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Abstract

*Zilla is a model-based approach for algorithm selection and the most recent iteration of
the well-known SATzilla project. The new *Zilla system has increased flexibility for the
user and is configurable to run with many machine learning models and alternatives for
various pre/post processing steps (e.g., presolver selection, feature completion prediction,
and solver subset selection). The main additions to our *Zilla pipeline are automated
procedures for feature group selection, hyper-parameter tuning, and solver subsampling
prior to model building. We submit two versions for the competition that are equivalent
except for the choice of per-instance machine learning model. For our first submission,
we use a weighted pairwise random forest classifier. For our second submission, we test
an experimental approach that offline, builds a weighted pairwise random forest classifier
and online, finds the nearest instances based on the average path lengths across trees and
optimizes a schedule over those instances.

1. Introduction

Our lab has been actively working on automated methods for constructing portfolio-based
algorithm selectors. Since 2007, our portfolio-based SAT solver, SATzilla (Xu et al., 2008),
has won many medals in the SAT competitions and SAT challenges (Le Berre et al., 2015).
It was also the winner of the 2015 ICON algorithm selection challenge (Kotthoff et al.,
2017).

First, we provide an overview of the pipeline which both of our submissions share and
give special attention to new functionality. Second, we describe the machine learning models
used for our two submissions. Finally, we describe the computational resources used to train
our systems.

2. Overview of system

We introduce the pipeline for our submissions by enumerating the most important steps
in the offline training phase and online execution phase. We pay special attention to new
functionality and components that have not been discussed in the literature (marked with
boldface). See Xu et al. (2008) for a detailed explanation of the core ideas underlying *Zilla.
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Note that there was a critical bug in our submission within the solver sub-sampling pro-
cedure that substantially degraded performance. We highlight that bug when we describe
that procedure below.

2.1. Key Offline Steps

1. Maximize/Minimize: *Zilla minimizes performance and performance measures are
negated if the scenario has a maximization objective.

2. Solver sub-sampling before model building: Start with empty set of solvers and
greedily add the solver to the set that minimizes the marginal improvement in VBS
performance. The VBS (Virtual Best Solver) represents the oracle solver that always
picks the best solver to run. Continue until performance stagnates and the fraction
of improvement drops below a fixed constant. **Bug in submission: constant was
misspecified due to accidental rounding when written to file, causing only two solvers
to be selected for every scenario.

3. Cheap Features: Choose a set of “cheap” features that will always be computed. (by
default, features within the cheapest feature group on average)

4. Build Feature Completion Model: Build a binary random forest prediction model from
cheap features to predict whether features are computable within a fixed cutoff time
(10% of algorithm cutoff time).

5. Split instances: Randomly partition the training and validation set with 2/3, 1/3
split.

6. Backup Solver: Select a static backup solver that has the best average performance
across all training instances without complete features (i.e., instances where all fea-
tures were not successfully computed before static feature cutoff time).

7. Model building: Build the machine learning model for per-instance selection on all
training instances that have complete features.

8. Presolving: Find schedule of presolvers to be run prior to feature computation to
prevent expensive features from being computed on easy instances. Automatic greedy
presolver scheduling (Streeter and Golovin, 2009) is applied for a grid of presolving
cutoffs. Select the presolver cutoff based on performance of running *Zilla online on
the validation set.

9. Build entire pipeline again over the union of training and validation instances with
chosen presolving schedule.

10. Automatic Feature Group Selection: Sort the feature groups in order of average
runtime. If a feature group in the sorted list has dependencies outside of its preceding
feature groups, move through the list and re-index the feature group to the nearest
position where its dependencies are satisfied. For all sets of features represented by all
prefixes of the sorted feature groups, run steps 4 until 9 for 10 CV folds. Pick feature
groups with best 10-fold CV performance.

11. Hyper-parameter tuning: For log-scaled grid of random forest hyper-parameter
settings, run steps 4 until 9 for 10 CV folds and select the best hyper-parameters
based on 10-fold CV.
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While the addition of feature group selection and hyper-parameter tuning can be expensive,
two of our changes have substantially reduced training time and have never been observed
to degrade performance. First, solver sub-sampling before model building substantially
reduces training time especially when using random forests (where training time scales
quadratically with the number of solvers). Second, a separate model is no longer built
conditioned on each presolving schedule. Instead, presolving schedules are evaluated with
the same unconditioned model.

2.2. Key Online Steps

1. Execute a statically defined presolving schedule. Terminate if presolvers solve in-
stance.

2. Compute cheap features.

3. Predict whether features will run successfully from cheap features. If the features
were predicted to not be computable, run the backup solver.

4. If the features were predicted to be computable, the features are retrieved for the
instance.

5. If the features have successfully been computed within the feature cutoff time, impute
any missing features to the mean, and query the model for a solver/schedule to run.

6. Otherwise, run the backup solver.

3. Model for Submission 1

As in (Xu et al., 2012), *Zilla uses a pairwise cost-sensitive random forest classifier. It is
pairwise because between every pair of algorithms there is a random forest classifier. Each
pairwise model outputs a vote for one of two solvers and the solver is selected with the most
votes aggregated over all pairwise models. Gini impurity is minimized at every split in each
decision tree, where each instance is weighted by the difference in running times between
the solvers. Bootstrap sampling of instances is used for every tree.

The parameters split-min and split-features are exposed to hyper-parameter tun-
ing (split-min parameterizes the minimum number of instances in a splittable node and
split-features parameterizes how many features to randomly sample for each split).

4. Model for Submission 2

Inspired by Lindauer et al. (2016), we attempt an exploratory dynamic scheduling approach
while exploiting the use of our high-performance random forests. A pairwise cost-sensitive
random forest is built from the training data offline just as in Submission 1 and for a test
instance online:

1. For all training instances and all trees across the pairwise random forests, find the
distance between the leaf of the test instance and the leaf of the training instance.

2. The leaf of an instance within a particular tree is found by traversing down the tree
with the instance features.

3. Distance between leaves is measured as path length to the nearest common ancestor
node.
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4. Select the k training instances which have the smallest distance to the test instance
averaged over all trees among the pairwise random forests.

5. Use the approach by Streeter and Golovin (2009) to greedily find a schedule optimized
over those k nearest instances.

6. k is exposed to hyper-parameter tuning.

We find this method often performs better and we use it in submission 2 in cases where it
performs better than submission 1 based on 10-fold CV performance. (Note that scheduling
approaches are not useful for the solution quality objectives). One potential drawback of
this system in practice is the online cost of finding the close-by instances and building a
schedule. The competition settings are to our advantage since the performance metric does
not count the runtime cost from querying the model online.

5. Resources

Approximately 50 CPU days of computation were used for both submissions and all exper-
iments were performed with the ada UBC cluster (21 nodes, each with 32 Intel(R) Xeon(R)
2.10GHz cores). When considering submission 2, ≈ 250 CPU days were spent exploring the
*Zilla design space for high-performance configurations.
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