
MISSION: Ultra Large-Scale Feature Selection using Count-Sketches

Amirali Aghazadeh * 1 Ryan Spring * 2 Daniel LeJeune 3 Gautam Dasarathy 3 Anshumali Shrivastava 2

Richard G. Baraniuk 3

Abstract
Feature selection is an important challenge in ma-
chine learning. It plays a crucial role in the ex-
plainability of machine-driven decisions that are
rapidly permeating throughout modern society.
Unfortunately, the explosion in the size and di-
mensionality of real-world datasets poses a se-
vere challenge to standard feature selection algo-
rithms. Today, it is not uncommon for datasets to
have billions of dimensions. At such scale, even
storing the feature vector is impossible, causing
most existing feature selection methods to fail.
Workarounds like feature hashing, a standard ap-
proach to large-scale machine learning, helps with
the computational feasibility, but at the cost of los-
ing the interpretability of features. In this paper,
we present MISSION, a novel framework for ultra
large-scale feature selection that performs stochas-
tic gradient descent while maintaining an efficient
representation of the features in memory using a
Count-Sketch data structure. MISSION retains the
simplicity of feature hashing without sacrificing
the interpretability of the features while using only
O(log2 p) working memory. We demonstrate that
MISSION accurately and efficiently performs fea-
ture selection on real-world, large-scale datasets
with billions of dimensions.

1. Introduction
Feature selection is an important step in extracting inter-
pretable patterns from data. It has numerous applications in
a wide range of areas, including natural-language process-
ing, genomics, and chemistry. Suppose that there are n or-
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dered pairs (Xi, yi)i∈[n], where Xi ∈ Rp are p-dimensional
feature vectors, and yi ∈ R are scalar outputs. Feature selec-
tion aims to identify a small subset of features (coordinates
of the p-dimensional feature vector) that best models the
relationship between the data Xi and the output yi.

A significant complication that is common in modern engi-
neering and scientific applications is that the feature space
p is ultra high-dimensional. For example, Weinberger intro-
duced a dataset with 16 trillion (p = 1013) unique features
(Weinberger et al., 2009). A 16 trillion dimensional fea-
ture vector (of double 8 bytes) requires 128 terabytes of
working memory. Problems from modern genetics are even
more challenging. A particularly useful way to represent
a long DNA sequence is by a feature vector that counts
the occurrence frequency of all length-K sub-strings called
K-mers. This representation plays an important role in
large-scale regression problems in computational biology
(Wood & Salzberg, 2014; Bray et al., 2015; Vervier et al.,
2016; Aghazadeh et al., 2016). Typically, K is chosen to
be larger than 12, and these strings are composed of all
possible combinations of 16 characters ({A,T,C,G} in ad-
dition to 12 wild card characters). In this case, the feature
vector dimension is p = 1612 = 248. A vector of size 248

single-precision variables requires approximately 1 petabyte
of space!

For ultra large-scale feature selection problems, it is impos-
sible to run standard explicit regularization-based methods
like `1-regularization (Shalev-Shwartz & Tewari, 2011; Tan
et al., 2014) or to select hyperparameters with a constrained
amount of memory (Langford et al., 2009). This is not sur-
prising, because these methods are not scalable in terms
of memory and computational time (Duchi et al., 2008).
Another important operational concern is that most datasets
represent features in the form of strings or tokens. For exam-
ple, with DNA or n-gram datasets, features are represented
by strings of characters. Even in click-through data (McMa-
han et al., 2013), features are indexed by textual tokens.
Observe that mapping each of these strings to a vector com-
ponent requires maintaining a dictionary whose size equals
the length of the feature vector. As a result, one does not
even have the capability to create a numerical exact vector
representation of the features.
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Typically, when faced with such large machine learning
tasks, the practitioner chooses to do feature hashing (Wein-
berger et al., 2009). Consider a 3-gram string “abc”. With
feature hashing, one uses a lossy, random hash function
h : strings → {0, 1, 2, . . . , R} to map “abc” to a feature
number h(abc) in the range {0, 1, 2, . . . , R}. This is ex-
tremely convenient because it enables one to avoid creating
a large look-up dictionary. Furthermore, this serves as a
dimensionality reduction technique, reducing the problem
dimension to R. Unfortunately, this convenience comes at a
cost. Given that useful dimensionality reduction is strictly
surjective (i.e., R < p), we lose the identity of the original
features. This is not a viable option if one cares about both
feature selection and interpretability.

