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Abstract

Image semantic transformation aims to convert one image into another image with different
semantic features (e.g., face pose, hairstyle). The previous methods, which learn the map-
ping function from one image domain to the other, require supervised information directly
or indirectly. In this paper, we propose an unsupervised image semantic transformation
method called semantic transformation generative adversarial networks (ST-GAN), and
experimentally verify it on face dataset. We further improve ST-GAN with the Wasser-
stein distance to generate more realistic images and propose a method called local mutual
information maximization to obtain a more explicit semantic transformation. ST-GAN
has the ability to map the image semantic features into the latent vector and then perform
transformation by controlling the latent vector.

Keywords: Semantic discovery; Unsupervised semantic transformation; Generative ad-
versarial networks

1. Introduction

Image semantic transformation from one domain to another is a very interesting subject that
has wide range of applications. Previous works have considered style transfer, black and
white to color image, edges to photo Gatys et al. (2016), even image super-resolution Ledig
et al. (2016) and image inpainting Pathak et al. (2016) have been investigated.

The essence of one-to-one image transformation is to learn a function that maps pixels
to pixels from one domain to another domain. Previous image transformation methods
can be categorized as paired or unpaired according to their requirements for the training
datasets. As illustrated in Fig. 1, paired methods require each input training image to have
a corresponding ground truth output, and thus, the training dataset are difficult to collect.
Unpaired methods alleviate this problem by using only source and target datasets for which
it is not necessary to have a one-to-one correspondences of image instances. However, the
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Figure 1: Comparison of previous face image training dataset (paired, unpaired) and our
training dataset (mixed). Paired training datasets consist of samples {xi, yi}Ni=1

where yi need to correspond to each xi. Unpaired training datasets consist of a
source dataset {xi}Ni=1 ∈ X and a target dataset {yi}Ni=1 ∈ Y . A mixed training
dataset consists of samples {xi}Ni=1 ∈ X ∪ Y . Most of previous methods be-
come unworkable on the mixed training dataset. ST-GAN can learn the mapping
functions from the mixed dataset.

required domain transformation still needs to be specified by collecting source and target
datasets in specific domains; hence, they actually require one-to-one correspondences in the
image domain and need the supervised information indirectly.

Different from directly learning the mapping function between image domains, another
method is based on disentangled representation learning and uses low-dimension latent
codes to correspond to salient semantic features of the observation. In general, previous
works need to binary label information for supervised training or testing and can be cat-
egorized as unpaired method. In this paper, we focus on unsupervised methods for facial
image semantic transformation. Our proposed method, semantic transformation generative
adversarial networks (ST-GAN), can be trained with an unlabeled training dataset that
has a mixed image domain and therefore is unsupervised, as illustrated in Fig. 1 (mixed).
By maximizing the mutual information between the output images and the latent code,
the latent code corresponds to the very salient semantic features of the generated image.
Hence, the facial semantic transformation of ST-GAN is achieved by first reconstructing the
original face image, then changing the latent codes to translate the reconstruction result
into more face images with different semantic features.

ST-GAN is based on InfoGAN Chen et al. (2016). After training InfoGAN, the mutual
information between the generated instances and the latent code has been maximized, and
this latent code will capture the variations of the semantic features. However, in infoGAN,
we do not know which the latent code corresponds to which semantic features before we
observe the result. For example, if we would like InfoGAN to discover different eye sizes in
a face dataset, we might need to train it many times to find suitable parameters. To make
semantic discovery more explicit, we propose a new method called local mutual information
maximization along with a preprocessing binary mask function.
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The contributions of our work are as follows:

• We propose an unsupervised facial image semantic transformation architecture called
ST-GAN and this architecture can be trained from a mixed training dataset. ST-
GAN can encode the salient semantic feature into latent code c which is the low
dimension vector and decode c and z into the reconstruction results. Image semantic
transformation can be achieved just by changing the value of the latent code.

• ST-GAN leverages the ability of semantic discovery to achieve various facial image
semantic transformations, which is difficult for the previous supervised methods.

• We optimize ST-GAN using local mutual information maximization, named LST-
GAN to make semantic discovery and transformation more explicit and regionally
oriented.

