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Abstract

Statistical analysis (SA) is a complex process to deduce population properties from analysis
of data. It usually takes a well-trained analyst to successfully perform SA, and it becomes
extremely challenging to apply SA to big data applications. We propose to use deep neural
networks to automate the SA process. In particular, we propose to construct convolutional
neural networks (CNNs) to perform automatic model selection and parameter estimation,
two most important SA tasks. We refer to the resulting CNNs as the neural model selector
and the neural model estimator, respectively, which can be properly trained using labeled
data systematically generated from candidate models. Simulation study shows that both
the selector and estimator demonstrate excellent performances. The idea and proposed
framework can be further extended to automate the entire SA process and have the potential
to revolutionize how SA is performed in big data analytics.

Keywords: statistical analysis, deep network, model selection, parameter estimation, con-
volutional neural network, big data.

1. Introduction

According to the definitions of Gartner Release (2014) and De Maro et al. Mauro et al.
(2016), big data refer to information assets with characteristics high volume, high velocity,
and/or high variety, and the transformation from big data to value requires specific analyt-
ical methods. Currently, machine learning methods are used as the main tools for big data
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analytics, which emphasize algorithms instead of statistical analysis. Statistical Analysis
(SA) is the process of deducing population properties and draw conclusions by analysis of
data. Typically, the SA process consists of exploratory data analysis (EDA), model build-
ing, parameter estimation, hypothesis testing, interval estimation, prediction, and model
diagnostics. Not only does the process depend on available computing system and software,
it also heavily depends on the analyst. It takes a well-trained and experienced analyst to
successfully conduct SA for data sets of conventional size. It is extremely challenging to do
so for large scale data analysis. This is one of the primary reasons that SA has not been
widely used for analyzing big data.

We use multiple regression analysis as an illustrative example of the SA process. In
particular, we focus on the first three steps including EDA, model building, and parameter
estimation. Suppose there is a data set of one response variable Y and p explanatory
variables X1, X»,..., X, and it is of interest to investigate the relationship between Y
and X1,...,X,. In the EDA step, summary statistics, empirical distributions, pairwise
correlations, and scatter plots will be calculated or generated. The analyst will then need
to check the values and graphics for patterns, relations, and suspicious data points. Based on
the EDA results, the analyst will propose a proper regression model. After that, statistical
principles such as the least squares principle or the maximum likelihood principle are used
to compute the estimates of the model parameters.

Deep neural networks (DNNs) have achieved remarkable performances in a variety of
applications including competitive game play, object recognition, machine translation, and
speech recognition in recent years, and promise to deliver artificial intelligence (AI) in almost
every aspect of human life and society. We believe that DNNs can also be used to automate
the SA process, bring Al to large scale statistical analysis, and make SA popular for big
data analytics.

Due to the complexity of the SA process and space limitation, we will narrow down to
two most important SA procedures, which are model building and parameter estimation,
and propose to use convolutional neural networks (CNN) LeCun et al. (1998) for their
automation. Conventionally, model building is either done by the analyst based on the
results of exploratory data analysis and his/her own knowledge, or it is done via model
selection using statistical principles and criteria. Both of these two approaches are however
difficult to automate. Instead, we first reformulate model building as a general model
selection problem, and further propose to construct a CNN to perform model selection. We
refer to the resulting CNN as the neural model selector. Data systematically simulated from
candidate models will be used to train the neural model selector.

Similarly, conventional statistical approaches for parameter estimation such as least
squares estimation and maximum likelihood estimation are also difficult to automate. In
this paper, we again propose to construct a CNN to perform parameter estimation. Data
systematically simulated from the underlying distribution are used to train this CNN. We
refer to the resulting CNN as the neural parameter estimator. The idea of using neural
networks to estimate parameters in a stochastic model is not entirely new, but it is nei-
ther well-known nor a common practice in the statistical community. We will give a brief
literature review of this idea in the next section.

We further explore the possible interplay between the neural model selector and the
neural parameter estimator. As will be discussed in the Proposed Approaches section, the
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two CNNSs can be entirely separate, almost identical, or partially joint, leading to different
performances in training as well as in application. We carry out extensive simulation studies,
and show that the proposed neural model selector and parameter estimator can be properly
trained, and the trained CNNs demonstrate excellent performance in test data and a real
data application. The idea and proposed framework can be further extended to the entire
SA process with the potential to change how SA is done in conventional data analysis and
big data analytics.

