
much less than 42 million. Only in the worst case when there is not enough minority
instances in the entire data set, the complexity is O(n).

3.2. Discussion About Alternatives

One might also come up with two alternative solutions to the problem:

1. Do simple stratified sampling: keep sampling, and put positive instances and negative
instances into two separate lists until they reach the desired size. Stop when both
lists reach their target sizes.

2. Scanning through the entire dataset, and do reservoir sampling for both positive
instances and negative instances. This will ensure a random sample of the original
data, even when the original data distribution is highly non-i.i.d. (high extrinsic
imbalance).

The first alternative also has the complexity O(Nr/r) as it needs to scan that amount of
data to collect enough positive instances. In practice, it is a little faster than the proposed
algorithm. Because it just uses the first N − Nr negative instances in the original data,
and stops processing further. However, it is only optimal when the data distribution is
i.i.d.. When the data is not perfectly i.i.d., it brings the risk of having a biased negative
distribution. This happens in web traffic data as people across the world live in different time
zones, thereby visits in day and night time are likely to come from different geo-locations.
Accordingly, the negative instances in the unseen test data may be out of the distribution
of the training sample. As a result, it could lead to inferior results. The second alternative,
although appealing as it can handle highly non-i.i.d. data, requires always scanning the
entire data. It is too expensive for our application. Our solution is much more efficient than
the second alternative. And it is virtually as efficient as the first alternative, while bringing
robustness against moderately non-i.i.d. data distributions.
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4. Experiments

Although it is apparent that the proposed algorithm generates better samples and leads
to better predictive models, we need to verify its advantage through experiments. Each
time after obtaining a data sample, we randomly split it and use 80% of it for building the
predictive model. Then we evaluate the model on the remaining 20% data, so that users
can immediately see the predictive performance on unseen data. The confusion matrix
is used to illustrate the predicative performance as shown in Table 1 and Table 2. A
good prediction system will predict “true negative” as “negative”, and “true positive” as
“positive”. Thus off-diagonal entries in the confusion matrix represent wrong predictions,
and larger numbers in the diagonal entries indicate better performance. Accordingly we
can define “TP” as the number of correctly classified positives, “TN ” as the number of
correctly classified negatives, while “FP” as the number of negatives incorrectly classified
as positives and “FN ” as the number of positives incorrectly classified as negatives. We
also use precision and recall to quantitatively measure the performance. Recall is defined
as TP

TP+FN , measuring the percentage of the true positive identified as positive. Precision

measures the percentage that predicted positives are true positives. It is defined as TP
TP+FP .

Table 1: Performance of predictive models built based on random sampling vs. adaptive sampling,
on their respective test samples.

Random sampling Adaptive sampling

Predicted
negative

Predicted
positive

Predicted
negative

Predicted
positive

True negative 39925 39 39839 161

True positive 344 16 1023 4977

Recall 4.44% 82.95%

Precision 29.09% 96.86%

The algorithm was integrated into an analytics software system and tested extensively
by quality engineers and 3rd party users on different web traffic datasets. All tests showed
that predictive models built based on the adaptive sampling perform significantly better
than models built based on the random sampling, especially for severely imbalanced data.
We use a real retail traffic data with over 10 million records as one example to demonstrate
the superiority. In our experiments, the target sample size is set to be 200k. For each data
sample, either obtained by adaptive sampling or random sampling, we use the standard
SMOTE algorithm Chawla et al. (2002) to create synthetic positive instances, to make
the sample more balanced. Thus the size of the sample test set is a little more than
40k(200k × 20%). Table 1 shows a typical performance comparison, when building a L2
regularized logistic regression model for predicting the target variable “place an order” (i.e.,
the customer makes a purchase, happening about 1 in 1190 cases in this dataset) using 151
predictor variables. The same predictor variables are used for both the adaptive sampling
and random sampling. The sizes of the two test sets are different because there are much
more positives in the sample generated by the adaptive sampling algorithm. So after we use
the SMOTE algorithm to increase the number of positives, the number of added synthetic
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positives is much larger for the case of the adaptive sampling. We also tested these models
on another random sample of the data, so we have a direct comparison using the same
test set. The result is shown in Table 2. From these results, we can see that when using
random sampling, we got rather poor performance. It has a very low recall (meaning positive
instances are hardly identified) and low precision (few predicted positives are true positives).
The reason is that a random sample of the original data contains very few positive instances,
so the resulting model is not generalizable to unseen test data. When using the adaptive
sampling scheme, enough positive instances were collected and the predictive performance is
satisfactory. Positive instances, which are of great value to businesses, were mostly identified
correctly. And both precision and recall are remarkably higher. We built other models such
as decision tree based on the sampled data and reached the same observation. The running
time of adaptive sampling is data dependent. In this experimental setting, the adaptive
sampling takes 10 times longer than the random sampling, because it needs to scan more
data to collect enough positive instances. But it is the price that we have to pay to ensure a
high quality sample so that the learned model is generalizable. Otherwise, the model would
be of no use.

Table 2: Performance of models built with random sampling vs. adaptive sampling, on the same
test set. The test data is obtained by randomly collecting 200k instances from the original
dataset, without any post processing (such as SMOTE). So these numbers reflect the
predictive performance on the original raw data. The resulting precision based on the
adaptive sampling is not super high, which is not surprising for this highly imbalanced
data. Because the number of negatives is overwhelmingly large, the absolute number of
false positives is much bigger than the number of positives, although most negatives were
correctly classified. Therefore TP

TP+FP is relatively low. Note the precision is still much
better than that of random sampling, and the difference in recall is more significant.

Random sampling Adaptive sampling

Predicted
negative

Predicted
positive

Predicted
negative

Predicted
positive

True negative 199589 242 198910 921

True positive 160 9 33 136

Recall 5.32% 80.47%

Precision 3.59% 12.87%

5. Conclusion

We have developed an adaptive sampling scheme for learning in severely imbalanced data,
which frequently appears in a variety of applications, e.g., digital website traffic analytics
and financial fraud detection. The adaptive sampling algorithm naturally handles both the
intrinsic and extrinsic imbalance problem. It adapts to the distribution of the data and does
not need to know the sizes and distributions of the minority class and the majority class
a priori. When the data is less imbalanced, it will quickly return a balanced data sample
so a predictive model can be built promptly, accordingly the system is super responsive.
When the data is severely imbalanced, it will do a more thorough scan to collect sufficient
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minority instances. In addition, the reservoir sampling of negative instances ensures that we
will get a more randomly distributed negative instances even if the original distribution is
not i.i.d.. As a result, predictive models built base on it will be more generalizable to unseen
data. The proposed sampling module enables reliable predictive analytic capabilities, which
could not be achieved using random sampling. Extensive experiments have verified that it
effective solves the imbalance problem on large scale data.
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