2. Related work

In addition to the variational autoencoder(VAE) Kingma and Welling (2013), GAN Good-
fellow et al. (2014) provides a powerful framework for a generation model that generates
very sharp, realistic images Radford et al. (2015); Zhang et al. (2016); Nguyen et al. (2016).
Many researchers have focused on improving the stability of training and the quality of gen-
erated images by applying deep learning skills or optimizing the objective function. Salimans
et al. (2016) proposed some techniques to encourage the convergence of GAN, for example,
using virtual batch normalization to replace batch normalization Ioffe and Szegedy (2015).
Some researchers have tried to optimize the objective function of GAN, for example, LS-
GAN Mao et al. (2016) uses the least squares loss function for the discriminator to solve the
vanishing gradient problem. Recently, the proposed Wasserstein GAN (WGAN) Arjovsky
et al. (2017) which uses the Wasserstein distance instead of the Jensen-Shannon distance to
form a new objective function, has provided a powerful theoretical proof, and experiments
have illustrated that WGAN can make the GAN training process more stable. With the de-
velopment and optimization of GAN, it has been applied to many fields, for example, image
in-painting Pathak et al. (2016), image super-resolution Ledig et al. (2016), style transfer Li
and Wand (2016), video prediction Mathieu et al. (2015) and object detection Wang et al.
(2017).

One-to-one image semantic translation using a convolution neural network is a popular
research topic. The most interesting work concerns style transfer, which can be considered
as a problem of texture transfer. Recently, image transformation using conditional GAN
has made great progress Isola et al. (2016), and the goal of Isola et al. (2016) was to develop
a common framework for the image transformation problem. However, it must be based on
supervised learning, that is, aligned image pairs are required in the training process. Some
new methods have been proposed that use unpaired datasets as training data Liu et al.
(2017); Dong et al. (2017); Zhu et al. (2017); Kim et al. (2017). If the training datasets are
mixed together in one domain, these methods must divide the data into different domains
using supervised labels before transformation, otherwise, these methods will not be effective.
Moreover, these methods must require to be trained for each pair of domains.
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Figure 2: (a) InfoGAN architecture; (b) Overview of the ST-GAN architecture; (c) the ob-
jective function for ST-GAN training. In contrast to InfoGAN, ST-GAN consists
of three networks: E, G, and D. The original input x is from the mixed dataset
X∪Y . We add the E network after G for reconstructing [z,c] and add G−D net-
work after E for performing LDl

loss. Note that posterior probability P (c|x̃local)
is used to obtain the mutual information for local region image transformation.
Probability P (c|x̃) is obtained if binary mask function F (x) is not used. In (c),
Lprior and LDl

is for training the E network and LGAN is for training the D and
G networks as vanilla GAN does.

Recently, facial image semantic transformation which is based on disentangled repre-
sentation have made a great progress with high visual quality. Image disentangled rep-
resentations aims to represent the salient attributes of an image instance. For example,
for a dataset of faces, a useful disentangled representation may allocate a separate set of
dimensions for each of the following attributes: facial expression, eye color, hairstyle, or
the presence or absence of eyeglasses. Most of the previous approachs have an encode-
decode network that encodes the image semantics into the latent vectors and decode them
into images for reconstruction. Larsen et al. (2015) proposed a new architecture called
VAE/GAN that can be used for image semantic transformation and acquire labeled data to
compute the visual attribute vectors after training. Another model, Adversarially Learned
Inference Dumoulin et al. (2016), also needs supervised information and must be embedded
with binary attributes when it is trained for the semantic transformation task. Brock et al.
(2016) proposed a new architecture called Neural Photo Editing(NPE) to edit a neural
photo using an unsupervised process. However, NPE’s editing results are ambiguous and
not natural with respect to human perception. Recently, Shu et al. (2017) has been able to
obtain very varied semantic editing results for face; it needs use 3D morphable model Blanz
and Vetter (1999) for supervised training, and its image transformation looks blurry.

