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Abstract

In natural language processing and related fields, it has been shown that the word embed-
dings can successfully capture both the semantic and syntactic features of words. They can
serve as complementary information to topics models, especially for the cases where word
co-occurrence data is insufficient, such as with short texts. In this paper, we propose a
focused topic model where how a topic focuses on words is informed by word embeddings.
Our models is able to discover more informed and focused topics with more representative
words, leading to better modelling accuracy and topic quality. With the data argumenta-
tion technique, we can derive an efficient Gibbs sampling algorithm that benefits from the
fully local conjugacy of the model. We conduct extensive experiments on several real world
datasets, which demonstrate that our model achieves comparable or improved performance
in terms of both perplexity and topic coherence, particularly in handling short text data.

Keywords: Topic Models, Word Embeddings, Short Texts, Data Augmentation

1. Introduction

With the rapid growth of the internet, huge amounts of text data are generated everyday
in social networks, online shopping and news websites, etc. Probabilistic topic models such
as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) are popular approaches for text
analysis, by discovering latent topics from text collections.

Recently, word embeddings generated by GloVe (Pennington et al., 2014) and word2vec
(Mikolov et al., 2013), have attracted a lot of attention in Natural Language Processing
(NLP) and related fields. It has been shown that trained on large corpus, word embeddings
can capture both the semantic and syntactic features of words so that similar words are
close to each other in the embedding space. Therefore, if word embeddings can be used
in topic models, it should improve modelling accuracy and topic quality. Moreover, as
conventional topic models usually require a sufficient amount of word co-occurrences to learn
meaningful topics, they can suffer from a large performance degradation over short texts
(e.g., tweets and news headlines) because of insufficient word co-occurrence information. In
such cases, the semantic and syntactic features of words encoded in embeddings can play a
more important role, serving as complementary information.

On the other hand, sparse topics are preferred in topic modelling, which means most
topics should be specific and are encouraged to focus on a small subset of the vocabulary.
The topic sparsity is first implemented by using a small concentration parameter of the
Dirichlet prior over topics (0.01 usually works well) (Wallach et al., 2009a). Recently,
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sparsity-enforcing priors such as the Indian Buffet Process compound Dirichlet (Williamson
et al., 2010) have been proposed on topics (Wang and Blei, 2009), which place a “hard”
constraint on the words that a topic can focus on. These sparsity-enforcing priors lead to
compression as well as an easier interpretation of topics.

Inspired by those two lines of work, in this paper, we propose a Word Embedding
Informed Focused Topic Model (WEI-FTM). This allows improved model accuracy and
topic quality, especially for the cases where word co-occurrence data is poor, such as with
short texts. Specifically, WEI-FTM applies a sparsity-enforcing prior on topics, allowing a
subset of words to describe a topic. Unlike conventional FTM, where the focusing is learnt
purely on the word co-occurrences, the focusing in WEI-FTM is additionally informed by
external word embeddings. In this way, the proposed model encourages the topics to focus
on the words that are more semantically or syntactically related, which is preferred in topic
modelling.

WEI-FTM has the following key properties:

1. Compared to FTM, our model is able to discover more informed focused topics with
more representative words, which leads to better model accuracy and topic quality.

2. Unlike most models incorporating word embeddings, our model does so by using them
as prior knowledge, which we argue is a more coherent approach.

3. With the data augmentation technique, the inference of WEI-FTM can be done by an
efficient and closed-form Gibbs sampling algorithm that benefits from local conjugacy
of the model.

4. Finally, besides the word distribution of topics, our model also offers an alternative
topic presentation over words, which can be obtained from word embeddings. It gives
us a new way of interpreting topics and even better topic quality.

We conduct extensive experiments with several real datasets including both regular
and short texts in various domains. The experimental results demonstrate that WEI-FTM
achieves improved performance in terms of perplexity, topic coherence, and running time.

2. Related Work

In this section, we review three lines of related work: focused topic models, topic models
with word embeddings, and short text topic models.

Focused Topic Models Focusing in topic models is first introduced on documents, al-
lowing a document to focus on a subset of topics. Williamson et al. (2010) proposed the
Focused Topic Model (FTM) on the document side with the Indian Buffet Process com-
pound Dirichlet prior, where topics are selected by the IBP (Ghahramani and Griffiths,
2006). Zhou et al. (2012a) proposed a focused Poisson factorisation model with the nega-
tive binomial distribution, which can be viewed as a generalisation of FTM. Recently, Gan
et al. (2015a) introduced a deep focused Poisson factorisation model. Instead of using IBP,
document focusing in the model is constructed by stacking multiple layers of binary latent
variables, connected by Gaussian weights. With the augmentation of the Pólya Gamma
distribution (Polson et al., 2013), the model can be sampled with full conjugacy.
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Unlike most of the previous approaches, the focussing in our model is applied to topics,
not documents. The closest work to ours is the Sparse-Smooth Topic Model (Wang and Blei,
2009) which applied the IBP compound Dirichlet prior on topics, allowing a topic to focus
on a subset of words. Teh and Gorur (2009) proposed the Stable-Beta IBP, a generalised
IBP with a discount parameter. The Stable-Beta IBP can be used to model the power
law behaviour in word occurrences. Furthermore, Archambeau et al. (2015) introduced
the Latent IBP Dirichlet Allocation (LIDA), which uses the Stable-Beta IBP compound
Dirichlet prior for both document focusing and topic focusing.

