Policy and Value Transfer in Lifelong Reinforcement Learning (Appendix)

David Abel † 1 Yuu Jinnai † 1 Yue Guo 1 George Konidaris 1 Michael L. Littman 1

We here include proofs and a visual of the Octogrid domain.

A. Proofs

Theorem 3.2. For a distribution of MDPs with $R \sim D$,

$$\mathbb{E}_{M \in \mathcal{M}}[V_M^{\pi_{avg}^*}(s)] \ge \max_{M \in \mathcal{M}} \Pr(M) V_M^*(s).$$

Proof. Ramachandran Amir (2007) also showed that the value function V_{avg}^{π} of an average MDP is the weighted average of the MDPs in the distribution,

$$V_{avg}^{\pi}(s) = \sum_{M \in \mathcal{M}} \Pr(M) V_M^{\pi}(s). \tag{1}$$

Thus,

$$\begin{split} \mathbb{E}_{M \in \mathcal{M}}[V_M^{\pi_{avg}^*}(s)] &= \sum_{M \in \mathcal{M}} \Pr(M) V_M^{\pi_{avg}^*}(s) \\ &= V_{avg}^{\pi_{avg}^*}(s) \\ &= \max_{\pi} V_{avg}^{\pi}(s) \\ &= \max_{\pi} \sum_{M \in \mathcal{M}} \Pr(M) V_M^{\pi}(s) \\ &\geq \max_{\pi} \max_{M \in \mathcal{M}} \Pr(M) V_M^{\pi}(s) \\ &= \max_{M \in \mathcal{M}} \Pr(M) \max_{\pi} V_M^{\pi}(s) \\ &= \max_{M \in \mathcal{M}} \Pr(M) V_M^*(s). \end{split}$$

Since we assume $\mathcal{R}(s,a) \geq 0$ for all s,a, we infer that $\sum_{M \in \mathcal{M}} \Pr(M) V_M^{\pi}(s) \geq \max_{M \in \mathcal{M}} \Pr(M) V_M^{\pi}(s)$, thus concluding the proof.

Corollary 3.2.1. *The bound in Theorem 3.2 is tight.*

Proof. Next we the bound is by an example MDP distribution shown in Figure 1.

In the MDP i the agent gets a reward if it executes a_i in MDP i:

$$R_M(s_0, a_i) = \begin{cases} 1 & M = i \\ 0 & \text{otherwise} \end{cases}$$

Figure 1: An example of a MDP which an average MDP solution returns a lower bound value.

In this distribution of MDPs, the optimal agent always gets reward of 1 where as the optimal average MDP agent gets $\max_{M \in \mathcal{M}} \Pr(M)$ reward on average. In this setting, $V^{\pi^*_{avg}}(s) = \max_{M \in \mathcal{M}} \Pr(M) V^*_M(s)$. Thus the bound is tight.

Corollary 3.4. For the $G \sim D$ setting,

$$\mathbb{E}_{M \in \mathcal{M}}[V_M^{\pi_{avg}^*}(s)] \ge \min_{M \in \mathcal{M}} \Pr(M) \max_{M' \in \mathcal{M}} \Pr(M') V_{M'}^*(s).$$

Proof. We first leverage the following lemma:

Lemma 3.4.1.

$$\begin{aligned} \max_{M \in \mathcal{M}} \Pr(M) V_M^{\pi}(s) &\leq V_{avg}^{\pi}(s) \\ &\leq \sum_{M \in \mathcal{M}} \Pr(M) V_M^{\pi}(s) / \min_{M' \in \mathcal{M}} \Pr(M') \end{aligned}$$

(Proof sketch for lower bound): Let an MDP M' be the same MDP as M except it transits to a terminal state from goal nodes (and acquires a reward) by probability of $\Pr(M)$ instead of probability of 1. The value $V_{M'}^{\pi}(s)$ of state s in M' is at least as large as $\Pr(M)V_{M}^{\pi}(s)$. Thus, the value of state s in M' is lower than or equal to that in the average MDP as it reaches the goal less frequently. $V_{M'}^{\pi}(s)$ is smaller that or equal to $V_{avg}^{\pi}(s)$ as the average MDP has larger or equal probability of reaching the terminal state. Thus, for any $M \in \mathcal{M}$:

$$V_{avg}^{\pi}(s) \ge V_{M'}^{\pi}(s) \ge \Pr(M) V_M^{\pi}(s).$$

(Proof sketch for upper bound):

$$\begin{split} V_{avg}^{\pi}(s) & \leq \sum_{M \in \mathcal{M}} V_M^{\pi}(s) \\ & \leq \sum_{M \in \mathcal{M}} \Pr(M) V_M^{\pi}(s) / \min_{M' \in \mathcal{M}} \Pr(M'). \end{split}$$