One reason to remain hopeful is that in such high-
dimensional problems, the data vectors Xi are extremely
sparse (Wood & Salzberg, 2014). For instance, the DNA
sequence of an organism contains only a small fraction (at
most the length of the DNA sequence) of p = 1612 features.
The situation is similar whether we are predicting click-
through rates of users on a website or if we seek n-gram
representations of text documents (Mikolov et al., 2013). In
practice, ultra high-dimensional data is almost always ultra-
sparse. Thus, loading a sparse data vector into memory is
usually not a concern. The problem arises in the intermedi-
ate stages of traditional methods, where dense iterates need
to be tracked in the main memory. One popular approach is
to use greedy thresholding methods (Maleki, 2009; Mikolov
et al., 2013; Jain et al., 2014; 2017) combined with stochas-
tic gradient descent (SGD) to prevent the feature vector β
from becoming too dense and blowing up in memory. In
these methods, the intermediate iterates are regularized at
each step, and a full gradient update is never stored nor
computed (since this is memory and computation intensive).
However, it is well known that greedy thresholding can be
myopic and can result in poor convergence. We clearly ob-
serve this phenomenon in our evaluations. See Section 5 for
details.

In this paper we tackle the ultra large-scale feature selec-
tion problem, i.e., feature selection with billions or more
dimensions. We propose a novel feature selection algorithm
called MISSION, a Memory-efficient, Iterative Sketching al-
gorithm for Sparse feature selectION. MISSION, that takes
on all the concerns outlined above. MISSION matches the
accuracy performance of existing large-scale machine learn-
ing frameworks like Vowpal Wabbit (VW) (Agarwal et al.,
2014) on real-world datasets. However, in contrast to VW,
MISSION can perform feature selection exceptionally well.
Furthermore, MISSION significantly surpasses the perfor-
mance of classical algorithms such as Iterative Hard Thresh-
olding (IHT), which is currently the popular feature selec-
tion alternative concerning the problem sizes we consider.

Figure 1. Schematic of the MISSION algorithm. MISSION itera-
tively adds the stochastic gradient term gi ∈ Rp into a Count-
Sketch and queries back the top-k heavy hitters from the Count-
Sketch. The Count-Sketch requires O(log2p) memory to store a
sketch of the O(p)-dimensional feature vector β.

Contributions: In this work, we show that the two-decade
old Count-Sketch data structure (Charikar et al., 2002) from
the streaming algorithms literature is ideally suited for ul-
tra large-scale feature selection. The Count-Sketch data
structure enables us to retain the convenience of feature
hashing along with the identity of important features. More-
over, Count-Sketch can accumulate gradients updates over
several iterations because of linear aggregation. This aggre-
gation eliminates the problem of myopia associated with
existing greedy thresholding approaches. The aggregation
phenomenon also extends to recent parallel works which em-
ploy count sketches in streaming domain (Tai et al., 2018).

In particular, we force the parameters (or feature vector) to
reside in a memory-efficient Count-Sketch data structure.
SGD gradient updates are easily applied to the Count-Sketch.
Instead of moving in the gradient direction and then greedily
projecting into a subspace defined by the regularizer (e.g.,
in the case of LASSO-based methods), MISSION adds the
gradient directly into the Count-Sketch data structure, where
it aggregates with all the past updates. See Fig. 1 for the
schematic. At any point of time in the iteration, this data
structure stores a compressed, randomized, and noisy sketch
of the sum of all the gradient updates, while preserving
the information of the heavy-hitters—the coordinates that
accumulate the highest amount of energy. In order to find an
estimate of the feature vector, MISSION queries the Count-
Sketch. The Count-Sketch is used in conjunction with a
top-k heap, which explicitly stores the features with the
heaviest weights. Only the features in the top-k heap are
considered active, and the rest are set to zero. However,
a representation for every weight is stored, in compressed
form, inside the Count-Sketch.

We demonstrate that MISSION surpasses the sparse recov-
ery performance of classical algorithms such as Iterative
Hard Thresholding (IHT), which is the only other method
we could run at our scale. In addition, experiments suggest
that the memory requirements of MISSION scale well with
the dimensionality p of the problem. MISSION matches the
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accuracy of existing large-scale machine learning frame-
works like Vowpal Wabbit (VW) on real-world, large-scale
datasets. Moreover, MISSION achieves comparable or even
better accuracy while using significantly fewer features.