2. Related work

There exists an extensive statistical literature on model selection Bozdogan (1987); Burn-
ham and Anderson (2003, 2004). Numerous model selection methods have been proposed.
Some of these methods are not applicable to the setting we consider in this paper, while
others, though applicable, may run into various difficulties; see discussions in Section 3 for
details. To our best knowledge, there is no prior work about redefining the model selec-
tion problem as a machine learning classification problem and training CNN to learn and
perform model selection with labeled simulated data.

There also exist a variety of statistical methods for parameter estimation in the lit-
erature; see Casella and Berger (2002); Huber et al. (1964); Norton et al. (2010). Most
statistical methods rely on full or partial knowledge of the model and are based on statis-
tical principles. After conducting intensive literature search, we only found one paper Xie
et al. (2007), in which the authors proposed to use artificial neural networks and simulated
data to construct estimates for parameters of a stochastic differential equation. However,
the idea of using CNNs and simulated data to automate parameter estimation and model
selection and bring Al to the general SA process appears to be novel to our best knowledge.

3. Proposed approach

As discussed in the Introduction, we first reformulate model building and parameter esti-
mation as a machine learning problem. Suppose M = {M}, : 1 < k < K} be a collection
of K prespecified models/distributions. Let f(y|0x, M}) be the density function of model
My, where 0, € O is the scalar parameter of the density function. Assume that we have
a random sample from one of the models, which is {y;}i1<j<n, but we do not know the
data-generating model and its parameter. The goal of statistical analysis is to identify the
model and further estimate the model parameter.

To achieve the analysis goal stated above, conventionally, the statistician will employ
various model selection methods together with some estimation methods. Here, we will
briefly discuss several representative approaches, which include the Kolmogorov-Smirnov
(KS) distance Chakravarti et al. (1967), Bayesian Information Criterion (BIC) Schwarz
(1978), and Bayes factor Kass and Raftery (1995). The KS distance method calculates
the distance between the population Cumulative Distribution Function (CDF) and the
empirical CDF based on the sample {y;} for each model. The model that achieves the
minimum distance will be selected as the true model. The BIC criterion calculates the BIC
score for each model as follows:

BIC(M;,) = —2logL(6},) + log(n)p
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where L(-) is the likelihood function, 0 is the maximum likelihood estimate, and p is the
number of parameters in the model Mj. Note that for the scenario considered here, p = 1.
The model that achieves the minimum BIC score will be selected as the true model.

The Bayes factor method will impose a prior distribution to the models, 7(Mp), and
further impose a prior distribution to the parameter 7(6;). Then, given the sample, the
posterior distribution for each model can be calculated, which is denoted as 7(Mj|{y;}). The
Bayes factor between any two models, My, and My,, can be calculated as BF (Mg, , My,) =
(Mg, {y;}) /7 (Mg, |{y;}), which can be used to discriminate between the two models. The
model the BF scores support the most will be selected as the true model.

Our criticism for the conventional statistical approaches discussed above is two-fold.
First, for the goal of automating model selection, the model set M usually consists of a
large number of candidate models, and the models are of huge variety. The conventional
statistical methods such as the KS distance and BIC only work for selection between nested
or other well-structured models. Second, for a given sample, all the conventional methods
will have to calculate a score for each of the candidate models, and then compare them to
pick the winner. This can become computationally intensive or even intractable, especially
for the Bayes factor approach. Similar discussion and criticism can be applied to using
conventional statistical methods for automating parameter estimation, which we omit them
due to space limitation.

In this section, we instead propose to use CNNs and machine learning to automate
model selection and parameter estimation. Our main idea is that the procedures for model
selection and parameter estimation can be considered mappings from the sample to a model
and a value of the model parameter, that is,

s Gi1({y;})
G:{y;} — ( ol ) ) € Mx0

where G = (G1,G2) consists of the model selection mapping G; and the parameter esti-
mation mapping Go, and © is the parameter space. Instead of using statistical principles
to derive G1 and G4, we propose to use CNNs to approximate them. From here on in the
rest of the paper, we refer to G1 as the neural model selector, and G5 the neural parameter
estimator, as discussed in the Introduction.

