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Abstract

Estimating heterogeneous treatment effects from
observational data is a central problem in many
domains. Because counterfactual data is inac-
cessible, the problem differs fundamentally from
supervised learning, and entails a more complex
set of modeling choices. Despite a variety of re-
cently proposed algorithmic solutions, a princi-
pled guideline for building estimators of treat-
ment effects using machine learning algorithms
is still lacking. In this paper, we provide such a
guideline by characterizing the fundamental lim-
its of estimating heterogeneous treatment effects,
and establishing conditions under which these
limits can be achieved. Our analysis reveals that
the relative importance of the different aspects
of observational data vary with the sample size.
For instance, we show that selection bias mat-
ters only in small-sample regimes, whereas with
a large sample size, the way an algorithm mod-
els the control and treated outcomes is what bot-
tlenecks its performance. Guided by our analy-
sis, we build a practical algorithm for estimating
treatment effects using a non-stationary Gaus-
sian processes with doubly-robust hyperparame-
ters. Using a standard semi-synthetic simulation
setup, we show that our algorithm outperforms
the state-of-the-art, and that the behavior of ex-
isting algorithms conforms with our analysis.

1. Introduction

The problem of estimating heterogeneous (individualized)
causal effects of a treatment from observational data is cen-
tral in many application domains, including public health
and drug development (Foster et al., 2011), computational
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advertising (Bottou et al., 2013), and social sciences (Xie
et al., 2012). The increasing availability of observational
data in all these domains has encouraged the development
of various machine learning algorithms tailored for infer-
ring treatment effects using observational data (e.g. (Li
& Fu, 2017; Wager & Athey, 2017; Shalit et al., 2017;
Alaa & van der Schaar, 2017)). Due to the peculiarity of
the treatment effect estimation problem, these algorithms
needed to address various modeling aspects that are for-
eign to standard supervised learning setups; such aspects
include ways to handle sample selection bias (Heckman,
1977), and ways to model treated and untreated data points.
Despite a variety of recent algorithmic approaches, princi-
pled guidelines for model design are lacking.

In this paper, we provide guidelines for designing practi-
cal treatment effect estimation algorithms in the context of
Bayesian nonparametric inference, and propose one pos-
sible instantiation of an algorithm that follows our guide-
lines. We set these guidelines by characterizing the fun-
damental limits of estimating treatment effects, and study-
ing the impact of various common modeling choices on the
achievability of those limits. In what follows, we provide a
brief technical background for the treatment effect estima-
tion problem, along with a summary of our contributions.

1.1. Background and Summary of Contributions

Our analysis hinges on the Rubin-Neyman potential out-
comes model (Rubin, 2005). That is, we consider an obser-
vational dataset with a population of subjects, where each
subject ¢ is endowed with a d-dimensional feature X; € X.
We assume that X = [0, 1]¢, but most of our results hold
for general compact metric spaces (bounded, closed sets
in R%). A treatment assignment indicator W; € {0,1} is
associated with subject i; W,; = 1 if the treatment under
study was applied to subject i, and W; = 0 otherwise.
Subject ¢’s responses with and without the treatment (the
potential outcomes) are denoted as Yi(l) and Yi(o), respec-
tively. Treatments are assigned to subjects according to an
underlying policy that depends on the subjects’ features,
i.e. W; UL X;. This dependence is quantified via the condi-
tional distribution p(z) = P(W; = 1|X; = x), also known
as the propensity score of subject 7 (Rosenbaum & Rubin,
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1984). The response Yi(W” is the “factual outcome” which
we observe in the data, whereas Yi(1 ~ Wi is the unrealized
“counterfactual outcome” (Bottou et al., 2013). An obser-
vational dataset D,, comprises n samples of the form:

(Dn = (x50 W vy, (1)

The causal effect of the treatment on subject ¢ with a fea-
ture X; = x is characterized through the conditional av-
erage treatment effect (CATE) function T'(x), which is de-
fined as the expected difference between the two potential
outcomes (Rubin, 2005), i.e.