Topic Models with Word Embeddings Recently, there is growing interest in incor-
porating word features in topic models. For example, DF-LDA (Andrzejewski et al., 2009)
incorporates word must-links and cannot-links using a Dirichlet forest prior in LDA; MRF-
LDA (Xie et al., 2015) encodes word correlations in LDA with a Markov random field;
WF-LDA (Petterson et al., 2010) extends LDA to model word features with the logistic-
normal transform. As word embeddings have gained great success in NLP, they have been
used as popular word features for topic models. LF-LDA (Nguyen et al., 2015) integrates
word embeddings into LDA by replacing the topic-word Dirichlet multinomial component
with a mixture of a Dirichlet multinomial component and a word embedding component.
Instead of generating word types (tokens), Gaussian LDA (GLDA) (Das et al., 2015) directly
generates word embeddings with the Gaussian distribution. MetaLDA (Zhao et al., 2017b)
is a topic model that incorporates both document and word meta information. However,
in MetaLDA, word embeddings have to be binarised, which will lose useful information.
Despite the exciting applications of the above models, their inference is usually less efficient
due to the non-conjugacy and/or complicated model structures. Moreover, to our knowl-
edge, most of the existing models with word embeddings are extensions of a full LDA model,
and neither use the embeddings as information for the prior, like WF-LDA, nor do they use
the embeddings with topic focusing.

Short Text Topic Models Analysis of short text with topic models has been an active
area with the development of social networks. One popular approach is to aggregate short
texts into larger groups, for example, Hong and Davison (2010) aggregates tweets by the
corresponding authors and Mehrotra et al. (2013) shows that aggregating tweets by their
hashtags yields superior performance over other aggregation methods. Recently, PTM (Zuo
et al., 2016) aggregates short texts into latent pseudo documents. Another approach is to
assume one topic per short document, known as mixture of unigrams or Dirichlet Multi-
nomial Mixture (DMM) such as Yin and Wang (2014); Xun et al. (2016). Closely related
to ours are short text models that use word feature like embeddings. For example, Xun
et al. (2016) introduced an extension of GLDA on short texts which samples an indicator
variable that chooses to generate either the type of a word or the embedding of a word
and GPU-DMM (Andrzejewski et al., 2011) extends DMM with word correlations for short
texts. Although existing models showed improved performance on short texts, there still ex-
ist some challenges. For aggregation-based models, it is usually hard to choose which meta
information to use for aggregation. The “single topic” assumption makes DMM models lose
the flexibility to capture different topic ingredients of a document. The incorporation of
word embeddings in the existing models is usually less efficient.
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3. Model Details

Now we introduce the details of the proposed model. In general, WEI-FTM is a focused
topic model where the focusing of topics are learnt from the target corpus and informed
by external word embeddings. Specifically, suppose a collection of D documents with a
vocabulary of V tokens is denoted as D and the L dimensional embeddings of the tokens
are stored in a matrix F ∈ RV×L. Similar to LDA, WEI-FTM generates document d ∈
{1, · · · , D} with a mixture of K topics. Unlike LDA, where a topic is a distribution over
all the tokens in the vocabulary, WEI-FTM allows a topic k ∈ {1, · · · ,K} to focus on fewer
tokens. We introduce a binary matrix B ∈ {0, 1}K×V where bk,v indicates whether topic k
focuses on token v. Given bk,:, topic k is a distribution over a subset of the tokens, drawn
from the Dirichlet distribution:

φk|bk,: ∼ DirichletV (β0bk,:) (1)

where φk,v = 0 iff bk,v = 0.
To get informed by word embeddings, bk,v is drawn from the Bernoulli distribution

whose parameter is constructed with word v’s embeddings fv,::

bk,v ∼ Bernoulli (σ(πk,v)) (2)

πk,v = fv,:λk,:
T + ck (3)

where Λ ∈ RK×L, c ∈ RK , and σ(x) = 1
1+e−x is the logistic function.