3.1. Labeled data and loss functions

As an analogy, the sample {y;} can be considered an image of an object, G the classifier
for object recognition, and G9 the regression procedure for object localization in image
processing Girshick et al. (2014). In order to train G; and Ga, just like in image processing,
labeled data must be available. We propose to generate the labeled data as follows.

Let IV be a prespecified sample size. For each model My, we first place an equally space
grid over the parameter space O, which is {0y 1,0k2, - ,0kn,}. For each value of the
grid 6, we generate D samples of size N from f(y|0k;, My). We denote the samples as
{y(k7l’d)j}1§j§]\] for 1<k<K,1<IlI<ng and1<d<D. In total, we have the following

collection of labeled data Y = { ({y(k,l,d)j}1§j§N7 M., 9k7l)k . d} , and Y will be used to train
and validate both GG; and Gs.
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In order to train G; and G2, we need to choose proper loss functions. As mentioned
previously, the neural model selector is essentially a classifier and similar to the classifier
for object recognition. Therefore, we choose the commonly used softmax loss function for
training G1. For details of the softmax loss function, the reader is referred to Bishop (2006).
The neural parameter estimator GGg is essentially a regression function and similar to the
regression CNN for localizing an object in an image. For object localization, the Ly loss
is typically used, which is L(G2,0) = ||G2 — 0||3. The Lo loss function works well for
image processing. For the neural parameter estimator, the Lo loss is sensitive to extreme
observations generated from models with long tails in M, which makes the training process
unstable. Resolve this issue, the Huber loss Huber et al. (1964) is employed in training of
neural estimator to improve the robustness against outliers. The Huber loss is defined as
follows: X X

Lé(e,é):{;(e—ef for |9—.9\§5,
(/0 — 6| — 36) otherwise.

3.2. Two types of architectures

The last important issue is about the architectures of the neural model selector and pa-
rameter estimator. There are two different types of architectures involved. The first type
is regarding the architectures of the CNNs, which are about the numbers and sizes of the
covolutional and fully connected layers. We refer to this type of architecture as the CNN
architecture. The second type of architectures is regarding the interplay between the model
selector G1 and the parameter estimator G2. Because this type of architecture directly
affects how the overall analysis performed, we refer to it as the SA architecture.

There are three possible SA architectures. The first SA architecture uses two separate
CNNs for the model selector and the parameter estimator, respectively, which we refer to
as the Non-Shared Architecture (NSA). The second SA architecture uses one single CNN
for both G; and G2, and they part their ways only at the output layer. We refer to
this architecture as the Fully Shared Architecture (FSA). The third architecture uses two
partially joint CNNs for Gy and G, respectively. The two CNNs can share from one to
all common convolutional and fully connected layers. We refer to this architecture as the
Partially Shared Architecture (PSA). The PSA sharing [ layers is denoted as PSA-I. The
three SA architectures NSA, FSA, and PSA are illustrated in Figure 1.

NSA, FSA, and PSA have their own advantages and disadvantages. Using again the
analogy of object recognition and localization, the convolutional layers are used to learn
features that can be efficiently and effectively used for identifying the true model and its
parameter. When NSA is used, the two separate CNNs are learning the features for model
selection and parameter estimation, separately, and this simple SA architecture allows easy
implementation of the training algorithms. The disadvantage of NSA is that it uses only
the marginal distribution of model label and true parameter value separately, instead of the
entire information in their joint distribution.

When FSA is used, the single CNN is trying to learn the same set of features, and
hope that they can be used to not only select the model correctly but also estimate the
parameter accurately. This is based on the assumption that such a set of common features
exists. This assumption holds for distributions that belong to the Exponential family, and
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Figure 1: SA Architecture, from top to bottom: NSA, FSA, PSA-1

minimal sufficient statistics can serve as the set of common features. This assumption
however may not hold in general. Therefore, FSA is expected to work well under one set of
candidate models, but may fail under another set of candidate models.

