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Abstract
Three-dimensional geometric data offer an excel-
lent domain for studying representation learning
and generative modeling. In this paper, we look
at geometric data represented as point clouds. We
introduce a deep AutoEncoder (AE) network with
state-of-the-art reconstruction quality and gen-
eralization ability. The learned representations
outperform existing methods on 3D recognition
tasks and enable shape editing via simple alge-
braic manipulations, such as semantic part edit-
ing, shape analogies and shape interpolation, as
well as shape completion. We perform a thorough
study of different generative models including
GANs operating on the raw point clouds, signifi-
cantly improved GANs trained in the fixed latent
space of our AEs, and Gaussian Mixture Models
(GMMs). To quantitatively evaluate generative
models we introduce measures of sample fidelity
and diversity based on matchings between sets
of point clouds. Interestingly, our evaluation of
generalization, fidelity and diversity reveals that
GMMs trained in the latent space of our AEs yield
the best results overall.

1. Introduction
Three-dimensional (3D) representations of real-life objects
are a core tool for vision, robotics, medicine, augmented
reality and virtual reality applications. Recent attempts
to encode 3D geometry for use in deep learning include
view-based projections, volumetric grids and graphs. In this
work, we focus on the representation of 3D point clouds.
Point clouds are becoming increasingly popular as a homo-
geneous, expressive and compact representation of surface-
based geometry, with the ability to represent geometric de-
tails while taking up little space. Point clouds are partic-
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ularly amenable to simple geometric operations and are
a standard 3D acquisition format used by range-scanning
devices like LiDARs, the Kinect or iPhone’s face ID feature.

All the aforementioned encodings, while effective in their
target tasks (e.g. rendering or acquisition), are hard to ma-
nipulate directly in their raw form. For example, naı̈vely
interpolating between two cars in any of those representa-
tions does not yield a representation of an “intermediate” car.
Furthermore, these representations are not well suited for
the design of generative models via classical statistical meth-
ods. Using them to edit and design new objects involves the
construction and manipulation of custom, object-specific
parametric models, that link the semantics to the representa-
tion. This process requires significant expertise and effort.

Deep learning brings the promise of a data-driven approach.
In domains where data is plentiful, deep learning tools have
eliminated the need for hand-crafting features and models.
Architectures like AutoEncoders (AEs) (Rumelhart et al.,
1988; Kingma & Welling, 2013) and Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014; Radford et al.;
Che et al., 2016) are successful at learning data represen-
tations and generating realistic samples from complex un-
derlying distributions. However, an issue with GAN-based
generative pipelines is that training them is notoriously hard
and unstable (Salimans et al., 2016). In addition, and per-
haps more importantly, there is no universally accepted
method for the evaluation of generative models.

In this paper, we explore the use of deep architectures for
learning representations and introduce the first deep gen-
erative models for point clouds. Only a handful of deep
architectures tailored to 3D point clouds exist in the lit-
erature, and their focus is elsewhere: they either aim at
classification and segmentation (Qi et al., 2016a; 2017), or
use point clouds only as an intermediate or output repre-
sentation (Kalogerakis et al., 2016; Fan et al., 2016). Our
specific contributions are:

• A new AE architecture for point clouds—inspired by
recent architectures used for classification (Qi et al.,
2016a)—that can learn compact representations with
(i) good reconstruction quality on unseen samples; (ii)
good classification quality via simple methods (SVM),
outperforming the state of the art (Wu et al., 2016);
(iii) the capacity for meaningful semantic operations,
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Figure 1. Reconstructions of unseen shapes from the test split of the input data. The leftmost image of each pair shows the ground truth
shape, the rightmost the shape produced after encoding and decoding using a class-specific AE-EMD.

interpolations and shape-completion.

• The first set of deep generative models for point clouds,
able to synthesize point clouds with (i) measurably
high fidelity to, and (ii) good coverage of both the
training and the held-out data. One workflow that
we propose is to first train an AE to learn a latent
representation and then train a generative model in
that fixed latent space. The GANs trained in the latent
space, dubbed here l-GANs, are easier to train than raw
GANs and achieve superior reconstruction and better
coverage of the data distribution. Multi-class GANs
perform almost on par with class-specific GANs when
trained in the latent space.