[T(m):E[Y—i(l)_ifi(O)lXi:m}J )

Our goal is to identify a set of guiding principles for build-
ing estimators of the CATE T'(z) using samples from D,,.
Throughout the paper, we will assume that the joint density
dP(X;, W;, Yiw), Yim) supports the assumptions of uncon-
foundedness and overlap, which are necessary for causal
identifiability and consistency. Unconfoundedness requires
that (Y,'”, Y,) 1L W; | X;, whereas overlap requires that
0 < p(x) < 1 (Rosenbaum & Rubin, 1984). Selection bias
occurs in D, since the distribution of the treated/control
subjects does not match that of the overall population.

In order to come up with principled guidelines for build-
ing estimators of T'(z), we characterize the fundamental
(information-theoretic) limits of estimating the CTAE us-
ing samples from D,,, and identify the modeling choices
that would allow achieving those limits. To this end, in
Section 3 we tackle the following question: what are the
fundamental limits of CATE estimation? We answer this
question by deriving the optimal minimax rate for estimat-
ing T'(x) using D,. Interestingly, it turns out that the op-
timal rate does not depend on selection bias, but rather
on the smoothness and sparsity of the more “complex” of
the functions ]E[Yi(o) | X; =x]and IE[YZ-“) | X; = z]. We fo-
cus our analysis on Bayesian nonparametric methods, since
they have the appealing properties of being robust to mis-
specification and are accessible for theoretical analysis.

Our analysis reveals that the relative importance of the dif-
ferent modeling aspects vary with the sample size. In par-
ticular, in the large-sample regime, selection bias does
not pose a serious problem, and the model’s performance
would be mainly determined by its structure, i.e. the way
the outcomes YZ.<0> and Yi“) are modeled, and the impact of
that on variable selection and hyperparameter tuning. On
the contrary, selection bias can seriously harm a model’s
generalization performance in small-sample regimes. A
good model should then be carefully designed so that it op-
erates well in both regimes by possessing the right model
structure that would allow learning at a fast rate, and
the right model selection (hyperparameter optimization)
scheme that would account for selection bias.

In Section 4, we build a practical CATE estimation algo-
rithm guided by the results of the analyses in Section 3.
We model the outcomes Y, and Y, using a Gaussian
process with a non-stationary kernel that captures the dif-
ferent relevant variables and different levels of smoothness
of the functions E[Y,”) | X; = z] and E[Y;") | X, = z]. We
prove that this model structure can achieve the optimal rate
of CATE estimation when tuned with the right hyperparam-
eters. We also propose a doubly-robust hyperparameter op-
timization scheme that accounts for selection bias in small-
sample regimes, without hindering the model’s minimax-
optimality in the large sample limit. We show that our al-
gorithm outperforms state-of-the-art methods using a well-
known semi-synthetic simulation setup.

1.2. Related Work

Very few works have attempted to characterize the limits of
CATE estimation, or study the impact of different modeling
choices on the CATE estimation performance in a princi-
pled manner. (Alaa & van der Schaar, 2018) characterized
the asymptotic “information rates” for different CATE esti-
mators, but provided no clear guidelines on practical model
design or an analysis of the impact of sample selection bias.
The study in (Kiinzel et al., 2017) was rather empirical in
nature, comparing the performance of different regression
structures for the potential outcomes while ignoring selec-
tion bias. A similar study, but focusing only on random
forest models, was conducted in (Lu et al., 2017).

Most of the previous works have been algorithmic in na-
ture, focusing mainly on devising algorithms that correct
for selection bias (e.g. (Johansson et al., 2016; Shalit et al.,
2017; Wager & Athey, 2017; Li & Fu, 2017)). Some of
these works cast the selection bias problem as a problem of
covariate shift (Sugiyama et al., 2007), and use techniques
from representation learning to learn feature maps that bal-
ance the biased data (e.g. (Li & Fu, 2017; Shalit et al.,
2017; Johansson et al., 2016)). However, those works re-
port much bigger improvements in CATE estimation when
changing their model structure (e.g. architecture of a neu-
ral network), as compared to the gains attained by only ac-
counting for bias (see the comparisons between the TARnet
and BNN models in (Shalit et al., 2017)). Similar observa-
tions are reported in (Alaa & van der Schaar, 2017; Atan
et al., 2018), where the selection of the model structure
seemed to influence the achieved CATE estimation perfor-
mance even when selection bias is not accounted for. De-
spite of that, none of these works offer a discussion on
whether selection bias is actually the main challenge in
CATE estimation, or whether the outcomes’ model struc-
ture may have a bigger influence on performance.