The most promising architecture is PSA. The intuition underlying PSA is that the early
convolutional layers will produce low-level features that are common for both model selection
and parameter estimation, and information in the true model label and parameter values
can be shared. Because model selection and parameter estimation are two different tasks,
we should not expect they would be relaying on the same set of high-level features. Our
simulation studies reported in later sections support this intuition. In terms of training,
PSA is more demanding than the other two architectures. Furthermore, PSA leads to
another important issue, that is, how many convolutional layers should be shared by G
and Go. We will investigate this issue in the next section.

4. Simulation results

We conduct simulation studies to demonstrate the properties and performance of the pro-
posed model selector and parameter estimator in this section, and further compare them
with several conventional statistical methods. Due to space limitation, we will emphasize
on results regarding model selection instead of parameter estimation. The latter can be
found in the Supplementary Document.
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4.1. Setup and datasets

The difficulty of model selection and parameter estimation depends on the number of can-
didate models (K) in M. We consider three levels of K, which are 5,20 and 50. We take 50
probability distributions from the textbook Casella and Berger (2002) and some R packages
Hennig (2012); Johnstone et al. (2014); Statisticat and LLC. (2016); Swihart and Lindsey
(2016); Yee (2017). The 50 distributions are listed in Table S1 in the Supplementary Doc-
ument. When K = 5, the set of candidate models M includes the top five distributions in
the list; when K = 20, M includes the top 20 distributions in the list; and when K = 50,
M includes all the 50 distributions.

The performance of the proposed model selector and parameter estimator depends on
the sample size. We consider three levels of the sample size N, which are 100,400, and
900. Each sample will be resized to a square matrix to feed into CNNs. According to
the data-generating scheme described in Section 3.1, the total amount of training samples
further depends on the number of parameter values on the grid (ny) and the number of
replicated samples (D). We specify D = 1000, and grid size nj is set to be between 10 and
12. For each distribution, if the parameter space is bounded, like probability p in Bernoulli
distribution, we will place the grid on the original space. If the parameter space is not
bounded, like g in Normal distribution, we will set the parameter space to be a bounded
interval, [0, 12]. Following the scheme of Section 3.1, we generate all the labeled data, 80%
of which is used for training, and the other 20% is used for validation. Note that we use
the definitions given in Ripley (2007): a training set is used for learning, a validation set is
used to tune the network parameters, and a test set is used only to assess the performance
of the network.

We further generate the test data as follows. For each model, we first randomly sample
100 parameter values from the parameter space, those values are just in the same range as
parameters in the training set, but not the same; and second, for each sampled parameter
value, we generate 10 random samples of size N. We test the trained model selector and
parameter estimator using the test datasets. Counting both the labeled data and test data,
in total, we have generated roughly 400 thousand training samples, 100 thousand validation
samples, and 50 thousand test samples for the 50 models.

4.2. Architecture setup and training

In Section 3.2, we discussed the three possible SA architectures (NSA, FSA, and PSA),
but have not discussed the CNN architectures. In our simulation studies, we employ three
different sizes of CNNs, which are referred to as small, medium, and large, respectively. The
small CNN architecture consists of three convolutional layers with 64, 128 and 128 filters,
respectively, which are followed by two fully-connected layers with 512 and 256 neurons,
respectively. The medium CNN architecture consists of five convolutional layers with 64
filters each, which are followed by two fully connected layers each with 64 neurons. The
large CNN architecture consists of five convolutional layers with 64, 64, 128, 128 and 128
filters, respectively, which are followed by two fully connected layers with 1024 and 512
neurons, respectively. In all three CNN architectures, convolutional filters are connected to
a b x 5 region of their input, 2 x 2 max pooling and 2 x 2 average pooling are performed
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between some consecutive convolutional layers. The same CNN architecture is used for
both the neural model selector and parameter estimator except for the output layers.

Under each combination of SA architectures (NSA, FSA, PSA), CNN architectures
(small, medium, large), number of candidate models (K = 5,20,50), sample sizes (N =
100,400,900), we use the generated labeled data to train, validate, and test the proposed
neural selector and parameter estimator. For PSA, we further vary the number of shared
layers (1) in training. FEach training run is replicated six times to assess the stability of the
training procedure and results. All training is performed using the Caffe implementation
Jia et al. (2014) on one GTX-1080 GPU. The running time each training run takes ranges
from five minutes to one hour depending on the values of K and N.