• A study of various old and new point cloud metrics,
in terms of their applicability (i) as reconstruction ob-
jectives for learning good representations; (ii) for the
evaluation of generated samples. We find that a com-
monly used metric, Chamfer distance, fails to identify
certain pathological cases.

• Fidelity and coverage metrics for generative models,
based on an optimal matching between two different
collections of point clouds. Our coverage metric can
identify parts of the data distribution that are com-
pletely missed by the generative model, something
that diversity metrics based on cardinality might fail to
capture (Arora & Zhang, 2017).

The rest of this paper is organized as follows: Section 2 out-
lines some background for the basic building blocks of our
work. Section 3 introduces our metrics for the evaluation of
generative point cloud pipelines. Section 4 discusses our ar-
chitectures for latent representation learning and generation.
In Section 5, we perform comprehensive experiments evalu-
ating all of our models both quantitatively and qualitatively.
Further results can be found in the supplementary material.
Last, the code for all our models is publicly available1.

2. Background
In this section we give the necessary background on point
clouds, their metrics and the fundamental building blocks

1http://github.com/optas/latent_3d_points

that we will use in the rest of the paper.

2.1. Point clouds

Definition A point cloud represents a geometric shape—
typically its surface—as a set of 3D locations in a Euclidean
coordinate frame. In 3D, these locations are defined by their
x, y, z coordinates. Thus, the point cloud representation of
an object or scene is a N ×3 matrix, where N is the number
of points, referred to as the point cloud resolution.

Point clouds as an input modality present a unique set of
challenges when building a network architecture. As an ex-
ample, the convolution operator—now ubiquitous in image-
processing pipelines—requires the input signal to be defined
on top of an underlying grid-like structure. Such a structure
is not available in raw point clouds, which renders them
significantly more difficult to encode than images or voxel
grids. Recent classification work on point clouds (PointNet
(Qi et al., 2016a)) bypasses this issue by avoiding convolu-
tions involving groups of points. Another related issue with
point clouds as a representation is that they are permutation
invariant: any reordering of the rows of the point cloud
matrix yields a point cloud that represents the same shape.
This property complicates comparisons between two point
sets which is needed to define a reconstruction loss. It also
creates the need for making the encoded feature permutation
invariant.

Metrics Two permutation-invariant metrics for compar-
ing unordered point sets have been proposed in the lit-
erature (Fan et al., 2016). On the one hand, the Earth
Mover’s distance (EMD) (Rubner et al., 2000) is the so-
lution of a transportation problem which attempts to trans-
form one set to the other. For two equally sized subsets
S1 ⊆ R3, S2 ⊆ R3, their EMD is defined by

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

‖x− φ(x)‖2

where φ is a bijection. As a loss, EMD is differentiable al-
most everywhere. On the other hand, the Chamfer (pseudo)-
distance (CD) measures the squared distance between each
point in one set to its nearest neighbor in the other set:

dCH(S1, S2) =
∑
x∈S1

min
y∈S2

‖x− y‖22 +
∑
y∈S2

min
x∈S1

‖x− y‖22.

http://github.com/optas/latent_3d_points
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CD is differentiable and compared to EMD more efficient
to compute.

2.2. Fundamental building blocks

Autoencoders One of the main deep-learning compo-
nents we use in this paper is the AutoEncoder (AE, inset),

E D x̂x z

which is an architecture
that learns to reproduce
its input. AEs can be
especially useful, when
they contain a narrow bottleneck layer between input and
output. Upon successful training, this layer provides a low-
dimensional representation, or code, for each data point.
The Encoder (E) learns to compress a data point x into its
latent representation, z. The Decoder (D) can then produce
a reconstruction x̂, of x, from its encoded version z.

Generative Adversarial Networks In this paper we
also work with Generative Adversarial Networks (GANs),
which are state-of-the-art generative models. The ba-
sic architecture (inset) is based on a adversarial game
between a generator (G) and a discriminator (D).
The generator aims to synthesize samples that look

G

DATA

D
x

z y

indistinguishable from
real data (drawn from
x ∼ pdata) by passing a
randomly drawn sample
from a simple distribu-
tion z ∼ pz through the
generator function. The
discriminator is tasked with distinguishing synthesized
from real samples.