In contrast to the works above, this paper does not attempt
to develop a model by presupposing that particular model-
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ing aspects are of greater importance than others, but rather
provides a framework for understanding the limits on the
achievable performance, and how different modeling as-
pects influence a model’s chance of achieving those lim-
its. We use our analyses to both reflect on the modeling
choices made in the works above, and also devise a novel,
principled CATE estimation algorithms that achieves the
fundamental performance limits.

2. Estimating CATE: Problem Setup

2.1. Potential Outcomes & Propensity Score

We consider the following random design regression model
for the potential outcomes:

V" = £ (X0) + €iw, w € {0,1}, 3)

where €;,, ~ N(0,02) is a Gaussian noise variable. It
follows from (2) that the CATE is T'(z) = fi(z) — fo(x).
The response surfaces fi(x) and fo(x) correspond to the
subjects’ responses with and without the treatment.

We assume that f,,(.) : X = R, w € {0,1}, is a totally
bounded function that lives in a space of “smooth” or “reg-
ular” functions, with an unknown smoothness parameter
Q. We use Holder balls for concreteness, although our re-
sults extend to other function spaces. A function f,(.) lies
in the Holder ball H*~, with a Holder exponent o, > 0, if
and only if it is bounded in sup-norm by a constant C' > 0,
all its partial derivatives up to order |, | exist, and all its
partial derivatives of order |, | are Lipschitz with expo-
nent (a,, — |, ]) and constant C'. The Holder exponents
quantify the complexities of fy and f7, and hence the hard-
ness of estimating 7'(z) would depend on o and ;.

2.2. Bayesian Nonparametric Inference

Nonparametric inference is immune to misspecification of
the outcomes’ and propensity models (Kennedy, 2018), and
hence we focus on Bayesian nonparametric methods for in-
ferring T'(.) on the basis of D,,. Bayesian inference entails
specifying a prior distribution IT over f1(.) and fy(.), i.e.

f07f1NH(<)5,807@,@1)7 (4)

where gp, = {¢} }72,,w € {0,1}, are complete or-
thonormal bases (indexed by a parameter ﬂw_ > () with

respect to Lebesgue measure in X, f,, = > & ff, . @Ew, and

IE = (fuw, cp,’éw>. Thus, for given bases @g, and @g,, IT
places a probability distribution on the projections {f*}.
Potential choices for the basis ¢, that would give rise to
implementable Bayesian inference algorithms include reg-
ular wavelet basis (Zhang, 1997), radial basis for a repro-
ducing kernel Hilbert space (RKHS) (van der Vaart et al.,
2008), etc. In general, the parameter (3,, would determine
the smoothness of the function space spanned by @z, .

2.3. Towards Principled CATE Estimation

To evaluate the predictive accuracy of the Bayesian in-
ference procedure, we analyze the “frequentist” loss of
point estimators T(a:) induced by the Bayesian posterior
dIT,(T(z)| Dy,), assuming that D,, is generated based on
fixed, true response surfaces f;(x) and fo(x). (This type
of analysis is sometimes referred to as the “Frequentist-
Bayes” analysis (Sniekers et al., 2015).) In particular, we
quantify the performance of a point estimator 7'(z) =
§(dIT,(T(zx) | D,,)) by its squared-L?(IP) error, which was
dubbed the precision of estimating heterogeneous effects
(PEHE) in (Hill, 2011), and is formally defined as:

d’(T) éEHfffT”%%p)v &)
where L?(P) is the L? norm with respect to the feature dis-
tribution, i.e. || f(2)[7:, = [ f*(x) dP(X = ).