If we view λk,: as the embeddings of topic k, the intuition of our model is that if the
closer the semantic/syntactic meanings (encoded in the embeddings) of tokens v to topic
k, the larger the probability of k being described by v. Acting as the bias of topic k, ck
captures the information irrelevant to the embeddings. Gaussian prior is then used for both
λk,: and c:

λk,:, c ∼ N (0, (σ0)
2I) (4)

where (σ0)
2 is a hyper-parameter that controls the Gaussian variance.

Figure 1 shows the graphical model of WEI-FTM and the generative process is as follows:

1. For each topic k:

(a) Draw λk,: according to Eq. (4)

(b) For each token v: Draw bk,v according to Eq. (2)

(c) Draw φk,: according to Eq. (1)

2. For each document d:

(a) Draw θd,: ∼ DirichletK(α01K)

(b) For the ith word wd,i in document d:

i. Draw topic zd,i ∼ CategoricalK(θd,:)

ii. Draw word wd,i ∼ CategoricalV (φzd,i,:)
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Figure 1: The graphical model of WEI-FTM. The ith of Nd words in document d is wd,i
and the corresponding topic is zd,i. θd,: is the topic distribution of d. α0, β0, and σ0 are
hyper-parameters of the model.

It is noteworthy that both πk,: ∈ RV and φk,: describe the weights of the words in
topic k. Unlike φk,v which is obtained from the statistics of topic allocation of words, πk,v
models the “similarity” of the embeddings of word v and topic k, obtained with the word
embeddings. Therefore, π in our model can serve as an alternative presentation of topic k.
This will be studied later in Section 5.3.

4. Inference

Unlike most existing models with word embeddings, our model facilitates the derivation of
an efficient Gibbs sampling algorithm. With a data augmentation technique, WEI-FTM
admits local conjugacy and a closed-form Gibbs sampling algorithm can be derived.

According to the generative process of WEI-FTM, the complete model likelihood is:∏D,Nd
d,i p(wd,i|zd,i,φzi,n,:)p(zi,n|θd,:) ·

∏D
d p(θd,:|α0) ·

∏K
k p(φk,:|bk,:, β0)

·
∏K,V
k,v p(bk,v|λk,:, ck,fv,:) ·

∏K,L
k,l p(λk,l|σ0) ·

∏K
k p(ck|σ0) (5)

Sampling zd,i The sampling of a topic zd,i for a word wd,i = v is similar to LDA, while
the candidate topics are limited to the topics that v describes:

p(zd,i = k) ∝ (α0 +m¬id,k)
β0 + n¬d,ik,v

β0V + n¬d,ik,·
I(bk,v=1) (6)

where n¬d,ik,v =
∑D,Nd′

d′,i′ I(d′,i′)6=(d,i),wd′,i′=v,zd′,i′=k)
, m¬id,k =

∑Nd
i′ I(i′ 6=i,zd,i′=k), n

¬d,i
k,· =

∑V
v n
¬d,i
k,v ,

and I(·) is the indicator function.

Sampling bk,v Recall that bk,v indicates whether token v describes topic k. Therefore, if
nk,v > 0, which means there are words of v allocated to k, we do not need to sample bk,v
(i.e., p(bk,v|nk,v > 0) = 1). When nk,v = 0, the following Gibbs sampling for bk,v is used:

p(bk,v = 1|nk,v = 0) ∝ B(b
¬v
k,·β0+nk,·,β0)

B(b¬vk,·β0,β0)
σ(πk,v) (7)

p(bk,v = 0|nk,v = 0) ∝ 1− σ(πk,v) (8)
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where B(·, ·) is the beta function and b¬vk,· =
∑V

v′ 6=v bk,v′ .

Sampling λk,: and c Recall that the likelihood of bi,k from Equation (2) is:

(eπk,v)bk,v

1 + eπk,v
(9)

The above likelihood can be augmented by introducing an auxiliary variable: γk,v ∼
PG(1, 0) (Gan et al., 2015b), where PG denotes the Pólya Gamma distribution (Polson
et al., 2013). The augmentation works as following:

(eπk,v)bk,v

1 + eπk,v
=

1

2
e(bk,v−1/2)πk,v

∫ ∞
0

e−γk,v(πk,v)
2/2p(γk,v)dγ (10)

Augmented in this way, the likelihood on πk,v has a Gaussian form, which means the
likelihood of λk,: and c after the augmentation will be in Gaussian form as well. Given
their Gaussian prior, one can sample λk,: as:

λk,: ∼ N (µk,Σk) (11)

µk = Σk

(∑V
v (bk,v − 1/2− ckγk,v)fv,:T

)
(12)

Σk =
(∑V

v γk,vfv,:
Tfv,: + (σ0)

−2I
)−1

(13)

Also, c can be sampled similarly. Note that the Cholesky factorization can be applied to
Σk to reduce the sampling complexity of λk,:.

