Minimal I-MAP MCMC

Algorithm 2 Update Minimal I-MAP (UMI)
Input: Current permutation 7;, previous permutation
m;—1, previous minimal I-MAP G, ,, significance level
o, data D
Output: G,
k = min index of adjacent transposition
if & = 1 (first and last element swapped) then
Compute G, from O,,(D, at)
else
Gr,=Gr,_,
Reverse edge from X, (;11) to X,
an edge exists
fors=1tok —1do
forj:kt0k+1d0
S ={x(1),-- ,7(j — D} \ {n(s)}
Letz = O(])l (D @)
Update edge from X (,) to Xr(;) to zin Gy,
end for
end for
end if

) in G, if such

A. CI Testing for Gaussian Data

In the case of multivariate Gaussian data, one may use the
Fisher z-transform (Fisher, 1915) to perform CI testing. The
Fisher z-transform is given by

2071 5) = 1log(1 + pijis)
2 S log(T— puyis)|

where p; ;|5 is the empirical partial correlation between X;
and X; given Xg. To conduct a two-sided hypothesis test
at significance level o, one may test if

Va—IS[=38126,5 | §)| < o711

where ®~1 is the inverse CDF of N (0, 1).
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B. Update Algorithm

Algorithm 2 specifies the update procedure used in Algo-
rithm 1 to reduce the number of CI tests needed.

C. Discussion of the Assumptions

Based on the discussion of Kalisch & Buhlmann (2007),
Assumption 3.1(b) is not such a strong assumption and
seems more of a regularity condition needed to prove the
bounds. Assumption 3.1(d) has an intuitive interpretation;
it says that the best prediction of GG based on the data and
order is captured by the constructed network. Conditioned
on the order, the inference problem is not hard; i.e., we
just need to recover the skeleton. Since we can recover the
skeleton via the empirical CI relations, CAT‘W is indeed the

best prediction of the network given the data and order in
many cases, which would imply that G can reasonably be
assumed to be a sufficient statistic. Assumption 3.1(e) is a
quite weak assumption; it says that the information of G
does not help in predicting the probability of a CI error. This
makes sense because we want to know if G does not equal
G%. But, without observing G%, or conditioning on some
property of G in addition to G, it seems reasonable to
assume that our prediction is left unchanged when knowing
Gr.

D. Proofs
D.1. Proof of Lemma 3.3

The proof relies heavily on the concentration bounds used to
prove the high-dimensional consistency of the PC algorithm
(Kalisch & Buhlmann, 2007). To start, notice that

P(G, # G, | G,0) = P(CI error(s) constructing G

z_: E;;(G*,0%)), (6)

j=it1

where E; ;(G*, 0*) is the event that a CI error is made when
testing X,y L X,y | Xg, for S = {n(1),--- ,7(j —
1)} \ {n (%)}, conditioned on the Bayesian network (G*, 6*)
generating the observed data. Note that these tests are per-
formed at the significance level provided in the statement of
the lemma.

By assumption, Q. - < ¢" < land 0 < r* < Rj. ..
(without loss of generality, ignore measure zero sets). Pick-
ing such ¢* and r* then satisfy the assumptions required in
Lemma 4 of Kalisch & Buhlmann (2007). Equations (16)
and (17) from Kalisch & Buhlmann (2007) imply that there
exist constants C7, C5 that depend only on ¢* such that

P(E;(G*,0%)) < Ci(n — p)exp{~Ca(r")*(n - p)}

for any 7, j. Hence,

P(G; # Gx | G,0) < f(n,p), (7)
where f(n,p) = p?Ci(n — p) exp{—Ca2(r*)?(n — p)}.
Now,
P(G; # Gr)
= 3 [ B(G: £ G GLORO | GRG
Geg
<Z/fnp (0] GYP(G)df
Geg
= f(n,p),
as desired.
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D.2. Proof of Theorem 3.2
By the tower property,

Epcip)f(G) = Ep(x|0)EpcD,m) [ (G).

As before, define A, as the event that G, = G*%. We may
expand Ep(g|p ) f(G) as

Epp,mf(G)

=Y f(G)PG | D7)

Geg

=Y F(GP(G, Ar | Ga) + > FIG)P(G, AT | Gnr)
Geg Geg

by Assumption 3.1(d) and the law of total probability

= [(Ga) +P(AS | Gy)
S HGPG | Gr AS) — (Gr)
Geg

by the fact that P(G | G, A;) = I(G = G)
according to the exact reasoning used in Section 4

= f(Gr) +P(AT)
Y HGB(G | G, A) — (G |
Geg

where the final equality uses Assumption 3.1(e).