4.3. Performance of neural selector and estimator

Due to space limitation, we report more detailed results of our simulation studies in the
Supplementary Document and only select part of them to report in this section. Overall,
the trained model selector and parameter estimator demonstrate excellent performances.

Accuracy of the model selector Table 1 presents the performance of the model selector on
the test dataset under all the combinations of SA architecture, CNN architecture, number
of candidate models K, and sample size N. The selection accuracy together with standard
deviation in parentheses based on repeated six runs are reported, the better result between
NSA and PSA SA architectures is denoted as bold. For PSA, we report the best results
based on layer analysis, they are PSA-3, PSA-2, and PSA-5 for small, medium, and large
CNN architectures, respectively.

The table shows that the selection accuracy decreases as K increases under fixed N, and
the accuracy increases as we have larger sample size. When we have a moderate sample size,
400, the partially shared CNN architecture can achieve more than 90% selection accuracy.
In order to maintain high accuracy for large number of candidate models, large sample sizes
should be used.

Figure 5 in Appendix shows the confusion matrix based on large CNN and PSA-5 neural
model selector on test dataset with K = 20 distributions. The performance of the parameter
estimator on the test dataset under different scenarios is reported in Table 3 in Appendix.
Figure S1, S5-S9 in Supplementary Document show the scatter plots of true parameter
values and predicted values estimated by parameter estimator under different architectures.
Overall, the large CNN PSA-5 parameter estimator performs the best.

Impact of SA architectures on learning rate Figure 2 is used to compare the impacts of
the NSA and PSA-I SA architectures on the learning rates of the model selector and the
parameter estimator, respectively. The medium and large CNN architectures are used, and
all the three sample sizes are considered. The upper panel is for medium CNN architecture
while the lower panel is for large CNN architecture. The upper left panel of Figure 2 plots
the accuracy of the model selector evaluated on the validation dataset against the number
of iterations during the training process, whereas the upper right panel plots the log Huber
loss of the parameter estimator. Solid curves are for the PSA-2 SA architecture, and dotted
curves are for the NSA architectures. It is clear from the plots that the learning rate under
PSA-2 is faster than that under NSA, indicating that sharing convolutional layers between
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Table 1: Model selection results under all the combinations of SA architecture, CNN archi-
tecture, number of candidate models K, and sample size N.

CNN architecture N =100 N =400 N =900

NSA PSA NSA PSA NSA PSA
small 96.88% 96.92% 97.68% 97.78% 97.98%  98.01%
(0.12%)  (0.11%) (0.19%) (0.13%) (0.13%) (0.07%)
K=5 medium 96.06% 96.62% 97.68% 97.93% 97.85% 97.90%
(0.29%) (0.21%) (0.25%) (0.16%) (0.08%) (0.16%)
laree 97.30% 97.13% 97.88% 97.77% 98.01% 98.01%
& (0.19%) (0.13%) (0.08%) (0.08%) (0.13%) (0.17%)
small 90.76% 91.44% 96.34% 96.59% 97.79% 97.81%
(0.17%) (0.20%) (0.33%) (0.27%) (0.20%) (0.24%)
K =20 medium 67.73% 88.98% 95.11% 96.07% 97.78% 98.03%
(3.09%) (0.86%) (0.47%) (0.46%) (0.14%) (0.08%)
laree 92.18% 92.53% 97.09% 97.19% 98.37% 98.47%
& (0.23%) (0.35%) (0.23%) (0.32%) (0.29%) (0.14%)
small 73.33% 74.00% 86.34% 86.52% 90.10% 90.00%
(0.54%) (0.88%) (0.29%) (0.59%) (0.59%) (0.35%)
K =50 medium 48.93% 71.61% 83.86% 87.21% 88.72% 90.38%
(1.92%) (0.66%) (0.37%) (0.41%) (0.25%) (0.34%)
laree 75.77% 78.19% 88.58% 88.98% 91.08% 91.11%
& (0.64%) (0.48%) (0.50%) (0.31%) (0.28%) (0.42%)

the model selector and parameter estimator can expedite their training rates.