Finally, according to (Polson et al., 2013), we can sample γk,v from its Pólya Gamma
posterior: γk,v ∼ PG(1, πk,v). One can approximate samples from the Pólya Gamma distri-
bution by using a truncated sum of Gamma variables (Zhou et al., 2012b). In practice, a
truncation level of 20 works well, so the sampling will be efficient.

Hyper-parameter Sampling We use a Gamma prior on β0 ∼ Gamma(µ0, ν0). The
likelihood of β0 is:

K∏
k

Γ(bk,·β0)

Γ(bk,·β0 + nk,·)

V∏
v

Γ(β0 + nk,v)

Γ(β0)
I(bk,v=1) (14)

Two auxiliary variables are then introduced: qk ∼ Beta(bk,·β0, nk,·) and tk,v ∼ CRP(β0, nk,v),
which is the probability on the partition size of a Chinese Restaurant Process (Lemma 16
Buntine and Hutter, 2012) with β0 and nk,v as the concentration and the number of cus-

tomers respectively. The posterior becomes augmented as:
∏K,V
k,v (qk)

β0(β0)
tk,vIbk,v=1, which

is conjugate to the Gamma prior of β0 (Zhao et al., 2017b,a).
Similarly, α0 can be sampled as well. However, as we are more interested in studying

the word side, for fair comparison with other models, α0 is not sampled in the experiments.

5. Experiments

In this section, we evaluate the proposed WEI-FTM against several recent advances includ-
ing focus topic models, models with word embeddings, and short text topic models. The
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experiments were conducted on five real datasets including both regular and short texts.
We report the performance in terms of perplexity, topic coherence, and running time per
iteration. We also qualitatively compare the focusing and the topic quality of models.

5.1. Datasets, Compared Models, and Parameter Settings

In the experiments, two regular text datasets and three short text datasets were used:

• Reuters is extracted from the Reuters-21578 dataset1 where documents without any
labels are removed. There are 11,367 documents, the vocabulary size is 8,817, and
the average document length is 73.

• KOS is obtained from the UCI Machine Learning Repository2, which is used by Ar-
chambeau et al. (2015). It has 3,430 documents and the vocabulary size is 6,677. A
document has 100 words on average.

• WS, Web Snippets, contains 12,237 web search snippets, used by Li et al. (2016). The
vocabulary contains 10,052 tokens and there are 15 words in one snippet on average.

• TMN, Tag My News, consists of 32,597 English RSS news snippets from Tag My
News, used by Nguyen et al. (2015). Each snippet contains a title and a short de-
scription. There are 13,370 tokens in the vocabulary and the average length of a
snippet is 18.

• Twitter, is extracted in 2011 and 2012 microblog tracks at Text REtrieval Conference
(TREC)3, preprocessed in Yin and Wang (2014). It has 11,109 tweets in total. The
vocabulary size is 6,344 and a tweet contains 21 words on average.

All the datasets were tokenised by Mallet4 and we removed the words that exist in less
than 5 documents and more than 95% documents. For word embeddings, we used the
50-dimensional GloVe word embeddings5 pre-trained on Wikipedia for all the models that
incorporate word embeddings. We further removed the words that are not in the vocabulary
of GloVe embeddings in all the datasets. Note that besides word embeddings, our model
can be used to incorporate other kinds of word features such as word correlations as well.

We evaluate the performance of the following models:

• WEI-FTM: The proposed model, the hyper-parameter σ0 was set to 1.0 and β0 was
sampled according to Eq. (14). To comprehensively exam the effect of word embed-
dings, we further compare with WEI-FTM without any word embeddings, named
“WEI-FTM-no”, which only samples the bias c. WEI-FTM and WEI-FTM-no were
implemented in Matlab.

• LDA (Blei et al., 2003): the baseline model. A LDA variant with β0 sampled ac-
cording to Eq. (14) is also in comparison, named as “LDA-sym”. LDA and LDA-sym
were implemented in Matlab.

1. http://www.daviddlewis.com/resources/testcollections/reuters21578/

2. https://archive.ics.uci.edu/ml/datasets/bag+of+words

3. http://trec.nist.gov/data/microblog.html

4. http://mallet.cs.umass.edu

5. https://nlp.stanford.edu/projects/glove/
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• WF-LDA, Word Feature LDA (Petterson et al., 2010): a model that incorporates
word features on the prior of φ. As no code is publicly available, we implemented it in
Matlab, where the optimisation part was done by LBFGS with the default parameter
settings. Following Mimno and McCallum (2008), the Gaussian variance was set to
10 for the default word feature and 0.05 for the other features. Note that we adopt
the idea of WF-LDA for incorporating word embeddings while it was not originally
proposed for that.