Not a standard supervised learning problem... '

The “fundamental problem of causal inference” is that
for every subject ¢ in D,,, we only observe the factual
outcome Y,"*), whereas the counterfactual Y, =" re-
mains unknown, which renders empirical evaluation of the
PEHE in (5) impossible. Moreover, D,, would generally
exhibit sample selection bias (Heckman, 1977), because
the treatment assignment mechanism (decided by p(z))
creates a discrepancy between the feature distributions of
the treated/control population and the overall population.
Thus, standard supervised learning approaches based on
empirical risk minimization cannot be used to learn a gen-
eralizable model for the CATE from samples in D,,. This
gives rise to the following fundamental modeling questions
that are peculiar to the CATE estimation problem:

e [Q1]: How should the treatment assignment indicator
W; be incorporated into the learning model?

e [Q2]: How should selection bias be handled?

Adequate answers to [Q1] and [Q2] would provide guide-
lines for selecting the prior IT(@g,, $s, ). Addressing the
modeling questions above requires a profound understand-
ing of the fundamental limits of CATE estimation, in ad-
dition to an understanding of the impact of different mod-
eling choices on the achievability of such limits. The next
Sections provide principled answers to [Q1] and [Q2] by
addressing the following, more fundamental questions:

Section 3: What are the /imits on the performance that can
be achieved by any estimator of the CATE?

Section 4: How can we build practical algorithms that can
achieve the performance limits?
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3. Fundamental Limits of CATE Estimation

In this Section, we establish an information-theoretic limit
on the performance of any CATE estimator. In what fol-
lows, we use the standard Bachmann-Landau order nota-
tion, and write a V b = max{a, b}, a Ab = min{a, b}. The
notation ¢ < b means that a < Cb for a universal constant
C, and < denotes asymptotic equivalence.

3.1. Optimal Minimax Rates

The “hardness” of a nonparametric estimation problem is
typically characterized by its minimax risk (Stone, 1982),
i.e. the minimum worst case risk achieved by any estima-
tor when the estimand is known to live in a given function
space (Yang et al., 2015). In the following Theorem, we es-
tablish the optimal minimax rate for the PEHE risk in terms
of the complexity of the response surfaces f, and f;.

Theorem 1. Suppose that X = [0,1]% and that f., depends on
a subset of d., features with d, < min{n,d} forw € {0,1}. If
fo € H* and f1 € H™', then the optimal minimax rate is:

1
inf sup $(T) = p_ (VR yiog (*)

do 491
T fo,f1 o 41

CATE estimation
Variable selection

The above holds for any p(.) € H*?, ap > 0. O

In Theorem 1, the supremum is taken over «,,-Holder balls
(w € {0,1}), whereas the infimum is taken over all possi-
ble Bayesian estimators. The minimax rate in Theorem 1
corresponds to the fastest rate by which any (Bayesian)
estimator 7'(.) can approximate the CATE function T'(.).
The proof of Theorem 1 (provided in the supplement) uses
information-theoretic techniques based on Fano’s method
to derive algorithm-independent estimation rates (Yang &
Barron, 1999). In the following set of remarks, we revisit
[Q1] and [Q2] in the light of the results of Theorem 1.

How can Theorem 1 help us address [Q1] & [Q2]? '

> Remark 1 (Smoothness & sparsity)

Theorem 1 says that estimating CATE is as hard as non-
parametric regression for functions with additive sparsity
(Raskutti et al., 2009; Yang et al., 2015). The minimax rate
in Theorem 1 decomposes into a term reflecting the com-
plexity of CATE estimation under correct variable selection
for fy and f1, and a term reflecting the complexity of vari-
able selection. Variable selection complexity remains small
as long as log(d) = ©(n¢), for some ¢ € (0,1), and ap-
proaches the parametric rates as ¢ — 0. The minimax rate
will generally be dominated by the complexity of CATE
estimation, and will approach the parametric rates only for
very smooth response surfaces with small number of rele-
vant dimensions, i.e. i—‘(’] V g—ll — 0.