3. Method

3.1. GAN, InfoGAN

GAN: The goal of GAN Goodfellow et al. (2014) is to let the G network learn a distribution
PG(x) that matches the real data distribution Pdata(x) via an adversarial process. GAN
consists of two networks: a generative network G and discriminative network D. In most of
GAN works, G and D are deep convolutional networks. The training process can be treated
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as a minimax game, and the objective function of GAN is given by the following expression:

min
G

max
D

L(D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]

(1)

InfoGAN: InfoGAN Chen et al. (2016) is an unsupervised method for disentangling repre-
sentation learning by adding a mutual information term I(c;G(z, c)), placed between latent
code c and generated sample G(z, c), to the objective function of GAN. The architecture is
shown in Fig. 2 (a). When maximal mutual information is attained, InfoGAN can discover
highly semantic and meaningful hidden representations. For a categorical latent code c, it
can model discrete variations in data, for example, presence or absence of face glasses. For
a continuous latent code, it can capture continuous variations, for example, object rotation.
The objective function for InfoGAN’s minimax game is:

min
G

max
D

LInfoGAN (D,G) = L(D,G)− λI(c;G(z, c)) (2)

3.2. ST-GAN

Although InfoGAN could learn the semantic correspondence between generated samples x
and latent code c, InfoGAN cannot reconstruct the original images x because of the lack
of an encoding network, thus, it does not have the ability to transform x from one domain
into another domain. We can add an encoding network E before G to form the encode-
decode architecture for reconstruction ability. If the E − G network is trained using the
reconstruction loss, similar to VAE/GAN Larsen et al. (2015), it is necessary to know the
posterior P (y|x) for label y to restrain c̃, which is unavailable, because we only use unlabeled
data. As shown in Fig. 2 (b) we add an E network after G to form the new architecture
G − E for reconstructing z and c. The purpose is to make not only it able to perform
reconstruction, but also enable latent code c̃ to capture the salient semantic variations in
the data. Moreover, we augment a G network after G − E to form a G − E − G network
for better reconstruction result.
The objective function for G and D: A recent method called WGAN-GP Gulrajani
et al. (2017) minimizes an approximation of the Wasserstein distance between Pdata(x)
and PG(x) instead of the previous Jensen–Shannon divergence used by the original GAN.
WGAN-GP has better theoretical properties and solves most of the problems of the orig-
inal GAN, for example, training instability and improvements in the quality of generated
samples. The objective function of WGAN-GP has been given in Appendix A. We optimize
ST-GAN using the Wasserstein distance just like the WGAN-GP model. In detail, we add
a mutual information term I(c;G(z, c)) to the objective function of WGAN-GP to form the
new objective function for the G and D network of ST-GAN. They are expressed as:

min
G

LGAN = Ex∼Pdata(x)[D(x)]− Ez∼Pz(z),c∼Pc(c)[D(G(z, c))]− λ2I(c;G(z, c)) (3)

min
D

LGAN = Ez∼Pz(z),c∼Pc(c)[D(G(z, c))]− Ex∼Pdata(x)[D(x)]

+ λ1E(t)− λ2I(c;G(z, c)), (4)
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where t is a gradient penalty variable, λ1 and λ2 are weighting parameters. More details
about t can be found in Appendix A.

The term I(c;G(z, c)) requires the posterior P (c|G(z, c)), thus, it is hard to maximize
directly. ST-GAN uses a technique called Variational Information Maximization Barber
and Agakov (2003) by defining an auxiliary distribution Q(c|x) to approximate P (c|x) as
InfoGAN Chen et al. (2016) does. More details can be found in Appendix B.
Reconstruction loss for E: Different from the previous reconstruction loss using di-
rectly element-wise similarity measure Kingma and Welling (2013) or learned similarity
measure Larsen et al. (2015), we try to reconstruct z and c to indirectly reconstruct the
original images. In detail, we use E(G(z, c)) to reconstruct z and c and call the objective
function Lprior, as z and c are sampled from the prior distribution. After training using ob-
jective function Lprior, E can learn the mapping function from input images x to variables
[z̃, c̃], and then, we can use G(z̃, c̃) to reconstruct x. To improve the reconstruction ability of
the proposed model, we explore a new loss to train the E network, for example, adding L1
distance between output images x̃e and input x̃ for the objective function. However Larsen
et al. (2015) has found that the pixel-wise distance is not adequate for image data, as it
does not model the properties of human visual perception and causes blurring. We replace
this pixel-wise loss with perception loss LDl

, which computes the lth feature difference of
the GAN discriminator between x̃e and x̃. A similar method has been used in Larsen et al.
(2015). Finally, the new objective function with a hyperparameter λ3, Lprior + λ3LDl

, for
E is shown as:

Lprior = Ez∼Pz(z),c∼Pc(c)((z − Ez(G(z, c)))2 + (c− Ec(G(z, c)))2), (5)

where Ez and Ec represent the different parts of the final output for E.