Similar

patterns could be found in other scenarios as showed in Figure S2, S3, S4 in Supplementary

Document.

How many layers should be shared? Figure 3 shows the impact of the number of shared
layers between the model selector and parameter estimator on their performances. We

consider the scenario with K = 50, N = 100, and the medium and large CNN architectures,
and vary the SA architectures from NSA to FSA. The left panel of Figure 3 presents the
boxplots of accuracy of the model selector under various SA architectures, whereas the right
panel presents the boxplots of the Huber loss of the parameter estimator. In terms of model
selection accuracy, for medium CNN architecture, PSA-1 shows significant improvement
over NSA, and PSA-2 further improves upon PSA-1, though the amount of improvement
from PSA-1 to PSA-2 is small. PSA-3 performs almost the same as PSA-2, and further
increasing the number of shared layers leads to slight decrease in selection accuracy. In
terms of estimation accuracy (i.e. Huber loss), we can observe similar patterns as the
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Figure 2: Comparison between NSA and PSA-l neural model selector and parameter esti-
mator, different colours denote for different sample sizes, upper panel is for medium CNN
architecture and lower panel is for large CNN architecture.

selection accuracy for NSA, PSA-1 and PSA-2. As the number of shared layers further
increases, the estimation accuracy declines fairly fast. The results suggest that the PSA-2
SA architecture is optimal for both of the model selector and parameter estimator for the
medium CNN architecture. For the large CNN architecture, the optimal SA architecture
turns out to be PSA-5 instead.

4.4. Comparison with conventional methods

We apply the three conventional model selection methods, the KS distance, BIC, and Bayes
factor to the test datasets under the scenario with K = 20, and compare their performances
with that of the trained neural model selector. Table 2 reports the accuracy of the three
statistical methods as well as the trained neural model selector under various sample sizes.
From the table, it is clear that the neural model selector outperforms the three statistical
methods by a significant margin.

In terms of accuracy in parameter estimation, conventional statistical estimators and the
proposed neural estimator are not directly comparable. The former is based on the knowl-
edge of the model, whereas the latter does not assume the underlying model is known. If
the model is known, then statistical methods such as the maximum likelihood estimation
(MLE) method are shown to enjoy certain optimality. For example, MLEs are asymptoti-
cally most efficient under some regularity conditions. If the model is unknown, then most
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Figure 3: Information sharing comparison for medium and large CNN architectures, K = 50
and N = 100. The upper panel is for medium CNN architecture and the lower panel is for
large CNN architecture.

conventional statistical methods are not applicable, but the neural parameter estimator can
still work well.

Table 2: Comparison of model selection methods on model set with K = 20.

N =100 N =400 N =900

Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

KS distance  72.5% 83.2% 83.3% 85.0% 84.7% 85.0%
BIC 69.9% T74.6% T4.7% T75.0% 75.0% 75.0%
Bayes factor  75.5% 84.8% 77.8% 83.3% 70.0% 75.0%
Neural selector  92.1% 99.2% 96.4% 99.7% 97.9% 99.7%

5. Neural selector for models with covariates

In the Introduction, we propose to use Al powered by deep neural networks to automate the
SA process. In the previous sections, we develop the neural model selector and parameter
estimator targeting only univariate models with single parameter. Our idea and proposed
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Figure 4: Real data application

framework can be extended to handle more sophisticated models. In this section, we extend
the neural selector to a group of commonly used simple regression models.

Let the model set M include the following seven regression models: simple linear re-
gression model, Poisson regressoin model, Logistic regression model, Negative Binomial re-
gression model, Lognormal regression model, Loglinear regression model, and multinormial
regression model. Let {(y;,z;)}1<j<n be a sample generated from one of the seven model.
As before, the neural model selector is a CNN-based classifier that maps the sample to its
generating model, and we will use labeled data systematically generated from the seven
models to train this neural model selector.