2. Review: Streaming Setting and the
Count-Sketch Algorithm

In the streaming setting, we are given a high-dimensional
vector β ∈ Rp that is too costly to store in memory. We see
only a very long sequence of updates over time. The only
information available at time t is of the form (i,∆), which
means that coordinate i is incremented (or decremented) by
the amount ∆. We are given a limited amount of storage, on
the order of O(log p), which means that we can never store
the entire sequence of updates. Sketching algorithms aim
to estimate the value of current item i, after any number of
updates using only O(log p) memory. Accurate estimation
of heavy coordinates is desirable.

Count-Sketch is a popular algorithm for estimation in the
streaming setting. Count-Sketch keeps a matrix of counters
(or bins) S of size d×w ∼ O(log p), where d andw are cho-
sen based on the accuracy guarantees. The algorithm uses
d random hash functions hj for j ∈ {1, 2, ..., d} to map
the vector’s components to bins w, hj : {1, 2, ..., p} →
{1, 2, ..., w} Every component i of the vector is hashed
to d different bins. In particular, for any row j of sketch
S, component i is hashed into bin S(j, hj(i)). In addition
to hj , Count-Sketch uses d random sign functions to map
the components of the vectors randomly to {+1, −1}, i.e.,
si : {1, 2, ..., D} → {+1,−1}. An illustration of this
sketch data structure with three hash functions in shown
inside Fig. 1.

The Count-Sketch supports two operations: UPDATE(item i,
increment ∆) and QUERY(item i). The UPDATE operation
updates the sketch with any observed increment. More for-
mally, for an increment ∆ to an item i, the sketch is updated
by adding sj(i)∆ to the cell S(j, hj(i)) ∀j ∈ {1, 2, ..., d}.
The QUERY operation returns an estimate for component i,
the median of all the d different associated counters.

It has been shown that, for any sequence of streaming up-
dates (addition or subtraction) to the vector β, Count-Sketch
provides an unbiased estimate of any component i, β̂i such
that the following holds with high probability,

βi − ε||β||2 ≤ β̂i ≤ βi + ε||β||2. (1)

It can be shown that the Eq. (1) is sufficient to achieve
near-optimal guarantees for sparse recovery with the given
space budget. Furthermore, these guarantees also meet
the best compressed sensing lower bounds in terms of the
number of counters (or measurements) needed for sparse
recovery (Indyk, 2013).

3. Problem Formulation
Consider the feature selection problem in the ultra high-
dimensional setting: We are given the dataset (Xi, yi) for
i ∈ [n] = {1, 2, . . . , n}, where Xi ∈ Rp and yi ∈ R denote
the ith measured and response variables. We are interested
in finding the k-sparse (k non-zero entries) feature vector
(or regressor) β ∈ Rp from the optimization problem

min
‖β‖0=k

‖y −Xβ‖2, (2)

where X = {X1,X2, . . . ,Xn} and y = [y1, y1, . . . , yn]
denote the data matrix and response vector and the `0-norm
‖β‖0 counts the number of non-zero entries in β.

We are interested in solving the feature selection problem
for ultra high-dimensional datasets where the number of
features p is so large that a dense vector (or matrix) of size
p cannot be stored explicitly in memory.

3.1. Hard Thresholding Algorithms

Among the menagerie of feature selection algorithms, the
class of hard thresholding algorithms have the smallest mem-
ory footprint: Hard thresholding algorithms retain only the
top-k values and indices of the entire feature vector us-
ing O(klog(p)) memory (Jain et al., 2014; Blumensath &
Davies, 2009). The iterative hard thresholding (IHT) algo-
rithm generates the following iterates for the ith variable in
an stochastic gradient descent (SGD) framework

βt+1 ← Hk(βt − 2λ
(
yi −Xiβ

t
)T

Xi) (3)

The sparsity of the feature vector βt, enforced by the hard
thresholding operator Hk, alleviates the need to store a
vector of size O(p) in the memory in order to keep track of
the changes of the features over the iterates.

Unfortunately, because it only retains the top-k elements
of β, the hard thresholding procedure greedily discards the
information of the non top-k coordinates from the previous
iteration. In particular, it clips off coordinates that might add
to the support set in later iterations. This drastically affects
the performance of hard thresholding algorithms in real-
world scenarios where the design matrix X is not random,
normalized, or well-conditioned. In this regime, the gradient
terms corresponding to the true support typically arrive in
lagging order and are prematurely clipped in early iterations
by Hk. The effect of these lagging gradients is present even
in the SGD framework, because the gradients are quite noisy,
and only a small fraction of the energy of the true gradient is
expressed in each iteration. It is not difficult to see that these
small energy, high noise signals can easily cause the greedy
hard thresholding operator to make sub-optimal or incorrect
decisions. Ideally, we want to accumulate the gradients to
get enough confidence in signal and to average out any noise.
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Algorithm 1 MISSION