The main takeaway from Theorem 1 is that the CATE learn-
ing rate is determined by the more “complex” of the sur-
faces fo and f1, where complexity is quantified by the
sparsity-to-smoothness ratio d.,/c., forw € {0,1}. Thus, a
model would achieve the optimal CATE learning rate only
if it selects the correct relevant variables for f and f, and
tunes its “hyperparameters” (i.e. smoothness of the prior)
to cope with a complexity of i—‘; \% (‘i—ll. When ‘O% and i—ll are
very different (e.g. fo and f; have different relevant fea-
tures), rate-optimal estimation is possible only if the model
incorporates such differences in IT(@g, , @3, )-

The discussion above provides a concrete answer to [Q1]:
the treatment assignment variable w should be incorporated
into the model in such a way that it encodes the different
relevant dimensions and smoothness levels of fy and f;
in the bases ¢g, and @g,. (The simplest way to achieve
this is to use two separate models for fy and f;.) This is
not fulfilled by many of the previous models that built a
single regression function of the from f : X x {0,1} — R,
and estimated the CATE as T'(z) = f(z,1) — f(z,0) (Hill,
2011; Johansson et al., 2016; Powers et al., 2017). This is
because such models enforced the smoothness of the prior
along all features to be the same for w = 0 and w = 1.

> Remark 2 (Selection bias)

Theorem 1 gives a rather surprising answer to [Q2]: the op-
timal learning rate is oblivious to selection bias. Such
a finding is consistent with previous results on nonpara-
metric kernel density estimation under selection bias (Bor-
rajo et al., 2017), and parametric Bayesian inference under
covariate shift (Shimodaira, 2000; Sugiyama & Storkey,
2007). It shows that many of the recent works have missed
the target; the works in (Johansson et al., 2016; Shalit et al.,
2017; Alaa & van der Schaar, 2017) cast the problem of
CATE estimation as one of covariate shift that results from
selection bias. However, Theorem 1 says that selection bias
is not a problem when we have a sufficiently large amount
of data. This is because selection bias is inherently a mis-
specification problem, and hence its impact on nonparamet-
ric inference is washed away in large-sample regimes.

Remarks 1 and 2 posit an explanation for various recurrent
(empirical) findings reported in previous literature. For in-
stance, (Hahn et al., 2017) found that separate modeling of
fo and f; via Bayesian additive regression trees (BART)
outperforms the well-known single-surface BART model
developed in (Hill, 2011). Similar findings were reported
for models based on Gaussian processes (Alaa & van der
Schaar, 2017), and models based on deep neural networks
(Shalit et al., 2017). All such findings can be explained in
the light of Remark 1. On the other hand, Remark 2 may
provide an explanation as to why the “TARnet” model in
(Shalit et al., 2017), which models fy and f; using sep-
arate neural networks and does not account for selection
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bias, outperformed the “BNN” model in (Johansson et al.,
2016), which regularizes for selection bias but fits a single-
output network for fy and fi.

3.2. Backing off from “Asymptopia”

Theorem 1 shows that selection bias does not hinder the op-
timal minimax rates, and that it is only the structural prop-
erties of the prior I1(@g,, ¢s,) that determine a model’s
rate of learning. But does the achieved learning rate suf-
fice as a sole criterion for addressing the modeling ques-
tions [Q1] and [Q2]? The answer is “yes” only if D,, comes
from a large observational dataset, in which case the learn-
ing rate suffices as a descriptor for the large-sample perfor-
mance. However, if D,, is small, which is typical in post-
hoc analyses of clinical trials (Foster et al., 2011), then one
should make the design choices that would optimize the
small-sample performance. In order to give a more com-
plete picture of the performance in large and small-sample
regimes, we derive the following bound on the PEHE:

$(T) < C-exp(Da(Qo | Q) - [1fo = foll 72z,
+C-ep(D2(Qu) Q) I = filfae,y. ©
———— . ,

Réyni

A Supervised
Divergence

learning loss

for some C > 0, where L*(P,,), for w € {0,1}, is the L?
norm with respect to dP(X =z |W = w), Q = dP(X = z),
Quw =dP(X = x| W =w), and D,,.(p| q) is the m*" order
Réyni divergence. The bound in (6) holds for all » > 0, and
is tight (refer to the supplement); it shows that the PEHE is
a weighted linear combination of the mean squared losses
for the two underlying supervised problems of learning f
and f; with no covariate shift, where the weights are de-
termined by the extent of the mismatch between the dis-
tributions of the treated and control populations, quantified
by the Réyni divergence measure. If D,, is a dataset ob-
tained from a randomized controlled trial (Q = Qo = Q1),
then we have D2 (Qo || Q) = D2(Q:1 || Q) = 0, and the bound
boils down to a sum of two supervised learning losses, i.e.
W(T) < Clfo = foll2ae + C lfs = fill2ae-