LDl
= E((Dl(x̃e)−Dl(x̃))2) (6)

GST-GAN and LST-GAN: ST-GAN is based on InfoGAN, which adds a mutual infor-
mation term I(c;G(z, c)) for the objective function to enable latent code c to capture the
semantic variations in the unsupervised process. Here, we refer to the original ST-GAN ar-
chitecture as global ST-GAN (GST-GAN). As mentioned before, the semantic capturing of
InfoGAN is not explicit. We propose a method called local mutual information maximiza-
tion for ST-GAN to make the semantic capture of c more regionally oriented and explicit
by applying a binary mask function F (x̃) to the generated samples x̃. F (x̃), which is used
to get the local semantic region xlocal, is defined as:

x̃local = F (x̃) = F (G(z, c)) = M �G(z, c), (7)

where M denotes the binary mask of the local semantic region(e.g., eyes or the mouth) and
� denotes the element-wise product operation. Here, we refer to this ST-GAN as local ST-
GAN(LST-GAN). The objective function for the G and D of LST-GAN just uses the local
mutual information term I(c;F (G(z, c))), replacing the term I(c;G(z, c)) of Eq. 3 and 4.
Semantic transformation of LST-GAN: It is essential that the global appearance is
well preserved but the difference appears in the local region that we need. However, this
is hard to achieve if we directly use the transformation images as the final result, because
we would not reconstruct completely the original input, especially for the imbalance and
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inadequate training dataset. To address this problem, we define a new mask function to
obtain the global context of the original input x. Mask Fnew(x) is shown as:

Fnew(x) = (1−M)� x, (8)

where M denotes the binary mask of the local semantic region that we need. Now, the new
transformation result of input image x is now defined as:

xtransfer = Fnew(x) + F (xorigin) = (1−M)� x+M � xorigin, (9)

where xorigin is the original transformation result, which is the generation of G(E(x)). To
seamlessly blend the images and make them look realistic, Poisson blending Pérez et al.
(2003) is used for the final transformation result (xblending).
Training ST-GAN: The training process of ST-GAN(GST-GAN, LST-GAN) is as follows.

Algorithm

θE , θD, θG ← initialize network parameters. N is the numbers of training D.
repeat

for i = 1, ...., N do
Sample x ← Pdata(x); z ← Pz(z); c ← Pc(c)
D loss min

D
LGAN ← Eq. 4

// Update D parameters according to gradients.
θD += −∇θD(min

D
LGAN )

G loss min
G

LGAN ← Eq. 3 loss function Lprior ← Eq. 5 perception loss LDl
← Eq. 6

// Update E and G parameters according to gradients.
θE += −∇θE (Lprior + λ3LDl

); θG += −∇θG(min
G

LGAN )

until deadline

4. Experiments

We examine our unsupervised method on the CelebA face images Liu et al. (2015) without
using any label information for both training and testing. We first compare ST-GAN with
VAE/GAN Larsen et al. (2015), VAE Kingma and Welling (2013), and NPE Brock et al.
(2016) to evaluate the reconstruction ability of ST-GAN. Second, we demonstrate how ST-
GAN transforms an input facial image into various images with different semantic features
and compare them with the baseline. Then, we investigate whether LST-GAN has a more
explicit semantic discovery compared with InfoGAN and demonstrate that how LST-GAN
transforms input facial images into results with different semantic features of the local
region. Our models were trained with Adam using a learning rate of 0.0001, and we used
the Conv-Bn-Relu as the basic architecture. Hyper-parameters λ1 and λ2 are 10 and 1,
respectively.
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4.1. CelebA

The CelebFaces Attributes Dataset (CelebA) Liu et al. (2015) contains 202,599 face images
with large pose variations and background clutter. We cropped and scaled the images to
64×64 pixels. We randomly selected 1200 images as a test dataset and used the remaining
images as a training dataset. In this experiment, the latent vectors c consist of a 10-
dimensional categorical latent vector c1 for capturing discontinuous variations and a one-
dimensional continuous vector c2 for capturing continuous variations.