‘We claim that

EP(w\D)f(éw) = E]@(Gm)f(G)- ®)
To prove Equation (8), notice that
Ep(x ) [ (G )
= Y f(Gs)P(r | D)
TES)
=Y f(G) Y 1{G € G}1{G = G }P(r | D)
Geg TES)
=Y HGPG | D)
Geg
=Ep (G|D)[f(G)]~
Finally,
Y HGP(G| Gr, AS) — f(Gr)| < 2M

Geg

and

P(A7) < Ci(n —p) exp{~Ca(r")*(n — p)}

by Lemma 3.3. The result now follows by taking expecta-
tions and using the above bounds.

D.3. Proof of Proposition 5.1

Ergodicity follows from the fact that any permutation can
be reached from adjacent transpositions, and aperiodicity
follows from our constraint that s € (0, 1). Since adjacent
transpositions trivially satisfy the detailed balance equations,
the Markov chain has stationary distribution P(G; | D).

D.4. Proof of Proposition D.1

Proposition D.1. If w, and 711 differ by an adjacent trans-
position, Algorithm 2 correctly calculates G, ., from G, .

This update rule was also used by Solus et al. (2017). We
here provide the proof for completeness. The result triv-
ially follows if 7,11 is obtained by swapping the first and
last element of 7, since all CI tests are recomputed in this
case. Hence, we may assume 7; and my4; differ by an
adjacent transposition not at the border. Suppose m; =
(ny - nminipr---np) and Ty = (ng - nipani - ny),s
where the permutations differ at an adjacent permutation
at position ¢. Then, the only edges that can be different
in G‘m and G‘m ., are those edges connected nodes n; /
n;4+1 with nodes n;,1 < k < 4. Correcting the edges
(ni,ng) and (n;41, ny) corresponds to recomputing the con-
ditional independence statements X,,, 1 X, | Xg, and
Xni+1 _,U/_ Xnk | XSi+1’ for XSi = {nh T 7ni+1} \ {nk}
and Xg, , = {n1,--- ,ni—1} \ {n«} and updating the cor-
responding edges. The for loop in Algorithm 2 carries out
the CI tests specified in the previous sentence. Finally, we
need to reverse the edge between nodes X,,;, and X, , if
there was an edge between them in the old DAG G, ; this
reversal is accomplished at the very start of Algorithm 2.

D.5. Proof of Proposition 5.2

The memory complexity follows trivially from the fact that
it takes O(p?) memory to store G in an adjacency matrix.
Computing partial correlations takes at most O(p?) time
using the well-known partial correlation recursive formula
(Viertl, 2011). Instantiating G, requires O(p?) CI tests and
hence takes at most O(p®) time to compute. The subsequent
Gm are computed using Algorithm 2. The correctness of Al-
gorithm 2 was shown in Appendix D.4. We claim Algorithm
2 takes average case O(p?) time.

First, we show that the first and last elements of m; are
swapped with probability less than % when moving from m;
to m;11. Notice from our definition of the adjacent transpo-
sition distribution g that the probability of either the first or
last element undergoing an adjacent transposition is 20=s),
Conditioned on either the first or last element being chosen
to be swapped, there is probability % that the first (last) ele-
ment will be swapped with the last (first) element. Hence,
the probability of the first and last element being swapped
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(1 s) . When the first and last

element are swapped, all p? CI tests need to be recomputed.
All the remaining adjacent transpositions require at most
2p additional CI tests to be performed in the for loop of
Algorithm 2. Hence, on average, the number of additional
CI tests is O(p) which implies the average running time of
Algorithm 2 is O(p?).

equals which is less than

E. Justification for restricting the prior space

Following nearly the same reasoning used to motivate our
likelihood approximation in Section 4, here we justify

P(r | On) = P(G = G,).
Notice that

P(r | On)
=P(r | O, Ax)P(A|O,) + P(r | O, AD)P(AC|0,,)
=P(r | O, Ax)P(Ar) + P(r | O,, AD)P(AS),

where the final equality follows from Assumption 3.1(e).
We claim that

P(r | On, Ax) = P(G = G). 9)
Given O,,, we can construct CAY',T, and conditioned on A,
Gr = G7. Each permutation 7 may therefore be associ-
ated with its true corresponding DAG G which equals G .
Hence, the conditional probability ]P’(7r|(’)n, Ar) equals the
prior probability of G, namely P(G = G.).