• LF-LDA, Latent Feature LDA (Nguyen et al., 2015): a model that incorporates word
embeddings. The original implementation6 was used. Following the paper, we used
1500 and 500 MCMC iterations for initialisation and sampling respectively and set λ
to 0.6, and used the same word embeddings in WEI-FTM.

• LIDA-topic, Latent IBP Dirichlet Allocation (Archambeau et al., 2015) with topic
focusing only. Reviewed in Section 2, LIDA applies the Stable-Beta IBP for both
document and topic focusing. As our intent here is on topic focusing, the Stable-Beta
IBP is only applied on the topic side. Unlike the proposed WEI-FTM, its focusing
is not informed by external word features. Because the code of LIDA is not public
available, we implemented it in Matlab, according to the paper. The MH sampling
details of ξ are not given in the paper, we adopted LBFGS to optimise ξ in terms of
the likelihood shown in Eq. (43) in the paper. β0 was sampled by Eq. (14), the same
as WEI-FTM. For the other sampling algorithms and settings, we followed the paper,
where ζ was set to 0.25.

• SSTM, Sparse-Smooth Topic Model (Wang and Blei, 2009): a focused topic model
that allows a topic to focus on a subset of words. Discussed by Archambeau et al.
(2015), SSTM can be viewed as a special case of LIDA (by fixing ξ and ζ to 1.0 and
0.0 respectively).

• GPU-DMM, Generalized Pólya Urn DMM (Li et al., 2016): a model that incorpo-
rates word correlations. The original implementation7 was used. The word correla-
tions were generated from the distances of the word embeddings. Following the paper,
we set the hyper-parameters µ and ε to 0.1 and 0.7 respectively, and the symmetric
document Dirichlet prior to 50/K.

• PTM, Pseudo document based Topic Model (Zuo et al., 2016): a model for short
text analysis. The original implementation8 was used. Following the paper, we set
the number of pseudo documents to 1000 and λ to 0.1.

All the models, except where noted, the Dirichlet parameter of the document-topic distri-
bution (α0) and of the topic-word distribution (β0) were set to 0.1 and 0.01 respectively.
Our intent is to fairly compare just the topic-word aspect of the models, so we keep the
document-topic aspect equivalent. Also, 2000 MCMC iterations were used to train the
models.

6. https://github.com/datquocnguyen/LFTM

7. https://github.com/NobodyWHU/GPUDMM

8. http://ipv6.nlsde.buaa.edu.cn/zuoyuan/

430

https://github.com/datquocnguyen/LFTM
https://github.com/NobodyWHU/GPUDMM
http://ipv6.nlsde.buaa.edu.cn/zuoyuan/


WEI-FTM

In summary, WEI-FTM (the proposed model), WF-LDA, LF-LDA, and GPU-DMM are
models with word embeddings; LDA, LDA-sym, WEI-FTM-no, LIDA-topic, and SSTM are
models without word embeddings; GPUDMM and PTM are models particularly for short
texts.

5.2. Perplexity Evaluation

Perplexity is a measure that is widely used (Wallach et al., 2009b) to evaluate the modelling
accuracy of topic models. The lower the score, the higher the modelling accuracy. To get
unbiased perplexity, we randomly selected some documents in a dataset as the training
set and the remaining as the test set. We first trained a topic model on the training set
to get the word distributions of each topic k (φk,:). Each test document d was split into
two halves containing every first and every second words respectively. We then fixed the
topics and trained the models on the first half to get the topic proportions (θd,:) of test
document d and computed perplexity for predicting the second half. We ran all the models
5 times with different random number seeds and report the average perplexity scores and
the standard deviations. Note that GPU-DMM and PTM provided no code for inference
on new documents so no corresponding perplexity results are given.

Table 1: Perplexity on regular texts. The best and second results are in boldface and
underline respectively.

Dataset Reuters KOS

#Topics 50 100 200 50 100 200

LDA 672±2 634±1 627±1 1488±4 1395±5 1315±2

LDA-sym 672±2 631±1 631±3 1461±4 1384±4 1327±4

LF-LDA 841±4 771±4 634±1 1707±16 1637±8 1636±10

WF-LDA 651±3 621±2 618±1 1426±10 1357±4 1306±3

SSTM 670±4 633±1 629±1 1462±4 1384±2 1324±4

LIDA-topic 671±1 638±3 - 1462±5 1385±4 1340±5

WEI-FTM-no 666±1 629±2 628±1 1445±3 1377±7 1322±1

WEI-FTM 656±4 616±2 610±3 1416±4 1335±2 1284±6

Tables 1 and 2 show the perplexities of the compared models9. The results indicate
that the proposed WEI-FTM performed best on nearly all the datasets. In regular text
datasets, it can be observed that WF-LDA was the second best, approaching WEI-FTM
closely. However, our model had a clear win in short text datasets, especially on TMN and
WS, which indicates that our incorporation of word embeddings is more effective than WF-
LDA. Moreover, our model runs much faster than WF-LDA, which will be studied later in
Section 5.5. Not informed by the word embeddings, WEI-FTM-no performed similarly to
vanilla LDA. The comparison between WEI-FTM-no and WEI-FTM shows that the benefit
of using the information encoded in the word embeddings. While using word embeddings,
LF-LDA did not get better results than LDA in terms of perplexity, which is in line with