Gaussian Mixture Model A GMM is a probabilistic
model for representing a population whose distribution is
assumed to be multimodal Gaussian, i.e. comprising of mul-
tiple subpopulations, where each subpopulation follows a
Gaussian distribution. Assuming the number of subpopula-
tions is known, the GMM parameters (means and variances
of the Gaussians) can be learned from random samples, us-
ing the Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977). Once fitted, the GMM can be used to
sample novel synthetic samples.

3. Evaluation Metrics for Generative Models
An important component of this work is the introduction
of measures that enable comparisons between two sets of
points clouds A and B. These metrics are useful for as-
sessing the degree to which point clouds, synthesized or
reconstructed, represent the same population as a held-out
test set. Our three measures are described below.

JSD The Jensen-Shannon Divergence between marginal
distributions defined in the Euclidean 3D space. Assuming
point cloud data that are axis-aligned and a canonical voxel
grid in the ambient space; one can measure the degree to
which point clouds of A tend to occupy similar locations as
those ofB. To that end, we count the number of points lying
within each voxel across all point clouds of A, and corre-
spondingly for B and report the JSD between the obtained
empirical distributions (PA, PB):

JSD(PA ‖ PB) =
1

2
D(PA ‖M) +

1

2
D(PB ‖M)

where M = 1
2 (PA + PB) and D(· ‖ ·) the KL-divergence

between the two distributions (Kullback & Leibler, 1951).

Coverage For each point cloud in A we first find its clos-
est neighbor in B. Coverage is measured as the fraction of
the point clouds in B that were matched to point clouds in
A. Closeness can be computed using either the CD or EMD
point-set distance of Section 2, thus yielding two different
metrics, COV-CD and COV-EMD. A high coverage score
indicates that most of B is roughly represented within A.

Minimum Matching Distance (MMD) Coverage does
not indicate exactly how well the covered examples (point-
clouds) are represented in setA; matched examples need not
be close. We need a way to measure the fidelity of A with
respect to B. To this end, we match every point cloud of
B to the one in A with the minimum distance (MMD) and
report the average of distances in the matching. Either point-
set distance can be used, yielding MMD-CD and MMD-
EMD. Since MMD relies directly on the distances of the
matching, it correlates well with how faithful (with respect
to B) elements of A are.

Discussion The complementary nature of MMD and Cov-
erage directly follows from their definitions. The set of point
clouds A captures all modes of B with good fidelity when
MMD is small and Coverage is large. JSD is fundamentally
different. First, it evaluates the similarity between A and B
in coarser way, via marginal statistics. Second and contrary
to the other two metrics, it requires pre-aligned data, but is
also computationally friendlier. We have found and show
experimentally that it correlates well with the MMD, which
makes it an efficient alternative for e.g. model-selection,
where one needs to perform multiple comparisons between
sets of point clouds.

4. Models for Representation and Generation
In this section we describe the architectures of our neural
networks starting from an autoencoder. Next, we introduce
a GAN that works directly with 3D point cloud data, as
well as a decoupled approach which first trains an AE and



Learning Representations and Generative Models for 3D Point Clouds

Figure 2. Interpolating between different point clouds, using our latent space representation. More examples for furniture and human-form
objects (Bogo et al., 2017) are demonstrated in the supplementary material in Figures 3 and 6, respectively.

then trains a minimal GAN in the AE’s latent space. We
conclude with a similar but even simpler solution that relies
on classical Gaussian mixtures models.

