
Proceedings of Machine Learning Research 79:19–22, 2017 Open Algorithm Selection Challenge (OASC 2017)

as-asl: Algorithm Selection with Auto-sklearn

Brandon Malone brandon.malone@neclab.eu
NEC Laboratories Europe, Heidelberg, Germany

Kustaa Kangas jwkangas@mappi.helsinki.fi
Helsinki Institute for Information Technology HIIT
Department of Computer Science, Aalto University, Finland

Matti Järvisalo matti.jarvisalo@helsinki.fi
Helsinki Institute for Information Technology HIIT
Department of Computer Science, University of Helsinki, Finland

Mikko Koivisto mikko.koivisto@helsinki.fi
Department of Computer Science, University of Helsinki, Finland

Petri Myllymäki petri.myllymaki@helsinki.fi

Helsinki Institute for Information Technology HIIT

Department of Computer Science, University of Helsinki, Finland

Editors: Marius Lindauer, Jan N. van Rijn and Lars Kotthoff

Abstract

In this paper, we describe our algorithm selection with Auto-sklearn (as-asl) software
as it was entered in the 2017 Open Algorithm Selection Challenge. as-asl first selects
informative sets of features and then uses those to predict distributions of algorithm run-
times. A classifier uses those predictions, as well as the informative features, to select
an algorithm for each problem instance. Our source code is publicly available1 with the
permissive MIT license.

1. Introduction

The algorithm selection problem (Rice, 1976) entails selecting the best algorithm implemen-
tation (solver) to solve a given instance of a problem. In this work, we propose algorithm
selection with Auto-sklearn (as-asl), a machine learning based software implementation
to address this problem.2

In Section 2, we describe our approach to training the major components of as-asl.
We then describe our computing infrastructure in Section 3 and conclude in Section 4.

2. Software Architecture

The Open Algorithm Selection Challenge (OASC) poses the algorithm selection problem
as follows.3

1. https://github.com/bmmalone/as-asl
2. A preliminary version of this software was described in Malone et al. (2017).
3. An analogous formulation which focuses on solution quality is also posed.

c© 2017 B. Malone, K. Kangas, M. Järvisalo, M. Koivisto & P. Myllymäki.

https://github.com/bmmalone/as-asl


as-asl

Input: A training set of problem instances (represented as collections of feature
values), the time required to observe sets of features, and the respective
runtimes of a given set of solvers to find a solution.

Task: Learn a scheduler function which constructs a schedule which minimizes the time
required to find a solution on an unseen problem instance.

We adopt a three-step approach to learn a scheduler:

Step 1. Select informative feature sets.

Step 2. Train a model to select the best solver for a given instance.

Step 3. Select a presolver to run for a short amount of time before extracting features.

We describe each step in more detail.

2.1. Step 1: Feature set selection

First, we select sets of features to observe which lead to good algorithm selection perfor-
mance. Intuitively, this step optimizes a tradeoff between the informativeness and cost of
observation for the feature sets. as-asl selects informative features using a greedy, wrapper-
based forward selection search (Guyon and Elisseeff, 2003) guided by the par10 metric; the
quick as-rf method described in Section 2.2 serves as the underlying model in the search.

2.2. Step 2: Solver selection

Second, we train a two-level stacking model (Wolpert, 1992) which selects the best solver for
a given instance. The first level comprises one ensemble ES for each solver S trained with
Auto-sklearn (Feurer et al., 2015) to predict its runtime (that is, these are regression
models). For training, we use only those features selected during Step 1; in particular, the
sets of observed features are fixed while learning the ensembles. The training objective is to
minimize the root mean squared error of the predictions compared to the actual runtimes.

When presented with a new instance i, each member mS of the ensemble predicts the
runtime of the respective solver for that instance, mS(i); we propagate the uncertainty in
these predictions by treating the true runtime iS as a random variable whose mean and
variance are the emprical mean and variance of the predictions mS(i) of all mS ∈ ES .

A single ensemble also trained with Auto-sklearn composes the second level; it is
trained to predict the best solver from the selected features and runtime estimates from the
regression models (that is, these are multi-class classifier models); specifically, the inputs
for this model are the selected features from Step 1 and the mean and variance estimates
from the solver runtime predictions. Each member of the ensemble is weighted according to
its performance on the training data. The training objective is to minimize the multi-class
micro F1 score (Lipton et al., 2014).