Initialize: β0 = 0, S (Count-Sketch), λ (Learning Rate)
while not stopping criteria do

Find the gradient update gi = λ
(

2 (yi −Xiβ
t)

T
Xi

)
Add the gradient update to the sketch gi → S
Get the top-k heavy-hitters from the sketch βt+1 ← S

end while
Return: The top-k heavy-hitters from the Count-Sketch

This aforementioned problem is in fact symptomatic of all
other thresholding variants including the Iterative algorithm
with inversion (ITI) (Maleki, 2009) and the Partial hard
thresholding (PHT) algorithm (Jain et al., 2017).

4. The MISSION Algorithm
We now describe the MISSION algorithm. First, we initialize
the Count-Sketch S and the feature vector βt=0 with zeros
entries. The Count-Sketch hashes a p-dimensional vector
into O(log2p) buckets (Recall Fig. 1). We discuss this
particular choice for the size of the Count-Sketch and the
memory-accuracy trade offs of MISSION in Sections 5.3
and 6.1.

At iteration t, MISSION selects a random row Xi

from the data matrix X and computes the stochas-
tic gradient update term using the learning rate λ via
gi = 2λ (yi −Xiβ

t)
T
Xi i.e. the usual gradient update

that minimizes the unconstrained quadratic loss ‖y−Xβ‖22.
The data vector Xi and the corresponding stochastic gra-
dient term are sparse. We then add the non-zero entries
of the stochastic gradient term {gij : ∀j gij > 0} to the
Count-Sketch S. Next, MISSION queries the top-k values
of the sketch to form βt+1. We repeat the same procedure
until convergence. MISSION returns the top-k values of
the Count-Sketch as the final output of the algorithm. The
MISSION algorithm is detailed in Alg. 1. MISSION easily
extends to other loss functions such as the hinge loss and
logistic loss.

MISSION is Different from Greedy Thresholding: De-
note the gradient vector update at any iteration t as ut. It is
not difficult to see that starting with an all-zero vector β0, at
any point of time t, the Count-Sketch state is equivalent to
the sketch of the vector

∑t
i=1 ut. In other words, the sketch

aggregates the compressed aggregated vector. Thus, even
if an individual SGD update is noisy and contains small
signal energy, thresholding the Count-Sketch is based on
the average update over time. This averaging produces a
robust signal that cancels out the noise. We can therefore
expect MISSION to be superior over thresholding.

In the supplementary materials, we present initial theoretical
results on the convergence of MISSION. Our results show

that, under certain assumptions, the full-gradient-descent
version of MISSION converges geometrically to the true
parameter β ∈ Rp up to some additive constants. The
exploration of these assumptions and the extension to the
SGD version of MISSION are exciting avenues for future
work.

Feature Selection with the Ease of Feature Hashing: As
argued earlier, the features are usually represented with
strings, and we do not have the capability to map each string
to a unique index in a vector without spendingO(p) memory.
Feature hashing is convenient, because we can directly ac-
cess every feature using hashes. We can use any lossy hash
function for strings. MISSION only needs a few independent
hash functions (3 in our Count-Sketch implementation) to
access any component. The top-k estimation is done effi-
ciently using a heap data structure of size k. Overall, we
only access the data using efficient hash functions, which
can be easily implemented in large-scale systems.

5. Simulations
We designed a set of simulations to evaluate MISSION in
a controlled setting. In contrast to the ultra large-scale,
real-world experiments of Section 6, in the section the data
matrices are drawn from a random Gaussian distribution
and the ground truth features are known.

5.1. Phase Transition

We first demonstrate the advantage of MISSION over greedy
thresholding in feature selection. For this experiment, we
modify MISSION slightly to find the root of the algorithmic
advantage of MISSION: we replace the Count-Sketch with
an “identity” sketch, or a sketch with a single hash func-
tion, h(i) = i. In doing so, we eliminate the complexity
that Count-Sketch adds to the algorithm, so that the main
difference between MISSION and IHT is that MISSION ac-
cumulates the gradients. To improve stability, we scale the
non top-k elements of S by a factor γ ∈ (0, 1) that begins
very near 1 and is gradually decreased until the algorithm
converges. It is also possible to do this scaling in the Count-
Sketch version of MISSION efficiently by exploiting the
linearity of the sketch.