4.1. Learning representations of 3D point clouds

The input to our AE network is a point cloud with 2048
points (2048 × 3 matrix), representing a 3D shape. The
encoder architecture follows the design principle of (Qi
et al., 2016a): 1-D convolutional layers with kernel size 1
and an increasing number of features; this approach encodes
every point independently. A ”symmetric”, permutation-
invariant function (e.g. a max pool) is placed after the con-
volutions to produce a joint representation. In our implemen-
tation we use 5 1-D convolutional layers, each followed by
a ReLU (Nair & Hinton, 2010) and a batch-normalization
layer (Ioffe & Szegedy, 2015). The output of the last con-
volutional layer is passed to a feature-wise maximum to
produce a k-dimensional vector which is the basis for our
latent space. Our decoder transforms the latent vector using
3 fully connected layers, the first two having ReLUs, to
produce a 2048× 3 output. For a permutation invariant ob-
jective, we explore both the EMD approximation and the CD
(Section 2) as our structural losses; this yields two distinct
AE models, referred to as AE-EMD and AE-CD. To regu-
larize the AEs we considered various bottleneck sizes, the
use of drop-out and on-the-fly augmentations by randomly-
rotating the point clouds. The effect of these choices is
showcased in the supplementary material (Section 1) along
with the detailed training/architecture parameters. In the
remainder of the paper, unless otherwise stated, we use an
AE with a 128-dimensional bottleneck layer.

4.2. Generative models for Point Clouds

Raw point cloud GAN (r-GAN) Our first GAN operates
on the raw 2048× 3 point set input. The architecture of the
discriminator is identical to the AE (modulo the filter-sizes
and number of neurons), without any batch-norm and with
leaky ReLUs (Maas et al., 2013) instead or ReLUs. The
output of the last fully connected layer is fed into a sigmoid
neuron. The generator takes as input a Gaussian noise vector
and maps it to a 2048× 3 output via 5 FC-ReLU layers.

Latent-space GAN (l-GAN) For our l-GAN, instead of
operating on the raw point cloud input, we pass the data

through a pre-trained autoencoder, which is trained sep-
arately for each object class with the EMD (or CD) loss
function. Both the generator and the discriminator of the
l-GAN then operate on the bottleneck variables of the AE.
Once the training of GAN is over, we convert a code learned
by the generator into a point cloud by using the AE’s de-
coder. Our chosen architecture for the l-GAN, which was
used throughout our experiments, is significantly simpler
than the one of the r-GAN. Specifically, an MLP generator
of a single hidden layer coupled with an MLP discriminator
of two hidden layers suffice to produce measurably good
and realistic results.

Gaussian mixture model In addition to the l-GANs, we
also fit a family of Gaussian Mixture Models (GMMs) on
the latent spaces learned by our AEs. We experimented
with various numbers of Gaussian components and diago-
nal or full covariance matrices. The GMMs can be turned
into point cloud generators by first sampling the fitted dis-
tribution and then using the AE’s decoder, similarly to the
l-GANs.

5. Experimental Evaluation
In this section we experimentally establish the validity of
our proposed evaluation metrics and highlight the merits
of the AE-representation (Section 5.1) and the generative
models (Section 5.2). In all experiments in the main paper,
we use shapes from the ShapeNet repository (Chang et al.,
2015), that are axis aligned and centered into the unit sphere.
To convert these shapes (meshes) to point clouds we uni-
formly sample their faces in proportion to their area. Unless
otherwise stated, we train models with point clouds from a
single object class and work with train/validation/test sets of
an 85%-5%-10% split. When reporting JSD measurements
we use a 283 regular voxel grid to compute the statistics.

5.1. Representational power of the AE

We begin with demonstrating the merits of the proposed
AE. First we report its generalization ability as measured
using the MMD-CD and MMD-EMD metrics. Next, we
utilize its latent codes to do semantically meaningful opera-
tions. Finally, we use the latent representation to train SVM
classifiers and report the attained classification scores.
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Figure 3. Editing parts in point clouds using simple additive algebra on the AE latent space. Left to right: tuning the appearance of cars
towards the shape of convertibles, adding armrests to chairs, removing handle from mug. Note that the height of chairs with armrests is on
average 13% shorter than of chairs without one; which is reflected also in these results.

