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We here include proofs and a visual of the Octogrid domain.

A. Proofs

Theorem 3.2. For a distribution of MDPs with R ~ D,

ExrealVyy ™ (5)] 2 max Pr(M)Vii(s).

Proof. Ramachandran Amir (2007) also showed that the
value function V7, of an average MDP is the weighted

average of the MDPs in the distribution,

> Pr(M)Viy(s). (1)
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Thus,

Esrem[Var ™ ()] = D Pr(M)Vy/(s)
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= max Pr(M) max Vi (s)

= P M * .
max r(M)Vy(s)

Since we assume R(s,a) > 0 for all s, a, we infer that
> oviem Pr(M)Vi(s) > maxpepm Pr(M)Vy(s), thus
concluding the proof. .

Corollary 3.2.1. The bound in Theorem 3.2 is tight.

Proof. Next we the bound is by an example MDP distribu-
tion shown in Figure 1.

In the MDP i the agent gets a reward if it executes a; in
MDP i:
1 M=i

0 otherwise

RM(S(), ai) = {

ag a2

Figure 1: An example of a MDP which an average MDP
solution returns a lower bound value.

In this distribution of MDPs, the optimal agent always
gets reward of 1 where as the optimal average MDP agent
gets max e Pr(M) reward on average. In this setting,
V™ava(s) = maxprep Pr(M)Vy(s). Thus the bound is
tight. O

Corollary 3.4. For the G ~ D setting,

Enrem [VJ\?W (s)]

> . / * , .
= i, PrOM) gy, PrOMOVii ()

Proof. We first leverage the following lemma:

Lemma 3.4.1.
s < ™
max Pr(M)Vj(s) < Vi (s)

< > Pr(M)Vyy(s)/ min Pr(M’)
MeM Mrem

(Proof sketch for lower bound): Let an MDP M’ be the
same MDP as M except it transits to a terminal state from
goal nodes (and acquires a reward) by probability of Pr(M)
instead of probability of 1. The value V}, (s) of state s in
M’ is at least as large as Pr(M )V} (s). Thus, the value
of state s in M’ is lower than or equal to that in the aver-
age MDP as it reaches the goal less frequently. Vi, (s) is
smaller that or equal to V, (s) as the average MDP has
larger or equal probability of reaching the terminal state.
Thus, for any M € M:
VI, (8) > Vi (s) = Pr(M)Viy (s).

avg
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(Proof sketch for upper bound):

Vig(s) < D Vir(s)
MeM
< Z Pr(M)VA}(s)/Mn/leiI}wPr(M').
MeM

Now, we turn to the theorem.

EvemlVar ()] = 3

> mel/r\l/t Pr(M)Vaug“(s)

= min Pr(M) max V2, (5)

> Agjnel/r\l/t Pr(M) max max Pr(M")V{. (s)
= J\?lel/r\l/l Pr(M) pax, Pr(M")V3 (s). O

Theorem 3.8. Suppose <7 is an algorithm that produces €
accurate (Q functions for a subset of the state action space
given an MDP M, an initial state sg, and a horizon H. For
a given 6 € (0, 1], after

In(0)

t> ——m——
111(1 7pmin)7

> 2
sampled MDPs, for ppmin = minyenm Pr(M), the
updating-max shaping method will return a shaped Q-
Sunction Quma. such that for all state action pairs (s, a):

Qmaz(s,0) > max Qy (s, a), 3)
with probability 1 — 4.

Proof. Consider an arbitrary state action pair (s,a).

After ¢ samples, we choose:

Qraz(5,0) £ max Qjy (s, a). “)

After ¢ samples, we let the following event define a mistake:

O (5, 0) < i @3 (5, ). )

First, we suppose that for each of sampled MDP M, our
learning algorithm computes a partial but nearly accurate
Q-function. That is, for some small &:

Q&@m):{Q%@JUie

c(s,a) >m ©)

VMAX otherwise

That is, letting ¢(s,a) denote the number of times a was
executed in s: any state action pairs that were visited suf-
ficiently often (more than m for some chosen m << H)

result in an e-accurate @) function. Otherwise, the algorithm
returns VMAX.

Under these conditions, for a given state action pair, surely,
for any MDP seen during the ¢ samples M;:

Qfran(s,0) > max  Qj(s,a) (7)

max
MeMseen

Therefore, the mistake event defined by Equation 5 only
occurs when we miss an MDP in the distribution that has
a higher Q*(s, a) than our estimate. We assume that the
distribution has a lower bound on MDP probabilty:

miné i Pr(M). 8
p [nin Pr(M) (8)

Accordingly, we upper bound the mistake probability ac-
cording to the probability that no such MDP was sampled
over ¢t samples, captured by the cumulative geometric distri-
bution:

L= (1= pmin)" >1-4. 9
Simplifying:
1+6>14 (1= pmin)
In(d) > In(1 — ppin) - t
In(d) <t
111(1 - pmin)
Therefore, after
In(0)
t> ——— 10
Z Tl = poin)” (10)
sampled MDP we will have seen all MDPs in the distribution
with high probability. O
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Figure 2: The Octogrid task distribution. The goal appears
in exactly one of the 12 green circles chosen uniformly at
random, with the agent starting in the center at the triangle.