9. The experiment of LIDA-topic on Reuters with 200 topics did not finish in a reasonable time due to the
failure of optimising ξ with LBFGS.
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Table 2: Perplexity on short texts. The best and second results are in boldface and underline
respectively.

Dataset WS TMN Twitter

#Topics 50 100 50 100 50 100

LDA 957±6 875±4 1956±14 1855±14 580±2 497±2

LDA-sym 955±8 886±6 1951±8 1880±6 579±3 498±2

LF-LDA 1164±6 1039±17 2415±35 2393±11 849±16 685±6

WF-LDA 888±8 829±8 1881±9 1833±11 582±9 507±10

SSTM 956±8 881±4 1932±5 1858±10 578±6 496±5

LIDA-topic 964±7 882±6 1951±11 1875±15 578±1 488±2

WEI-FTM-no 948±5 877±6 1943±13 1874±12 573±2 497±2

WEI-FTM 885±11 819±8 1845±6 1747±12 559±5 479±5

the report in Fu et al. (2016). While introducing focusing as well, LIDA-topic and SSTM
were not observed to have clear improvements in terms of perplexity.

5.3. Coherence Evaluation

To evaluate the coherence of the learnt topics, we used Normalised Pointwise Mutual Infor-
mation (NPMI) (Lau et al., 2014) to calculate topic coherence score for topic k with top T

words: NPMI(k) =
∑T

j=2

∑j−1
i=1 log

p(wj ,wi)
p(wj)p(wi)

/− log p(wj , wi), where p(wi) is the probability

of word i, and p(wi, wj) is the joint probability of words i and j that co-occur together
within a sliding window. Those probabilities are computed on an external large corpus,
i.e., a 5.48GB Wikipedia dump in our experiments. The NPMI score of each topic in the
experiments is calculated with top 10 words (T = 10) by the Palmetto package10. Again,
we report the average scores and the standard deviations over 5 random runs of all the
models.

Table 3: NPMI averaged over all the 100 topics on short text datasets. The best and second
results are in boldface and underline respectively.

Datasets WS TMN Twitter

LDA -0.0044±0.0028 0.0343±0.0026 -0.0110±0.0064

LF-LDA 0.0130±0.0052 0.0397±0.0026 0.0008±0.0026

WF-LDA 0.0289±0.0060 0.0463±0.0015 -0.0074±0.0033

SSTM -0.0012±0.0064 0.0381±0.0023 -0.0065±0.0040

LIDA-topic -0.0063±0.0027 0.0420±0.0021 -0.0042±0.0036

WEI-FTM-φ 0.0043±0.0038 0.0417±0.0036 -0.0096±0.0017

WEI-FTM-π -0.0092±0.0074 0.0567±0.0081 0.0392±0.0083

GPU-DMM -0.0934±0.0106 -0.0970±0.0034 -0.1458±0.0104

PTM -0.0029±0.0048 0.0355±0.0016 -0.0078±0.0008

10. http://palmetto.aksw.org
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Table 4: NPMI averaged over the top 20 topics. The best and second results are in boldface
and underline respectively.

Datasets WS TMN Twitter

LDA 0.1175±0.0122 0.1462±0.0036 0.0923±0.0042

LF-LDA 0.1230±0.0153 0.1456±0.0087 0.0972±0.0024

WF-LDA 0.1499±0.0131 0.1390±0.0527 0.0881±0.0090

SSTM 0.1163±0.0168 0.1476±0.0020 0.1002±0.0059

LIDA-topic 0.1147±0.0048 0.1553±0.0010 0.0964±0.0022

WEI-FTM-φ 0.1271±0.0015 0.1536±0.0041 0.0893±0.0026

WEI-FTM-π 0.1298±0.0079 0.1832±0.0172 0.1615±0.0120

GPU-DMM 0.0836±0.0105 0.0968±0.0076 0.0367±0.0164

PTM 0.1033±0.0081 0.1527±0.0052 0.0882±0.0037

It is known that conventional topic models directly applied to short texts suffer from
low quality topics, caused by the insufficient word co-occurrence information. Here we
study whether the focusing informed by word embeddings helps WEI-FTM improve topic
quality, compared with other topic models that can also handle short texts. Table 3 and 4
show the NPMI scores for the compared models trained with 100 topics on the three short
text datasets. Higher scores indicate better topic coherence. Besides the NPMI scores
averaged over all the 100 topics, we also show the scores averaged over the top 20 topics
with highest NPMI (Table 4), where “rubbish” topics are eliminated, following Yang et al.
(2015). Recall that in WEI-FTM, the top words of the topics can be obtained by ranking
either φ (WEI-FTM-φ) or π (WEI-FTM-π). We report both of them here.