4.2. Image Reconstruction

The G(E(x)) network is used for image reconstruction and is the most critical step for
image semantic transformation. In contrast to previous methods, the reconstruction of ST-
GAN is an indirect method that reconstructs latent code c and noisy vector z. It cleverly
avoids learning the mapping function in a high-dimensional manifold space by learning it
in a low-dimension space. Moreover, ST-GAN uses the Wasserstein distance instead of the
Jensen-Shannon divergence to optimize the objective function and training process. In our
experiments, the Wasserstein distance for ST-GAN improves not only the training stability
but also the quality of the generated samples (See Appendix C.).

Evaluation methods for image similarity: Peak signal-to-noise ratio Winkler and
Mohandas (2008), often abbreviated as PSNR, is an expression for the ratio between the
maximum possible value (power) of a signal and the power of distorting noise that affects
the quality of its representation. This ratio is often used as a quality measurement between
the original and a reconstructed image. The higher the PSNR, the better the quality of
reconstructed image. It is defined as:

PSNR = 20log10(
255√
MSE

), (10)

where MSE is the mean squared error of between the original image and the reconstruction
image. Multi-scale structural similarity (MS-SSIM) Wang et al. (2004) is an error metric
evaluating the perceived quality between the original image and reconstructed image. MS-
SSIM values range between 0.0 and 1.0; higher MS-SSIM values correspond to more similar
images in human perceptual.

As shown in Fig. 3(a) we use PSNR, MS-SSIM to evaluate images similarity between
the real images and reconstructed results, in which ST-GAN outperforms the baseline
(VAE/GAN). In Fig. 4, the reconstructed images of ST-GAN are very similar to the origi-
nal images, and also much sharper than VAE Kingma and Welling (2013). Noted that the
input images of NPE method contain background region, different from all other methods.
Though it is not very fair comparison, ST-GAN achieves much more realistic reconstruction
results for face region comparing with NPE method.

Analysis of the objective function: We also explored the different objective func-
tions for image reconstruction. The L1 loss is the pixel-wise distance between reconstruction
images and input images and the LDl

loss can be considered as the feature-wise distance.
Fig. 3 (a) shows that ST-GAN with the L1 loss get the top PSNR scores and higher MS-
SSIM scores than when only the Lprior loss is used. The third rows shows LDl

achieves
the top MS-SSIM scores. Moreover, the MS-SSIM scores increase when hyper-parameter
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Model PSNR MS-SSIM

VAE/GAN 28.0316 0.6737

ST-GAN

ST-GAN(L1)

ST-GAN(     )
lDL

28.1057 0.7627

28.1135 0.7743

28.1003 0.7868

(a) (b) (c)

M
S-
SS
IM

3λ
Iterations

M
I

Figure 3: (a) Similarity scores for image reconstruction. The PSNR and MS-SSIM scores
were measured on 1,200 test images from the CelebA dataset. The second and
third rows show the evaluation scores of ST-GAN with Lprior + λ3L1 and Lprior
+ λ3LDl

loss (λ3 = 10). (b) MS-SSIM scores of the images reconstruction, vs.
the value of hyper-parameter λ3. (c)We show the mutual information value of
LST-GAN can be maximized just as it is maximized in InfoGAN.

Input

ST-GAN(   )

VAE

VAE/GAN

lDL

NPE

Figure 4: Reconstruction obtained using different methods. ST-GAN’s reconstruction sam-
ples are sharper and closer to the original images than those of VAE Kingma and
Welling (2013), VAE/GAN Larsen et al. (2015), and NPE Brock et al. (2016).
Hyperparameter λ3 = 10 for ST-GAN(LDl

). ST-GAN has better reconstruction
result than all other methods from human perception.

λ3 is increased (Fig. 3 (b)). We therefore conclude that both terms are useful for image
reconstruction, but it is better to select LDl

loss if we want to obtain a better visual effect
for human perception.