Fig. 2 illustrates the empirical phase transition curves for
sparse recovery using MISSION and the hard thresholding
algorithms. The phase transition curves show the points
where the algorithm successfully recovers the features in
> 50% of the random trails. MISSION shows a better phase
transition curve compared to IHT by a considerable gap.
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Table 1. Comparison of MISSION against hard thresholding algorithms in feature selection under adversarial effects. We first report the
percentage of instances in which the algorithms accurately find the solution (ACC) with no attenuation (α = 1) over 100 random trials.
We then report the mean of the maximum level of attenuation α applied to the columns of design X before the algorithms fail to recover
the support of β (over the trials that all algorithms can find the solution with α = 1).

(n, k) MISSION IHT ITI PHT
ACCα=1 α ACCα=1 α ACCα=1 α ACCα=1 α

(100, 2) 100% 2.68 ± 0.37 100% 1.49 ± 0.33 91% 1.33 ± 0.23 64% 2.42 ± 0.87
(100, 3) 100% 2.52 ± 0.36 92% 1.36 ± 0.46 70% 1.15 ± 0.20 42% 2.05 ± 0.93
(100, 4) 100% 2.53 ± 0.23 72% 1.92 ± 0.91 37% 1.03 ± 0.09 39% 2.13 ± 1.07
(200, 5) 100% 4.07 ± 0.36 99% 2.34 ± 1.12 37% 1.15 ± 0.22 83% 2.75 ± 1.30
(200, 6) 100% 4.17 ± 0.24 97% 2.64 ± 1.14 23% 1.11 ± 0.12 73% 2.26 ± 1.33
(200, 7) 100% 4.07 ± 0.11 83% 1.64 ± 1.01 14% 1.11 ± 0.12 75% 3.39 ± 1.36
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Figure 2. Empirical phase transition in recovering a binary feature
vector β in p = 1000-dimensional space with a Gaussian data
matrix X. We illustrate the empirical 50% probability of success
curves averaged over T = 20 trials. MISSION outperforms the
thresholding algorithms by a large margin.

5.2. Lagging Gradient: Superiority of Count-Sketches
over Greedy Thresholding

A major problem with the IHT algorithm, especially in large-
scale SGD settings, is with thresholding the coordinates with
small gradients in the earlier iterations. IHT misses these
coordinates, since they become prominent only after the
gradients accumulate with the progression of the algorithm.
The problem is amplified with noisy gradient updates such
as SGD, which is unavoidable for large datasets.

This phenomenon occurs frequently in sparse recovery prob-
lems. For example, when the coordinates that correspond to
the columns of the data matrix with smaller energy lag in
the iterations of gradient descent algorithm, IHT thresholds
these lagging-gradient coordinates in first few iterations,
and they never show up again in the support. In contrast,
MISSION retains a footprint of the gradients of all the pre-
vious iterations in the Count-Sketch. When the total sum
of the gradient of a coordinate becomes prominent, the co-
ordinate joins the support after querying the top-k heavy
hitters from the Count-Sketch. We illustrate this phenom-
ena in sparse recovery using synthetic experiments. We re-
cover sparse vector β from its random linear measurements
y = Xβ, where the energy of X is imbalanced across its
columns. In this case, the gradients corresponding to the

columns (coordinates) with smaller energy typically lag and
are thresholded by IHT.

To this end, we first construct a random Gaussian data matrix
X ∈ R900×1000, pick a sparse vector β that is supported on
an index set I , and then attenuate the energy of the columns
of X supported by the indices in I by an attenuation fac-
tor of α = {1, 1.25, 1.5, 1.75, 2, . . . , 5}. Note that α = 1
implies that no attenuation is applied to the matrix. In Ta-
ble 1, we report the maximum attenuation level applied to a
column of data matrix X before the algorithms fail to fully
recover the support set I from y = βX. We observe that
MISSION is consistently and up to three times more robust
against adversarial attenuation of the columns of the data
matrix in various design settings.

The robustness of MISSION to the attenuation of the
columns of X in sparse recovery task suggests that the
Count-Sketch data structure enables gradient-based opti-
mization methods such as IHT to store a footprint (or sketch)
of all the gradients from the previous iterations and deliver
them back when they become prominent.