Since the minimax rate for standard nonparametric regres-
sion is [[fu — full2 = Cw - n%wtiu (Stone, 1982), when
do/ap >> di /a1, the first-order Taylor approximation for
the logarithm of the PEHE in (6) is given by:

- 20
log(9 (1)) =~ D2(Qol|Q) + log(Co) — m log(n)
Selection Bias S——

bias correction Learningrate

—2a7 + 2aq
+ O [ n2e1+dr " 2a0+do |, (7)

That is, when viewed on a log-log scale, the behavior of
the PEHE versus the number of samples can be described

Selection bias

D2(Qoll@)

Bias

.
.
.
.

log(PEHE)

..........
Learning rate ‘
(=200)/(200 + do)

.
.
.
.

Increasing
Learning rate

log(n)

Figure 1. The PEHE in (7) plotted on a log-log scale.

as follows. log(PEHE) is a linear function of log(n). Se-
lection bias adds a constant offset to log(PEHE), but does
not affect its slope, which harms the performance only in
the small-sample regime. In the large-sample regime, the
slope of log(PEHE), which depends solely on the smooth-
ness and sparsity of the response surfaces, dominates the
performance, and selection bias becomes less of a problem.
Figure 1 depicts the PEHE in (7) on a log-log scale.

4. CATE Estimation using Non-Stationary
Gaussian Process Regression

In this Section, we build on the analyses conducted in Sec-
tion 3 to design a practical algorithm for CATE estimation.

4.1. Non-Stationary Gaussian Process Priors

We specify the prior I1(@g,,¢s,) as a Gaussian process
(GP) over functions of the form g : X x {0,1} — R, with
a kernel Kg, and a hyperparameter set 3 as follows:

g~ gp (Oa KB(Z7 Z,)) ) (8)

where z = (z,w) € X x {0,1}, and f.,(z) = g(x,w). The
kernel K specifies the bases @z, and @p, through its
induced canonical feature map Kg(.,z) (Rasmussen &
Williams, 2006; Alvarez et al., 2012). As pointed out in
remark 1, the treatment assignment variable w should en-
code the different relevant dimensions and smoothness lev-
els of fy and f;. Thus, we model Kz as a non-stationary
kernel that depends explicitly on w as follows:

Ks(z,2')=T(w,w') - kj (z,2),
kg(z, x/): (k80 (l‘vwl)v kg, (x,:p'), kg, (2, 33/) + ks, (Ivml)]v
F(wv w/): [F()(U},w/), Fl(w7 w/)7 1- Ib(w,w') - Fl(w7 wl)]7

where I'o(w,w') = (1 —w)(1 — w'), I (w,w') = w-w', and
ks, (x,x") is a Matérn kernel with a length-scale parameter
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Buw, for w € {0, 1}. The kernel defined above ensures that
any covariance matrix induced by points in X x {0, 1}
is positive definite. Variable selection is implemented by
using the automatic relevance determination version of the
Matérn kernel (Rasmussen & Williams, 2006). The non-
stationarity of Kz allows setting different length-scales
and relevant variables for the marginal priors on fy and f;
while sharing data between the two surfaces, i.e.

Kﬁ((x’w)v (mlvw)) = kg, (ZE,:L"), w e {0’ 1}7
Ks((z,w), (‘rlvw/)) = kg, (z, xl) + kg, (:E?"El)7 w# w'. (9)

That is, all draws from the prior give Matérn sample paths
with different smoothness levels (59 and 1) for fo and
f1, respectively, and the correlations between the paths
are captured via the kernel mixture kg, (z,z') + kg, (x, z’).
Note that draws from a Matérn prior with length-scale 3
are almost surely 3-Holder for all 3 < 3 (Vaart & Zanten,
2011). Thus, GP(0,K3) specifies a (3,,-Holder ball as an a
priori regularity class for response surface f,,, w € {0, 1}.