4.3. Facial Semantic Transformation

By changing the value of a latent code c̃ keeping irrelevant latent variables and noise vari-
ables fixed, ST-GAN can transform x into various images with multiple and salient semantic
features. To demonstrate this, we tested GST-GAN and LST-GAN on the CelebA 1200
test data. For GST-GAN, we chose to model the latent codes with one categorical code
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Input TransformationReconstruction

Input

GST-GAN

NPE

1 102
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1c =

1c =

1c = 1c =

1c = 7

41c =

Figure 5: Facial Image semantic transformation and comparison by changing c̃1. (a) We
show the ability of semantic discovery for GST-GAN. Input images can be trans-
formed into results with different semantic features corresponding to different
value of latent code c1. (b) Semantic transformation comparison with a previous
method (NPE). GST-GAN can transform images of faces without glasses into
face images with glasses or different hairstyle when changing the value of c1 to
4 (Left) or 6 (Right). But sometimes, the transformation does not succeed (The
5th column).

c1 ∼Cat (K = 10, p = 0.1) and one continuous code c2 ∼Unif (−1, 1). For LST-GAN, we
just use c2 to capture continuous semantic variations in mixed dataset.

4.3.1. Semantic transformation for GST-GAN

After training GST-GAN, we generated many images corresponding to various latent code
values of c̃1, as shown in Fig. 5 (a). We found that the generated images with the same
categorical latent code c̃1 have some salient semantic features. For example, c̃1 = 4 and
c̃1 = 6 correspond to face images with glasses and hairstyles with bangs, respectively. After
reconstructing input images x, we can translate face images without glasses into those with
glasses by changing c̃1 from another value into c̃1 = 4. Conversely, we can translate face
images with glasses into ones without glasses by changing c̃1 from 4 to other values. In
the process of transformation, the uncorrelated semantic features are basically preserved.
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Reconstruction Transformation
2 0.68c = − 2 0.5c + 1.0+ 1.5+ 2.0+ 2.5+ 3.0+

2 0.5c + 1.0+ 1.5+ 2.0+ 2.5+ 3.0+2 0.01c =

2 1.53c = 2 0.5c − 1.0− 1.5− 2.0− 2.5− 3.0−

2 0.5c − 1.0− 1.5− 2.0− 2.5− 3.0−2 1.10c =

2 0.23c = 2 0.5c + 1.0+ 1.5+ 2.0+ 2.5+ 3.0+

2 0.09c = 2 0.5c + 1.0+ 1.5+ 2.0+ 2.5+ 3.0+

Input

{

{

{

(a)

(b)

(c)

Figure 6: Facial Image semantic transformation by changing c̃2. In (a), original images with
a frontal face are transformed gradually into a right profile face; In (b), original
images with a right profile face are transformed gradually into a frontal face; In
(c), original images with a left profile face are transformed gradually into a frontal
face.

However, we found that thoughout the range of c̃1 ∈ [1, 10], c̃1 does not always correspond
to salient semantic variation, for example, consider c̃1 = 1 in the first row of Fig. 5 (a).

For continuous latent code c̃2, as shown in Fig. 6, we found that it corresponds to the
variations of face pose. We can translate generated samples with frontal faces into ones with
a right profile face by continuously increasing its value. We can also transform generated
samples with right profile faces into ones with a frontal face by continuously reducing its
value.

Baseline comparison: NPE is a new architecture for image semantic editing using an
unsupervised training process. After training, NPE requires human interaction for semantic
image transformation with a ”contextual paintbrush”. We used their public code1 to obtain

1. Please see https://github.com/ajbrock/Neural-Photo-Editor
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InfoGAN

LST-GAN

x

x

( )F x

Figure 7: Comparison of semantic capture. Here, x̃ is generated result of G(z, c); F (x̃) is
as the input of D network for LST-GAN. After training, the images of the right
is sampling from G(z, c), where z is from the prior distribution and value of the
continuous latent code c is changed from -1 to 1.