5.3. Logarithmic Scaling of the Count-Sketch Memory
in MISSION

In this section we demonstrate that the memory require-
ments of MISSION grows polylogarithmically in the dimen-
sion of the problem p. We conduct a feature selection ex-
periment with a data matrix X ∈ R100×p whose entries are
drawn from i.i.d. random Gaussian distributions with zero
mean and unit variance. We run MISSION and IHT to re-
cover the feature vector β from the output vector y = Xβ,
where the feature vector β is a k = 5-sparse vector with
random support. We repeat the same experiment 1000 times
with different realizations for the sparse feature vector β
and report the results in Fig. 3. The left plot illustrates the
feature selection accuracy of the algorithms as the dimen-
sion of the problem p grows. The right plot illustrates the
minimum memory requirements of the algorithms to recover
the features with 100% accuracy.
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Figure 3. Feature selection accuracy and memory requirements of
MISSION and Hard Thresholding. The memory requirements of
MISSION grows polylogarithmcially ∼ O(log2(p)) (dotted line
illustrates quadratic fit) in p. With only a logarithmic factor more
memory, MISSION has significant advantage over Hard Threshold-
ing in terms of feature selection accuracy.

The size of the Count-Sketch in MISSION scales only poly-
logarithmically with the dimension of the problem. This is
surprising since the aggregate gradient in a classical SGD
framework becomes typically dense in early iterations and
thus requires a memory of order O(p). MISSION, however,
stores only the essential information of the features in the
sketch using a poly-logarithmic sketch size. Note that IHT
sacrifices accuracy to achieve a small memory footprint. At
every iteration IHT eliminates all the information except for
the top-k features. We observe that, using only a logarithmic
factor more memory, MISSION has a significant advantage
over IHT in recovering the ground truth features.

6. Experiments
All experiments were performed on a single machine, 2x
Intel Xeon E5-2660 v4 processors (28 cores / 56 threads)
with 512 GB of memory. The code1 for training and running
our randomized-hashing approach is available online. We
designed the experiments to answer these questions:

1. Does MISSION outperform IHT in terms of classifica-
tion accuracy? In particular, how much does myopic
thresholding affect IHT in practice?

2. How well does MISSION match the speed and accuracy
of feature hashing (FH)?

3. How does changing the number of top-k features affect
the accuracy and behaviour of the different methods?

4. What is the effect of changing the memory size of
the Count-Sketch data structure on the classification
accuracy of MISSION in read-world datasets?

5. Does MISSION scale well in comparison to the differ-
ent methods on the ultra large-scale datasets (> 350
GB in size)?

1https://github.com/rdspring1/MISSION

6.1. Large-scale Feature Extraction

Datasets: We used four datasets in the experiments: 1)
KDD2012, 2) RCV1, 3) Webspam–Trigram, 4) DNA2. The
statistics of these datasets are summarized in Table 2.

Table 2. Feature extraction dataset statistics.

Dataset Dim (p) Train Size (n) Test Size
KDD 2012 54,686,452 119,705,032 29,934,073
RCV1 47,236 20,242 677,399
Webspam 16,609,143 280,000 70,000
DNA (Tiny) 14,890,408 1,590,000 207,468

The DNA metagenomics dataset is a multi-class classifica-
tion task where the model must classify 15 different bacteria
species using DNA K-mers. We sub-sampled the first 15
species from the original dataset containing 193 species. We
use all of the species in the DNA Metagenomics dataset for
the large-scale experiments (See Section 6.2). Following
standard procedures, each bacterial species is associated
with a reference genome. Fragments are sampled from the
reference genome until each nucleotide is covered c times
on average. The fragments are then divided into K-mer
sub-strings. We used fragments of length 200 and K-mers
of length 12. Each model was trained and tested with mean
coverage c = {0.1, 1} respectively. For more details, see
(Vervier et al., 2016). The feature extraction task is to find
the DNA K-mers that best represent each bacteria class.

We implemented the following approaches to compare and
contrast against our approach: For all methods, we used the
logistic loss for binary classification and the cross-entropy
loss for multi-class classification.

MISSION: As described in Section 4.
Iterative Hard Thresholding (IHT): An algorithm where,
after each gradient update, a hard threshold is applied to the
features. Only the top-k features are kept active, while the
rest are set to zero. Since the features are strings or integers,
we used a sorted heap to store and manipulate the top-k ele-
ments. This was the only algorithm we could successfully
run over the large datasets on our single machine.
Batch IHT: A modification to IHT that uses mini-batches
such that the gradient sparsity is the same as the number
of elements in the count-sketch. We accumulate features
and then sort and prune to find the top-k features. This
accumulate, sort, prune process is repeated several times
during training. Note: This setup requires significantly
more memory than MISSION, because it explicitly stores
the feature strings. The memory cost of maintaining a set
of string features can be orders of magnitude more than the
flat array used by MISSION. See Bloom Filters (Broder &
Mitzenmacher, 2004) and related literature. This setup is
not scalable to large-scale datasets.