Generalization ability. Our AEs are able to reconstruct
unseen shapes with quality almost as good as that of the
shapes that were used for training. In Fig. 1 we use our
AEs to encode unseen samples from the test split (the left
of each pair of images) and then decode them and compare
them visually to the input (the right image). To support
our visuals quantitatively, in Table 1 we report the MMD-
CD and MMD-EMD between reconstructed point clouds
and their corresponding ground-truth in the train and test
datasets of the chair object class. The generalization gap
under our metrics is small; to give a sense of scale for our
reported numbers, note that the MMD is 0.0003 and 0.033
under the CD and EMD respectively between two versions
of the test set that only differ by the randomness introduced
in the point cloud sampling. Similar conclusions regarding
the generalization ability of the AE can be made based on
the reconstruction loss attained for each dataset (train or test)
which is shown in Fig. 1 of the supplementary material.

AE MMD-CD MMD-EMD

loss Train Test Train Test
CD 0.0004 0.0012 0.068 0.075

EMD 0.0005 0.0013 0.042 0.052

Table 1. Generalization of AEs as captured by MMD. Measure-
ments for reconstructions on the training and test splits for an AE
trained with either the CD or EMD loss and data of the chair class;
Note how the MMD favors the AE that was trained with the same
loss as the one used by the MMD to make the matching.

Latent space and linearity. Another argument against
under/over-fitting can be made by showing that the learned
representation is amenable to intuitive and semantically rich
operations. As it is shown in several recent works, well
trained neural-nets learn a latent representation where ad-
ditive linear algebra works to that purpose (Mikolov et al.,
2013; Tasse & Dodgson, 2016). First, in Fig. 2 we show
linear interpolations, in the latent space, between the left and
right-most geometries. Similarly, in Fig. 3 we alter the input
geometry (left) by adding, in latent space, the mean vector
of geometries with a certain characteristic (e.g., convert-
ible cars or cups without handles). Additional operations
(e.g. shape analogies) are also possible, but due to space
limitations we illustrate and provide the details in the sup-
plementary material (Section 2) instead. These results attest
to the smoothness of the learned space but also highlight the

intrinsic capacity of point clouds to be smoothly morphed.

Shape completions. Our proposed AE architecture can
be used to tackle the problem of shape completion with
minimal adaptation. Concretely, instead of feeding and re-
constructing the same point cloud, we can feed the network
with an incomplete version of its expected output. Given
proper training data, our network learns to complete severely
partial point clouds. Due to space limitations we give the
exact details of our approach in the supplementary material
(Section 4) and demonstrate some achieved completions in
Fig. 4 of the main paper.

Classification. Our final evaluation for the AE’s design
and efficacy is done by using the learned latent codes as
features for classification. For this experiment to be mean-
ingful, we train an AE across all different shape categories:
using 57,000 models from 55 categories of man-made ob-
jects. Exclusively for this experiment, we use a bottleneck
of 512 dimensions and apply random rotations to the input
point clouds along the gravity axis. To obtain features for
an input 3D shape, we feed its point cloud into the AE and
extract the bottleneck activation vector. This vector is then
classified by a linear SVM trained on the de-facto 3D classi-
fication benchmark of ModelNet (Wu et al., 2015). Table 2
shows comparative results. Remarkably, in the ModelNet10
dataset, which includes classes (chairs, beds etc.) that are
populous in ShapeNet, our simple AE significantly outper-
forms the state of the art (Wu et al., 2016) which instead
uses several layers of a GAN to derive a 7168-long feature.
In Fig. 8 of the supplementary material we include the confu-
sion matrix of the classifier evaluated on our latent codes on
ModelNet40 – the confusion happens between particularly
similar geometries: a dresser vs. a nightstand or a flower-
pot vs. a plant. The nuanced details that distinguish these
objects may be hard to learn without stronger supervision.

A B C D E ours
EMD

ours
CD

MN10 79.8 79.9 - 80.5 91.0 95.4 95.4
MN40 68.2 75.5 74.4 75.5 83.3 84.0 84.5

Table 2. Classification performance (in %) on ModelNet10/40.
Comparing to A: SPH (Kazhdan et al., 2003), B: LFD (Chen
et al., 2003), C: T-L-Net (Girdhar et al., 2016), D: VConv-DAE
(Sharma et al., 2016), E: 3D-GAN (Wu et al., 2016).
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Figure 4. Point cloud completions of a network trained with partial and complete (input/output) point clouds and the EMD loss. Each
triplet shows the partial input from the test split (left-most), followed by the network’s output (middle) and the complete ground-truth
(right-most).