Input

Input

(a)

(b)

transferx

transferx

blendingx

blendingx

Figure 8: Facial image Semantic Transformation for local regions by changing latent code
c2. (a) We show that LST-GAN can transform the semantic features of the eye
region. In the left images, The faces are transformed into faces with larger eyes.
In the right images, the faces are transformed into faces with smaller eyes. (b)
We show LST-GAN can transform a face between with a closed mouth into one
with an open mouth. Poisson blending is used as the final transformation result
xblending to preserving the same intensities of the surrounding pixels.

the transformation results and then cropped the images to 64×64 for comparison. As shown
in Fig. 5 (b), ST-GAN’s results are more realistic and natural than those of NPE.
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4.3.2. Semantic Transformation for LST-GAN

Comparison with InfoGAN: We have proposed local mutual information maximization
for ST-GAN (LST-GAN) to make the semantic capturing of c more explicit and regionally
oriented. InfoGAN uses the whole images x as the input to obtain mutual information
I(z;G(z, c)). However, we do not know which semantic features have been captured before
observing the results because of the unsupervised process. Moreover, we found that Info-
GAN is sensitive to the most salient variations in the training data and is not no sensitive
to local region semantic variations (e.g., the eye region or mouth region). As shown in the
first row of Fig. 7, InfoGAN captured the variations in face pose. However, it is hard for
InfoGAN to capture the eye region variations. because the variations of face pose are more
conspicuous than the variations of face eye for the CelebA dataset. GST-GAN has the same
weaknesses, because it is based on InfoGAN model. LST-GAN uses the local mutual infor-
mation term as the objective function to optimize and constrain latent code c capturing the
semantic variations in the local region. The Fig. 3(c) shows that the local mutual informa-
tion I(c;F (G(z, c))) can also be maximized just as I(c;G(z, c)) is maximized in InfoGAN.
In the second row of Fig. 7, we show that LST-GAN can successfully capture the semantic
variations of the eye region when using the binary mask function F (x̃) to obtain the eye
region x̃local as the input for the D network.

In our experiments, we found the latent code c can capture the variations of eye size
and mouth shape, which expresses the powerful semantic discovery ability of LST-GAN. As
shown in Fig. 8, we leverage it to achieve various image transformations that are difficult
for the previous methods, because the relevant information (eye size or mouth shape) is not
labeled in the CelebA dataset. We will explore more semantics discovery tasks for image
transformation in future work.

5. Conclusion

We proposed an unsupervised facial image semantic transformation method called ST-
GAN. In contrast to the previous approaches which acquire images pair or data labels to
divide the original dataset into source domain and target domain, ST-GAN is completely
unsupervised and can utilize the semantics in the mixed training dataset, then producing
natural and various transformations between the discovered semantics, just controlling the
latent code. The experiments on challenging dataset demonstrate the effectiveness of the
proposed approach. Future work will extend the proposed method to other object categories,
for example, 3D Chairs Aubry et al. (2014).
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Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In ACM Trans-
actions on graphics (TOG), volume 22, pages 313–318. ACM, 2003.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.
URL http://arxiv.org/abs/1511.06434.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In Advances in Neural Information
Processing Systems, pages 2234–2242, 2016.

Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras. Neural face
editing with intrinsic image disentangling. In Computer Vision and Pattern Recognition,
2017. CVPR 2017. IEEE Conference on, pages –. IEEE, 2017.

262

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1511.06434


ST-GAN: Unsupervised Facial Image Semantic Transformation Using GAN

Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. A-fast-rcnn: Hard positive
generation via adversary for object detection. CoRR, abs/1704.03414, 2017. URL http:

//arxiv.org/abs/1704.03414.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE transactions on image process-
ing, 13(4):600–612, 2004.

Stefan Winkler and Praveen Mohandas. The evolution of video quality measurement: From
psnr to hybrid metrics. IEEE Transactions on Broadcasting, 54(3):660–668, 2008.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, and
Dimitris N. Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. CoRR, abs/1612.03242, 2016. URL http://arxiv.

org/abs/1612.03242.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networkss. arXiv preprint arXiv:1703.10593,
2017.

263

http://arxiv.org/abs/1704.03414
http://arxiv.org/abs/1704.03414
http://arxiv.org/abs/1612.03242
http://arxiv.org/abs/1612.03242

	Introduction
	Related work
	Method
	GAN, InfoGAN
	ST-GAN

	Experiments
	CelebA
	Image Reconstruction
	Facial Semantic Transformation
	Semantic transformation for GST-GAN
	Semantic Transformation for LST-GAN


	Conclusion