2http://projects.cbio.mines-paristech.fr/
largescalemetagenomics/
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MISSION: Feature Selection via Sketching

Feature Hashing (FH): A standard machine learning algo-
rithm for dimensionality reduction that reduces the memory
cost associated with large datasets. FH is not a feature se-
lection algorithm and cannot identify important features.
(Agarwal et al., 2014)

Experimental Settings: The MISSION and IHT algorithms
searched for the same number of top-k features. To ensure
fair comparisons, the size of the Count-Sketch and the fea-
ture vector allocated for the FH model were equal. The
size of the MISSION and FH models were set to the near-
est power of 2 greater than the number of features in the
dataset. For all the experiments, the Count-Sketch data
structure used 3 hash functions, and the model weights were
divided equally among the hash arrays. For example, with
the (Tiny) DNA metagenomics dataset, we allocated 24 bits
or 16,777,216 weights for the FH model. Given 3 hash
functions and 15 classes, roughly 372,827 elements were
allocated for each class in the Count-Sketch.

MISSION, IHT, FH Comparison: Fig. 4 shows that MIS-
SION surpasses IHT in classification accuracy in all four
datasets, regardless of the number of features. In addition,
MISSION closely matches FH, which is significant because
FH is allowed to model a much larger set of features than
MISSION or IHT. MISSION is 2–4× slower than FH, which
is expected given that MISSION has the extra overhead of
using a heap to track the top-k features.

MISSION’s accuracy rapidly rises with respect to the num-
ber of top-k features, while IHT’s accuracy plateaus and
then grows slowly to match MISSION. This observation
corroborates our insight that the greedy nature of IHT hurts
performance. When the number of top-k elements is small,
the capacity of IHT is limited, so it picks the first set of
features that provides good performance, ignoring the rest.
On the other hand, MISSION decouples the memory from
the top-k ranking, which is based on the aggregated gradi-
ents in the compressed sketch. By the linear property of the
count-sketch, this ensures that the heavier entries occur in
the top-k features with high probability.

Count-Sketch Memory Trade-Off: Fig. 5 shows how
MISSION’s accuracy degrades gracefully, as the size of the
Count-Sketch decreases. In this experiment, MISSION only
used the top 500K features for classifying the Tiny DNA
metagenomics dataset. When the top-k to Count-Sketch
ratio is 1, then 500K weights were allocated for each class
and hash array in the Count-Sketch data structure. The
Batch IHT baseline was given 8,388,608 memory elements
per class, enabling it to accumulate a significant number of
features before thresholding to find the top-k features. This
experiment shows that MISSION immediately outperforms
IHT and Batch IHT, once the top-k to Count-Sketch ratio is
1:1. Thus, MISSION provides a unique memory-accuracy
knob at any given value of top-k.

6.2. Ultra Large-Scale Feature Selection

Here we demonstrate that MISSION can extract features
from three large-scale datasets: Criteo 1TB, Splice-Site, and
DNA Metagenomics.

Table 3. Ultra Large-Scale dataset statistics
Dataset Dim (p) Train Size (n) Test Size
Criteo 1M 4,195,197,692 178,274,637
Splice-Site 11.7M 50,000,000 4,627,840
DNA 17.3M 13,792,260 354,285

Criteo 1TB: The Criteo 1TB3 dataset represents 24 days of
click-through logs—23 days (training) + 1 day (testing). The
task for this dataset is click-through rate (CTR) prediction—
How likely is a user to click an ad? The dataset contains over
4 billion (training) and 175 million (testing) examples (2.5
TB of disk space). The performance metric is Area Under
the ROC Curve (AUC). The VW baseline4 achieved 0.7570
AUC score. MISSION and IHT scored close to the VW
baseline with 0.751 AUC using only the top 250K features.

Table 4. Criteo 1TB. Top-K Features: 250K
Metric MISSION IHT VW
AUC 0.751 0.752 0.757

Splice-Site: The task for this dataset is to distinguish be-
tween true and fake splice sites using the local context
around the splice site in-question. The dataset is highly
skewed (few positive, many negative values), and so the
performance metric is average precision (AP). Average pre-
cision is the precision score averaged over all recall scores
ranging from 0 to 1. The dataset contains over 50 million
(training) and 4.6 million (testing) examples (3.2 TB of disk
space). All the methods were trained for a single epoch
with a learning rate of 0.5. MISSION, Batch IHT, and SGD
IHT tracked the top 16,384 features. FH, MISSION, and
Batch IHT used 786,432 extra memory elements. MISSION
significantly outperforms Batch IHT and SGD IHT by 2.3%.
Also, unlike in Fig. 5, the extra memory did not help Batch
IHT, since it performed the same as SGD IHT. MISSION
(17.5 hours) is 15% slower than FH (15 hours) in wall-clock
running time.