Finally, since P(jfl,r) goes to zero exponentially fast by
Lemma 3.3, P(7|O,,) is well approximated by P(G = G,).

F. Prior Specification on Topological
Orderings

Here we illustrate the computational difficulty of specifying
a posterior P(7| D) that agrees with our original prior P*(G)
and likelihood P(G|D) on the space of DAGs. Notice that

P(D | 7) = Z]P’D\G (G| 7). (10)

Equation (10) implies that we must specify a conditional dis-
tribution P(G/|r) to calculate the likelihood term for P(| D).
To understand what this conditional distribution should be,
notice that the induced prior over DAGs equals

= > PG| m)P(n). (11)
TESy

In order MCMC, the assumed prior P(7) is equal to
(Friedman & Koller, 2003). A natural distribution one may

specify for P(G|r), and the one assumed in (Friedman &
Koller, 2003), is

P(G | 7m) = I(G 2 m)P*(G). (12)

However, it is trivial to check that Equation (12) im-
plies Equation (11) equals |#linext(G)|P*(G), where
|#linext(G)| denotes the number of linear extensions of
G (Ellis & Wong, 2008). Therefore, we instead need

1

PG| m) = |#linext(G)]

(G 2 mPH(G)

to construct a model that agrees with our desired prior P*(G)
on DAGs. The difficulty of defining a prior on P(7|O,,)
is calculating |#linext(G)|, which is #P in general. We
should note that we avoid these issues by instead defining a
prior on P(7]O,,). P(7]O,,) allows us to define a distribu-
tion that approximately induces the correct DAG prior; see
the discussion in Section 4.

G. Path and Order Priors

Here we provide the specific form of the order and path
priors used in the experiment in Section 6.5. Let L, R, and
C denote the set of ligands, receptors, and cytosolic proteins,
respectively, in the network in Figure 5. For the order prior,
P(r), we set

P(r) := exp <ZfL(l) + ZfR(r)),
L R

where f1, (1) indicates if ligand node [ came before all nodes
in RU C and fg(r) indicates if receptor r came before all
nodes in C' and after L in 7. For our method, the order prior
is incorporated into our prior on DAGs. Specifically, we
replace the DAG prior of P(G) = exp ( — 7||G||) used in
our other experiments with,

B(G) = exp  — 1[G exp (me n ZfR<r>).

We refer to the prior above as minIMAP w/ path prior in
Table H. To incorporate path information, we take a prior of
the form,

exp (szhL(l) + ZR:hR(T)),

where hy, (1) indicates if ligand node ! had a path to at least
one node in R and hy(r) indicates if receptor = had a path
to at least one node in C'. Combined with the order prior,
the prior minIMAP w/ path and order in Table H is given
by,
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Table 3. Average correlation of directed features between runs
seeded with the true network and runs seeded with MMHC from
two hundred randomly generated DAGs with p = 30 nodes.
Higher is better.

METHOD AVG. CORRELATION  STD. ERROR

MINIMAP 977 .004
ORDER .928 .007
PARTITION 784 .006

B(G) = exp (= || G])) exp (me n Zme)

L R
exp (%: hr(l) + ER: hR(r)) .

H. Additional Experiments and Plots

To further analyze the mixing behavior of the different meth-
ods, we compute the correlation between different seeded
runs for estimating marginal directed edge probabilities. Ta-
ble 3 shows the average correlations and standard errors
based on two hundred synthetic datasets with n = 1000 ob-
servations and p = 30 nodes. Note: Each method was run
with 1 x 10° iterations and a burn-in of 2 x 10* iterations.

The ROC plots for the n = 100, n = 1000, and Dream4
datasets are shown in Figure 4; see Section 6.3 for a discus-
sion of these plots. The network in (Mukherjee & Speed,
2008) used for the experiments in Section 6.5 is given in
Figure 5.
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Figure 4. The top ROC curves represent recovery of undirected features and the bottom for compelled features. From left to right, the
plots correspond to the Dream4, n=100, and n=1000 datasets.
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Figure 5. The network on the left is taken from (Mukherjee & Speed, 2008). The ROC plot on the right corresponds to the recovery of
directed edges. Path and order refers to a prior that takes both path and order information into account as specified in Section 6.5. For
order and partition MCMC, only order information can be used in the prior as discussed in Section 6.5.