Shown in Tables 3 and 4, it can be seen that in TMN and Twitter, WEI-FTM-π outper-
formed the others significantly. It indicates that the word embeddings successfully inform
our model to learn better topics. It is also noteworthy that WEI-FTM-φ still got better
NPMI than other models except WF-LDA in WS and TMN in general, although the word
embeddings do not directly affect the top word ranking with φ.

To qualitatively analyse the topic qualities, we show the top 10 words of the topics of
WEI-FTM in Table 5. The words in each topic were ranked by φ and π. It can be seen
that in general, the coherence of the words ranked by π is better than that ranked by φ,
which is in line with the overall NPMI scores shown in Table 3 and 4.

5.4. Focusing Analysis

To compare the focusing in the focused topic models (WEI-FTM, WEI-FTM-no, SSTM,
LIDA-topic), we show the histograms of the number of words per topic and the number of
topics per word of two datasets in Figure 2 and 3. It can be observed that in WEI-FTM,
the topics focused on fewer words than the others and the words described less topics.
Compared to LIDA-topic, our model discovered more focused topics and the topics trend
to be more diverse. It is also interesting to see how the word embeddings informed in the
focusing: the topics in WEI-FTM-no are much less focused than those in WEI-FTM. This
phenomenon helps explain why WEI-FTM gives better performance in the quantitative
evaluations.
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Table 5: Top 10 words of the topics discover by WEI-FTM on Twitter. Top 10 topics with
the largest weights (

∑D
d θd,k) are selected. For each topic, the top words in the first row

are ranked by φ and in the second are ranked by π respectively.

Topic Top 10 words NPMI

1
video bound kanye rogen west franco seth james kim kardashian -0.0626
starring movie sexy actress funny animated film comedy cartoon comedian 0.0680

2
china zone air japan east defense sea island disputed beijing 0.0141
airspace diaoyu nato sovereignty territorial border resolution maritime military force 0.0543

3
watkins ian lostprophets guilty singer sex child baby rape pleaded -0.0028
murder convicted guilty sentence alleged rape imprisonment kidnapping trial sentenced 0.1291

4
swift taylor prince william bon jovi gala jon white winter -0.0218
sang concert sing singing princess dinner singer greeted danced tour -0.0309

5
storm travel morning thanksgiving woman pill east plan winter weather -0.0209
weather mph rain crash sleet snow air jet storm coast 0.1036

6
scotland independence scottish paper white government independent salmond alex minister 0.0445
parliament liberal prime election party democratic minister congress conservative vote 0.2352

7
nokia lumia phone window tablet smartphone inch device microsoft launch 0.1778
playstation iphone ipad server smartphone gsm android xbox smartphones nintendo 0.1455

8
friday black thanksgiving shopping store day holiday retailer shopper year 0.0540
dinner thanksgiving holiday shopping menu shop supermarket retail meal store 0.0491

9
patriot bronco manning brady peyton tom england sunday denver night 0.0389
touchdown quarterback goalkeeper punt fumble defensive steelers coach nfl kickoff 0.1822

10
lakers bryant kobe los angeles washington extension year contract wizard 0.0770
quarterback lakers nba coach knicks seahawks offseason postseason touchdown belichick 0.0520

Table 6: Running time (seconds per iteration) on 80% documents of each dataset

Dataset Reuters WS

#Topics 50 100 50 100

LDA 6.6167 8.1239 1.1481 1.3904

LDA-sym 6.3883 8.2225 1.1255 1.3609

LF-LDA 2.6895 5.3043 2.4920 6.0266

WF-LDA 289.6488 636.8966 327.0750 724.7727

SSTM 10.7333 14.8040 4.0399 6.2999

LIDA-topic 23.4365 28.7910 3.9989 6.1942

WEI-FTM 24.6280 27.6666 6.4997 8.5074
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Figure 2: Histogram of the number of topics per word (a-c) and the number of words per
topic (d-f) for the TMN dataset with 100 topics. Red: WEI-FTM, Green: LIDA-topic, Blue:
SSTM, Yellow: WEI-FTM-no. The vocabulary size of TMN is 13,370. To show WEI-FTM
and LIDA-topic in the same scale, we trimmed the topics and words with extremely low
counts in (a).