Table 5. Splice-Site: Top-k features: 16,384. Memory elements:
786,432. MISSION outperforms Batch IHT and SGD IHT.

Metric FH MISSION Batch IHT SGD IHT
AP 0.522 0.510 0.498 0.498

DNA Metagenomics: This experiment evaluates MIS-
SION’s performance on a medium-sized metagenomics
dataset. The parameters from the Tiny (15 species) dataset
in Section 6.1 are shared with this experiment, except the

3https://www.kaggle.com/c/criteo-display-ad-challenge
4https://github.com/rambler-digital-solutions/

criteo-1tb-benchmark

https://www.kaggle.com/c/criteo-display-ad-challenge
https://github.com/rambler-digital-solutions/criteo-1tb-benchmark
https://github.com/rambler-digital-solutions/criteo-1tb-benchmark
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number of species is increased to 193. The size of a sample
batch with mean coverage c = 1 increased from 7 GB (Tiny)
to 68 GB (Medium). Each round (mean coverage c = 0.25)
contains 3.45 million examples and about 16.93 million
unique non-zero features (p). MISSION and IHT tracked
the top 2.5 million features per class. The FH baseline used
231 weights, about 11.1 million weights per class, and we
allocated the same amount of space for the Count-Sketch.
Each model was trained on a dataset with coverage c = 5.

Fig. 6 shows the evolution of classification accuracy over
time for MISSION, IHT, and the FH baseline. After 5 epochs,
MISSION closely matches the FH baseline. Note: MISSION
converges faster than IHT such that MISSION is 1–4 rounds
ahead of IHT, with the gap gradually increasing over time.
On average, the running time of MISSION is 1–2× slower
than IHT. However, this experiment demonstrates that since
MISSION converges faster, it actually needs less time to
reach a certain accuracy level. Therefore, MISSION is effec-
tively faster and more accurate than IHT.

7. Implementation Details and Discussion
Scalability and Parallelism: IHT finds the top-k features
after each gradient update, which requires sorting the fea-
tures based on their weights before thresholding. The speed
of the sorting process is improved by using a heap data
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Table 6. Ultra Large-Scale Feature Selection for the DNA Metage-
nomics (Medium) Dataset (193 species), Mean Coverage c = 5.

structure, but it is still costly per update. MISSION also uses
a heap to store its top-k elements, but it achieves the same
accuracy as IHT with far fewer top-k elements because of
the Count-Sketch. (Recall Section 4)

Another suggested improvement for the top-k heap is to
use lazy updates. Updating the weight of a feature does not
change its position in the heap very often, but still requires
an O(log n) operation. With lazy updates, the heap is up-
dated only if it the change is significant. |xt − x0| ≥ ε, i.e.
the new weight at time t exceeds the original value by some
threshold. This tweak significantly reduces the number of
heap updates at the cost of slightly distorting the heap.

8. Conclusion and Future Work
In this paper, we presented MISSION, a new framework
for ultra large-scale feature selection which maintains an
efficient, approximate representation for the features using a
Count-Sketch data structure. MISSION retains the simplicity
of feature hashing without sacrificing the interpretability of
the features.

Going forward, we are interested in leveraging our MISSION
framework to explore pairwise or higher-order interaction
features. Interaction features are important for scientific
discovery, e.g., in genomics (Basu et al., 2018), however,
the exponential dimensionality growth of interactions has
hindered further progress. We believe MISSION will enable
more scientific discoveries from big data in future.
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Vervier, K., Mahé, P., Tournoud, M., Veyrieras, J., and Vert,
J. Large-scale machine learning for metagenomics se-
quence classification. Bioinformatics, 32(7):1023–1032,
2016.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., and
Attenberg, J. Feature hashing for large scale multitask
learning. In Proc. of the 26th Annual Intl. Conf. on Ma-
chine Learning, pp. 1113–1120. ACM, 2009.

Wood, D. E. and Salzberg, S. L. Kraken: Ultrafast metage-
nomic sequence classification using exact alignments.
Genome Biology, 15(3):1, 2014.