Now, we turn to the theorem.

$$\begin{split} \mathbb{E}_{M \in \mathcal{M}}[V_{M}^{\pi_{avg}^{*}}(s)] &= \sum_{M \in \mathcal{M}} \Pr(M) V_{M}^{\pi_{avg}^{*}}(s) \\ &\geq \min_{M \in \mathcal{M}} \Pr(M) V_{avg}^{\pi_{avg}^{*}}(s) \\ &= \min_{M \in \mathcal{M}} \Pr(M) \max_{\pi} V_{avg}^{\pi}(s) \\ &\geq \min_{M \in \mathcal{M}} \Pr(M) \max_{\pi} \max_{M' \in \mathcal{M}} \Pr(M') V_{M'}^{\pi}(s) \\ &= \min_{M \in \mathcal{M}} \Pr(M) \max_{M' \in \mathcal{M}} \Pr(M') V_{M'}^{*}(s). \quad \Box \end{split}$$

Theorem 3.8. Suppose \mathcal{A} is an algorithm that produces ε accurate Q functions for a subset of the state action space given an MDP M, an initial state s_0 , and a horizon H. For a given $\delta \in (0,1]$, after

$$t \ge \frac{\ln(\delta)}{\ln(1 - p_{min})},\tag{2}$$

sampled MDPs, for $p_{min} = \min_{M \in \mathcal{M}} \Pr(M)$, the updating-max shaping method will return a shaped Q-function \hat{Q}_{max} such that for all state action pairs (s, a):

$$\hat{Q}_{max}(s,a) \ge \max_{M} Q_M^*(s,a),\tag{3}$$

with probability $1 - \delta$.

Proof. Consider an arbitrary state action pair (s,a).

After t samples, we choose:

$$\hat{Q}_{max}^*(s,a) \triangleq \max_{M} \hat{Q}_{M}^*(s,a). \tag{4}$$

After t samples, we let the following event define a mistake:

$$\hat{Q}_{max}^{*}(s,a) < \max_{M} Q_{M}^{*}(s,a). \tag{5}$$

First, we suppose that for each of sampled MDP M, our learning algorithm computes a *partial* but nearly *accurate* Q-function. That is, for some small ε :

$$\hat{Q}_{M}^{*}(s,a) = \begin{cases} Q_{M}^{*}(s,a) \pm \varepsilon & c(s,a) \ge m \\ \text{VMAX} & \text{otherwise} \end{cases}$$
 (6)

That is, letting c(s, a) denote the number of times a was executed in s: any state action pairs that were visited sufficiently often (more than m for some chosen m << H)

result in an ε -accurate Q function. Otherwise, the algorithm returns VMAX.

Under these conditions, for a given state action pair, surely, for any MDP seen during the t samples M_i :

$$\hat{Q}_{max}^*(s,a) \ge \max_{M \in \mathcal{M}_{seen}} Q_M^*(s,a) \tag{7}$$

Therefore, the mistake event defined by Equation 5 only occurs when we miss an MDP in the distribution that has a higher $Q^*(s,a)$ than our estimate. We assume that the distribution has a lower bound on MDP probabilty:

$$p_{min} \triangleq \min_{M \in \mathcal{M}} \Pr(M). \tag{8}$$

Accordingly, we upper bound the mistake probability according to the probability that no such MDP was sampled over t samples, captured by the cumulative geometric distribution:

$$1 - (1 - p_{min})^m \ge 1 - \delta. \tag{9}$$

Simplifying:

$$1 + \delta \ge 1 + (1 - p_{min})^t$$
$$\ln(\delta) \ge \ln(1 - p_{min}) \cdot t$$
$$\frac{\ln(\delta)}{\ln(1 - p_{min})} \le t$$

Therefore, after

$$t \ge \frac{\ln(\delta)}{\ln(1 - p_{min})},\tag{10}$$

sampled MDP we will have seen all MDPs in the distribution with high probability. \Box

B. Octogrid

Figure 2: The Octogrid task distribution. The goal appears in exactly one of the 12 green circles chosen uniformly at random, with the agent starting in the center at the triangle.