The labeled data are generated as follows. For each regression model, we place an evenly
spaced grid over its parameter space. For each vector of the parameter values on the grid,
1000 samples with sample size N are randomly drawn from the model. The generated data
are further partitioned into 70% for training, 20% for validation, and 10% for test. We use
the medium CNN architecture, employ the Caffe to train the model selector, and further
test the performance of the trained selector on the test dataset. The results show that the
trained model selector can achieve 87.86% in accuracy when the sample size is 100, and can
achieve 97.86% in accuracy when the sample size is 400.

6. Real data example

To demonstrate the applicability of our proposed methods, we use the neural model selector
trained under the setting of K = 50, N = 900, large CNN, and PSA-5 to explore a real data
set called the Communities and Crime Data Set from UC Irvine’s machine learning repos-
itory (see http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime). The
data set originally contains 1994 instances and 128 attributes. After we exclude the cate-
gorical variables and the variables with missing values, there are 90 real-valued predictor
variables left. For each of those 90 variables, we randomly draw a sub-sample of 900 obser-
vations, apply the trained neural model selector to the sub-sample, and produce the result.
We summarize the model selection results in the left panel of Figure 4 for all 90 variables.
We demonstrate the estimation result for the variable named PctPersOwnOccup (percent
of people in owner occupied households) in the right panel of Figure 4. The blue line is the
density function with the estimated parameter value, while the histogram is based on the
observations.
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7. Conclusion and future work

In this paper, we have proposed and further developed the neural model selector and pa-
rameter estimator to automate model selection and parameter estimation, which are two
major tasks in the SA process. Simulation study shows that the neural selector and estima-
tor can be properly trained with simulated labeled data, and further demonstrate excellent
performance. We consider this work a demonstration of the validity of our grand proposal
that is to use DNNs to automate the entire SA process. There remains a lot of work we
need to do before the grand proposal can be finally materialized.

First, we will extend the neural model selector and parameter estimator to models with
multiple parameters as well as regression models involving a large number of explanatory
variables. Second, we will investigate how CNNs or other DNNs can be used to automate
other tasks such as hypotheses testing and diagnostics of the SA process in the near future.
Our ultimate goal to develop Al systems or software that can conduct principled SA for big
data analytics without the need of human interventions.
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Appendix A.

Table 3: Parameter estimation results under all the combinations of SA architecture, CNN
architecture, number of candidate models K, and sample size N. The Huber Loss with
standard deviation in parentheses based on six repeated runs are reported, the better result
between NSA and PSA SA architectures is denoted as bold. For PSA, we report the best
results based on layer analysis, they are PSA-3, PSA-2, and PSA-5 for small, medium, and
large CNN architectures respectively. We can see that PSA performs better than NSA in

most cases.

CNN architecture N =100 N =400 N =900

NSA PSA NSA PSA NSA PSA

- 0.074  0.072  0.022  0.022 0.014  0.015
s (0.0024)  (0.0041) (0.0008) (0.0004) (0.0007) (0.0003)

K=5 — 0.071  0.072 0020  0.020 0012  0.012
(0.0011)  (0.0032) (0.0003) (0.0003) (0.0003) (0.0002)

_— 0.068  0.067 0019  0.018 0.011  0.012
& (0.0022)  (0.0020) (0.0002) (0.0003) (0.0002) (0.0001)

ol 0.887  0.830 0285  0.243  0.154  0.130
(0.0310)  (0.0261) (0.0097) (0.0090) (0.0106) (0.0077)

K =20 edium 0.851  0.864 0223  0.207 0111  0.102
(0.0274)  (0.0216) (0.0105) (0.0103) (0.0043) (0.0032)

. 0752  0.732 0203  0.187  0.110  0.099
arge (0.0472)  (0.0431) (0.0076) (0.0043) (0.0045) (0.0039)

ol 2056  1.734 091  0.636  0.654  0.428
(0.0724) (0.0344) (0.1323) (0.0137) (0.0483) (0.0176)

K =50 i 1.691  1.596  0.561  0.484 0313  0.282
(0.0314) (0.0521) (0.0169) (0.0153) (0.0049) (0.0132)

_— 1472 1.258 0480  0.399  0.288  0.246
& (0.0505) (0.0273) (0.0114) (0.0062) (0.0313) (0.0051)
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Appendix B.
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Figure 5: Confusion matrix based on large CNN and PSA-5 neural model selector on test
dataset with K = 20
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