Figure 5. Synthetic point clouds generated by samples produced with l-GAN (top) and 32-component GMM (bottom), both trained on the
latent space of an AE using the EMD loss.
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Figure 6. Learning behavior of the GANs, in terms of coverage /
fidelity to the ground truth test dataset. Left – the JSD distance
between the ground truth test set and synthetic datasets generated
by the GANs at various epochs of training. Right – EMD based
MMD/Coverage: curve markers indicate epochs 1, 10, 100, 200,
400, 1000, 1500, 2000, with larger symbols denoting later epochs.

5.2. Evaluating the generative models

Having established the quality of our AE, we now demon-
strate the merits and shortcomings of our generative
pipelines and establish one more successful application
for the AE’s learned representation. First, we conduct a
comparison between our generative models followed by a
comparison between our latent GMM generator and the
state-of-the-art 3D voxel generator. Next, we describe how
Chamfer distance can yield misleading results in certain
pathological cases that r-GANs tends to produce. Finally,
we show the benefit of working with a pre-trained latent
representation in multi-class generators.

Comparison of our different generative models For
this study, we train five generators with point clouds of
the chair category. First, we establish two AEs trained
with the CD or EMD loss respectively—referred to as AE-
CD and AE-EMD and train an l-GAN in each latent space
with the non-saturating loss of Goodfellow et al. (2014). In

the space learned by the AE-EMD we train two additional
models: an identical (architecture-wise) l-GAN that utilizes
the Wasserstein objective with gradient-penalty (Gulrajani
et al., 2017) and a family of GMMs with a different number
of means and structures of covariances. We also train an
r-GAN directly on the point cloud data.

Fig. 6 shows the JSD (left) and the MMD and Coverage
(right) between the produced synthetic datasets and the held-
out test data for the GAN-based models, as training proceeds.
Note that the r-GAN struggles to provide good coverage
and good fidelity of the test set; which alludes to the well-
established fact that end-to-end GANs are generally difficult
to train. The l-GAN (AE-CD) performs better in terms of fi-
delity with much less training, but its coverage remains low.
Switching to an EMD-based AE for the representation and
otherwise using the same latent GAN architecture (l-GAN,
AE-EMD), yields a dramatic improvement in coverage and
fidelity. Both l-GANs though suffer from the known issue
of mode collapse: half-way through training, first cover-
age starts dropping with fidelity still at good levels, which
implies that they are overfitting a small subset of the data.
Later on, this is followed by a more catastrophic collapse,
with coverage dropping as low as 0.5%. Switching to a
latent WGAN largely eliminates this collapse, as expected.

In Table 3, we report measurements for all generators based
on the epoch (or underlying GMM parameters) that has min-
imal JSD between the generated samples and the validation
set. To reduce the sampling bias of these measurements
each generator produces a set of synthetic samples that is
3× the population of the comparative set (test or validation)
and repeat the process 3 times and report the averages. The
GMM selected by this process has 32 Gaussians and a full
covariance. As shown in Fig. 10 of the supplementary ma-
terial, GMMs with full covariances perform much better
than those that have diagonal structure and ∼20 Gaussians
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suffice for good results. Last, the first row of Table 3 shows
a baseline model that memorizes a random subset of the
training data of the same size as the other generated sets.

Discussion. The results of Table 3 agree with the trends
shown in Fig. 6 and further verify the superiority of the
latent-based approaches and the relative gains of using an
AE-EMD vs. an AE-CD. Moreover they demonstrate that a
simple GMM can achieve results of comparable quality to a
latent WGAN. Lastly, it is worth noting how the GMM has
achieved similar fidelity as that of the perfect/memorized
chairs and with almost as good coverage. Table 8 of the sup-
plementary shows the same performance-based conclusions
when our metrics are evaluated on the train split.