5.5. Running Time

Here we empirically study the efficiency of the models. Table 5.5 shows the per-iteration
running time of the compared models with different topics on the Reuters and WS datasets.
Except LF-LDA (implemented in Java), the models were implemented in Matlab. All the
models ran with the same settings on a cluster with a 14-core 2.6GHz CPU and 128GB
RAM. It can be seen that although WF-LDA is comparable to WEI-FTM in some datasets,
it runs much slower due to non-conjugacy.

6. Conclusion

In this paper, we have presented a focused topic model informed by word embeddings
(WEI-FTM), which discovers more informed focused topics with more representative words,
leading to better performance in terms of perplexity and topic quality. By leveraging the
semantic and syntactic information encoded in word embeddings, our model is able to
discover more focused and diverse topics with more representative words. In terms of
inference, WEI-FTM enjoys full local conjugacy after augmentation, which facilitates an
efficient Gibbs sampling algorithm for model inference. Without losing generality, WEI-
FTM can work with both regular texts and short texts. The method of incorporating word
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Figure 3: Histogram of the number of topics per word (a-c) and the number of words per
topic (d-f) for the Reuters dataset with 200 topics. Red: WEI-FTM, Blue: SSTM, Green:
LIDA-topic, Yellow: WEI-FTM-no. The vocabulary size of Reuters is 8,817. To show WEI-
FTM and LIDA-topic in the same scale, we trimmed the topics and words with extremely
low counts in (a).

embeddings introduced in this paper can also be applied to document features such as labels
and authors, which is the subject of future work.

References

David Andrzejewski, Xiaojin Zhu, and Mark Craven. Incorporating domain knowledge into
topic modeling via Dirichlet forest priors. In ICML, pages 25–32, 2009.

David Andrzejewski, Xiaojin Zhu, Mark Craven, and Benjamin Recht. A framework for
incorporating general domain knowledge into Latent Dirichlet Allocation using first-order
logic. In IJCAI, pages 1171–1177, 2011.

Cedric Archambeau, Balaji Lakshminarayanan, and Guillaume Bouchard. Latent IBP com-
pound Dirichlet allocation. TPAMI, 37(2):321–333, 2015.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. JMLR, 3
(Jan):993–1022, 2003.

W. Buntine and M. Hutter. A Bayesian view of the Poisson-Dirichlet process. arXiv preprint
arXiv:1007.0296v2 [math.ST], 2012.

436



WEI-FTM

Rajarshi Das, Manzil Zaheer, and Chris Dyer. Gaussian LDA for topic models with word
embeddings. In ACL, pages 795–804, 2015.

Xianghua Fu, Ting Wang, Jing Li, Chong Yu, and Wangwang Liu. Improving distributed
word representation and topic model by word-topic mixture model. In ACML, pages
190–205, 2016.

Zhe Gan, Changyou Chen, Ricardo Henao, David Carlson, and Lawrence Carin. Scalable
deep Poisson factor analysis for topic modeling. In ICML, pages 1823–1832, 2015a.

Zhe Gan, R. Henao, D. Carlson, and Lawrence Carin. Learning deep sigmoid belief networks
with data augmentation. In AISTATS, pages 268–276, 2015b.

Zoubin Ghahramani and T.L. Griffiths. Infinite latent feature models and the Indian buffet
process. In NIPS, pages 475–482, 2006.

Liangjie Hong and Brian D Davison. Empirical study of topic modeling in twitter. In Proc.
of the First Workshop on Social Media Analytics, pages 80–88, 2010.

Jey Han Lau, David Newman, and Timothy Baldwin. Machine reading tea leaves: Auto-
matically evaluating topic coherence and topic model quality. In EACL, pages 530–539,
2014.

Chenliang Li, Haoran Wang, Zhiqian Zhang, Aixin Sun, and Zongyang Ma. Topic modeling
for short texts with auxiliary word embeddings. In SIGIR, pages 165–174, 2016.

Rishabh Mehrotra, Scott Sanner, Wray Buntine, and Lexing Xie. Improving LDA topic
models for microblogs via tweet pooling and automatic labeling. In SIGIR, pages 889–
892, 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionally. In NIPS, pages 3111–
3119, 2013.

David Mimno and Andrew McCallum. Topic models conditioned on arbitrary features with
Dirichlet-multinomial regression. In UAI, pages 411–418, 2008.

Dat Quoc Nguyen, Richard Billingsley, Lan Du, and Mark Johnson. Improving topic models
with latent feature word representations. Transactions of the Association for Computa-
tional Linguistics, 3:299–313, 2015.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for
word representation. In EMNLP, pages 1532–1543, 2014.

James Petterson, Wray Buntine, Shravan M Narayanamurthy, Tibério S Caetano, and
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