When presented with a new instance (and the predictions from the first level), the best
solver is predicted based on a weighted voting scheme. We note that similar techniques as
those for the ensembles for runtime prediction could be used to quantify uncertainty in the
solver selection as well; however, at present as-asl does not incorporate this uncertainty.

20



as-asl

Kotthoff (2012) proposed a similar stacking model architecture for algorithm selection.
Our approach differs from it in several ways. First, we include the orginal features in the
input to the classifier in the second level. Second, we explicitly account for the uncertainty
in the runtime estimates from the first layer by representing them as distributions rather
than point estimates.

as-rf For OASC, many of the scenarios included several dozen solvers; due to the com-
putational expense of Auto-sklearn (see Section 3), training complete ensembles during
the feature set selection is not feasible. Thus, we also implemented a version of the stack-
ing model approach using random forests with standard hyperparameters in place of the
Auto-sklearn ensembles; we refer to this method as as-rf.

2.3. Step 3: Presolver selection

Finally, we select a presolver to run for a short amount of time in hopes of finding a solution
quickly before even observing instance features. We use a grid search to optimize the choice
of a single presolver and allocated time for presolving with respect to the par10 score.

In particular, we consider the selected features and solver selection model from Steps
1 and 2 fixed; each solver is then given a fixed time budget for presolving. We evaluate
several time budgets, including no time for presolving, and select the presolver and budget
which optimize the par10 score.

As described in Section 2.4, running the selected presolver is the first step in our sched-
ule; however, since the efficacy of the presolver is dependent on the cost of observing the
features and the quality of solver selections afterward, choosing the presolver and its budget
is the last step in our learning algorithm.

2.4. Solver schedule selection

We use the above three steps during training to: (1) choose a presolver and its budget;
(2) select sets of features to observe; and (3) create a model to select a solver based on
an instance’s features. as-asl creates a solver schedule for a new test instance using these
three components as follows:

1. Run the presolver for the selected time budget. If the presolver solves the instance
within the time budget, then as-asl does not perform any more work for that instance.

2. Observe the selected sets of features.

3. Run the selected solver for the remaining time budget.

3. Computing Infrastructure and Resources

We trained all models on Dell PowerEdge M610 computing nodes equipped with two
2.53-GHz Intel Xeon E5540 (quad-core) CPUs and 32 GB RAM. We limited total Auto-
sklearn training to 10 minutes per model, and we restricted training to at most 8 active
threads at once.

The two primary factors affecting the empirical time complexity of our approach are:
(1) the number of feature sets, which affects the size of the search space in Step 1; and (2)

21



as-asl

the number of solvers, which determines the number of models required in Step 2. Step 3
can be performed rather quickly with a modest number of presolver time budgets. Typical
runs for OASC required on the order of one to two hours.

The as-asl software is freely available4 with the MIT license; installation is documented
on GitHub.

4. Discussion

In this paper, we have described as-asl for solving the algorithm selection problem. It first
identifies informative features and then trains a stacking model to select the best solver for
each instance. Additionally, as-asl selects a presolver when beneficial. The implementation
is freely available and a set of simple commands allow for easy execution.

Acknowledgements

This work is supported by Academy of Finland, grants #125637, #251170 (COIN Centre
of Excellence in Computational Inference Research), #255675, #276412, and #284591;
Finnish Funding Agency for Technology and Innovation (project D2I); and Research Funds
of the University of Helsinki.

References

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient
and robust automated machine learning. In Advances in Neural Information Processing
Systems 28, pages 2962–2970, 2015.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

L. Kotthoff. Hybrid regression-classification models for algorithm selection. In Proceedings
of the 20th European Conference on Artificial Intelligence, pages 480–485, 2012.

Z. C. Lipton, C. Elkan, and B. Naryanaswamy. Optimal thresholding of classifiers to max-
imize F1 measure. In Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 225–239, 2014.

B. Malone, K. Kangas, M. Järvisalo, M. Koivisto, and P. Myllymäki. Empirical hardness of
finding optimal Bayesian network structures: Algorithm selection and runtime prediction.
Machine Learning, To Appear, 2017.

J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.

D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

4. https://github.com/bmmalone/as-asl

22

https://github.com/bmmalone/as-asl

	Introduction
	Software Architecture
	Step 1: Feature set selection
	Step 2: Solver selection
	Step 3: Presolver selection
	Solver schedule selection

	Computing Infrastructure and Resources
	Discussion