Model Type JSD MMD-
CD

MMD-
EMD

COV-
EMD

COV-
CD

A MEM 0.017 0.0018 0.063 78.6 79.4
B RAW 0.176 0.0020 0.123 19.0 52.3
C CD 0.048 0.0020 0.079 32.2 59.4
D EMD 0.030 0.0023 0.069 57.1 59.3
E EMD 0.022 0.0019 0.066 66.9 67.6
F GMM 0.020 0.0018 0.065 67.4 68.9

Table 3. Evaluating 5 generators on the test split of the chair dataset
on epochs/models selected via minimal JSD on the validation-split.
We report: A: sampling-based memorization baseline, B: r-GAN,
C: l-GAN (AE-CD), D: l-GAN (AE-EMD) , E: l-WGAN (AE-
EMD), F: GMM (AE-EMD).

Chamfer’s blindness, r-GAN’s hedging. An interesting
observation regarding r-GAN can be made in Table 3. The
JSD and the EMD based metrics strongly favor the latent-
approaches, while the Chamfer-based ones are much less
discriminative. To decipher this discrepancy we did an ex-
tensive qualitative inspection of the r-GAN samples and
found many cases of point clouds that were over-populated
in locations, that on average, most chairs have mass. This
hedging of the r-GAN is particularly hard for Chamfer to
penalize since one of its two summands can become sig-
nificantly small and the other can be only moderately big
by the presence of a few sparsely placed points in the non-
populated locations. Figure 7 highlights this point. For a
ground-truth point cloud we retrieve its nearest neighbor, un-
der the CD, in synthetically generated sets produced by the
r-GAN and the l-GAN and in-image numbers report their
CD and EMD distances from it. Notice how the CD fails
to distinguish the inferiority of the r-GAN samples while
the EMD establishes it. This blindness of the CD metric to
only partially good matches, has the additional side-effect
that the CD-based coverage is consistently bigger than the
EMD-based one.

Comparisons to voxel generators. Generative models
for other 3D modalities, like voxels, have been recently
proposed (Wu et al., 2016). One interesting question is: if

Figure 7. The CD distance is less faithful than EMD to visual
quality of synthetic results; here, it favors r-GAN results, due to
the overly high density of points in the seat part of the synthesized
point sets.

Class Fidelity Coverage

A Ours A Ours
car 0.059 0.041 28.6 65.3
rifle 0.051 0.045 69.0 74.8
sofa 0.077 0.055 52.5 66.6
table 0.103 0.061 18.3 71.1

Table 4. Fidelity (MMD-EMD) and coverage (COV-EMD) com-
parison between A: Wu et al. (2016) and our GMM generative
model on the test split of each class. Note that Wu et al. uses all
models of each class for training contrary to our generators.

point clouds are our target modality, does it make sense to
use voxel generators and then convert to point clouds? This
experiment answers this question in the negative. First, we
make a comparison using a latent GMM which is trained
in conjunction with an AE-EMD. Secondly, we build an
AE which operates with voxels and fit a GMM in the corre-
sponding latent space. In both cases, we use 32 Gaussians
and a full covariance matrix for these GMMs. To use our
point-based metrics, we convert the output of (Wu et al.,
2016) and our voxel-based GMM into meshes which we
sample to generate point clouds. To do this conversion we
use the marching-cubes (Lewiner et al., 2003) algorithm
with an isovalue of 0.1 for the former method (per authors’
suggestions) and 0.5 for our voxel-AE. We also constrain
each mesh to be a single connected component as the vast
majority of ground-truth data are.

Table 4 reveals how our point-based GMM trained with
a class specific AE-EMD fares against (Wu et al., 2016)
on four object classes for which the authors have made
their (also class-specific) models publicly 2 available. Our

2http://github.com/zck119/3dgan-release

http://github.com/zck119/3dgan-release
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Figure 8. Synthetic point clouds produced with l-WGANs trained in the latent space of an AE-EMD trained on a multi-class dataset.

approach is consistently better, with a coverage boost that
can be as large as 4× and an almost 2× improved fidelity
(case of table). This is despite the fact that (Wu et al., 2016)
uses all models of each class for training, contrary to our
generators that never had access to the underlying test split.

Table 5 reveals the performance achieved by pre-training a
voxel-based AE for the chair class. Observe how by working
with a voxel-based latent space, aside of making compar-
isons more direct to (Wu et al., 2016) (e.g. we both convert
output voxels to meshes), we also establish significant gains
in terms of coverage and fidelity.

MMD-CD MMD-EMD COV-CD COV-EMD
A 0.0046 0.091 19.6 22.4
Ours 0.0025 0.072 60.3 64.8

Table 5. MMD and Coverage metrics evaluated on the output of
voxel-based methods at resolution 643, matched against the chair
test set, using the same protocol as in Table3. Comparing: A: “raw”
643-voxel GAN (Wu et al., 2016) and a latent 643-voxel GMM.

Qualitative results In Fig. 5, we show some synthetic re-
sults produced by our l-GANs and the 32-component GMM.
We notice high quality results from either model. The shapes
corresponding to the 32 means of the Gaussian components
can be found in the supplementary material (Fig. 12), as
well as results using the r-GAN (Fig. 4).

Multi-class generators Finally, we compare between
class specific and class agnostic generators. In Table 6 we
report the MMD-CD for l-WGANs trained in the space of
either a dedicated (per-class) AE-EMD or with an AE-EMD
trained with all listed object classes. It turns out that the
l-WGANs produce perform similar results in either space.
Qualitative comparison (Fig. 8) also reveals that by using a
multi-class AE-EMD we do not sacrifice much in terms of
visual quality compared to the dedicated AEs.

6. Related Work
Recently, deep learning architectures for view-based projec-
tions (Su et al., 2015; Wei et al., 2016; Kalogerakis et al.,
2016), volumetric grids (Qi et al., 2016b; Wu et al., 2015;
Hegde & Zadeh, 2016) and graphs (Bruna et al., 2013;
Henaff et al., 2015; Defferrard et al., 2016; Yi et al., 2016)
have appeared in the 3D machine learning literature.

A few recent works ((Wu et al., 2016), (Wang et al., 2016),

airplane car chair sofa table average multi-
class

Tr 0.0004 0.0006 0.0015 0.0011 0.0013 0.0010 0.0011
Te 0.0006 0.0007 0.0019 0.0014 0.0017 0.0013 0.0014

Table 6. MMD-CD measurements for l-WGANs trained on the
latent spaces of dedicated (left 5 columns) and multi-class EMD-
AEs (right column). Also shown is the weighted average of the
per-class values, using the number of train (Tr) resp. test (Te)
examples of each class as weights. All l-WGANs use the model
parameter resulted by 2000 epochs of training.

(Girdhar et al., 2016), (Brock et al., 2016), (Maimaitimin
et al., 2017), (Zhu et al., 2016)) have explored generative and
discriminative representations for geometry. They operate
on different modalities, typically voxel grids or view-based
image projections. To the best of our knowledge, our work
is the first to study such representations for point clouds.

Training Gaussian mixture models (GMM) in the latent
space of an autoencoder is closely related to VAEs (Kingma
& Welling, 2013). One documented issue with VAEs is over-
regularization: the regularization term associated with the
prior, is often so strong that reconstruction quality suffers
(Bowman et al., 2015; Sønderby et al., 2016; Kingma et al.,
2016; Dilokthanakul et al., 2016). The literature contains
methods that start only with a reconstruction penalty and
slowly increase the weight of the regularizer. An alternative
approach is based on adversarial autoencoders (Makhzani
et al., 2015) which use a GAN to implicitly regularize the
latent space of an AE.

7. Conclusion
We presented a novel set of architectures for 3D point cloud
representation learning and generation. Our results show
good generalization to unseen data and our representations
encode meaningful semantics. In particular our generative
models are able to produce faithful samples and cover most
of the ground truth distribution. Interestingly, our exten-
sive experiments show that the best generative model for
point clouds is a GMM trained in the fixed latent space of
an AE. While this might not be a universal result, it sug-
gests that simple classic tools should not be dismissed. A
thorough investigation on the conditions under which sim-
ple latent GMMs are as powerful as adversarially trained
models would be of significant interest.
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