In the following Theorem, we show that point estimators
induced by the prior GP(0,Kp3) can achieve the optimal
minimax rate in Theorem 1.

Theorem 2. Suppose that the d., relevant features for f., are
known a priori for w € {0,1}. If fo € H*, f1 € H*, II =
GP(0,Kpg), and T = E;z[T | Dy, |, then we have that

~ _ 2(agABg)

W(I) S n” Tt v

whenever min{ao, a1, Bo, S1} > d/2. O

_2(gABy)
28, Fd1

Note that posterior consistency holds for all combinations
of (aw, aa, Bo, 31) since the support of the Matérn prior is
the space of bounded continuous functions'. The bound in
Theorem 2 can be shown to be tight using the results in
(Castillo, 2008). Theorem 2 says that the posterior induced
by the prior GP(0, Kg) contracts around the true CATE
function at the optimal rate given in Theorem 1 provided
that the following matching condition is met:

Bv = ay

di_y —vdy  diw
ZU < Bi-w Sal—v+a12TflTa (10)

Qy

where v =1 if d1 /a1 > do/aw, and v = 0 otherwise. The
condition in (10) implies that achieving the optimal rate
(steepest slope in Figure 1) via the non-stationary GP prior
in Section 4.1 is only a matter of hyperparameter tuning:
the smoothness of the prior needs to match the smoothness
of the “more complex” of the two response surfaces. Note
that Theorem 2 implies that we do not need to handle se-
lection bias in order to achieve the optimal rate, which is
consistent with the earlier discussion in remark 2.

!'This is because the RKHS associated with the prior lies dense
in the space of bounded continuous functions (van der Vaart & van
Zanten, 2008; van der Vaart et al., 2008).

4.2. Doubly-Robust Hyperparameters

Theorem 2 says that the optimal minimax rate for CATE
estimation can be achieved by satisfying the smoothness
matching condition in (10). However, in practice, the
smoothness levels of the true response functions are un-
known and need to be learned from the data. Moreover,
since selection bias is impactful in small-sample regimes,
ignoring it may lead to a poor generalization performance
when the size of D,, is small. In this Section, we propose
a hyperparameter optimization algorithm that accounts for
selection bias while ensuring minimax-optimality in the
large-sample limit.

Previous works tend to adjust for selection bias “mechan-
ically” using variants of importance sampling approaches
based on inverse-propensity-weighting (IPW) (Sugiyama
et al., 2007; Shimodaira, 2000), and kernel mean match-
ing (Huang et al., 2007), or by learning a “balanced rep-
resentation” of treated and control populations (Li & Fu,
2017). We do not attempt to explicitly adjust for selec-
tion bias using ad-hoc approaches, and rather seek the “in-
formationally optimal” estimator of the PEHE. That is,
we seek the most efficient (unbiased) estimator ¢* (1)
of (T, which satisfies an analog of the Cramér-Rao
bound (information-inequality) in parametric estimation,
i.e. Var[¢)*(T')] < Var[¢)(T")], for any estimator (7).

Classical Cramér-Rao bounds do not apply to estimators
of the form @*(T) since such estimators are functionals
of nonparametric objects. There are, however, analogous
information inequalities for nonparametric estimation, in-
cluding Bhattacharyya’s variance bound (Bhattacharyya,
1946), and its generalization due to Bickel (Bickel et al.,
1998). We proceed by realizing that the PEHE v (7") is
simply a functional that belongs to the doubly-robust class
of functionals analyzed by Robins in (Robins et al., 2008).
Thus, one can construct the “most” efficient estimator of
o(T') using the most efficient influence function of ¥ (T') as
follows (Robins et al., 2008; Robins, 2004):

oy = s (YT - Wa—p(X0) T (X ?
P(T) = >, P X (T=p(X,)) :

The derivation of the estimator above can be found in The-
orem 9 in (Robins, 2004) and Section 5 in (Robins et al.,
2008). When the propensity function p(.) is known, this
estimator approximate the PEHE at its optimal minimax
rate. We estimate p(.) via standard kernel density estima-
tion methods. It can be easily shown using the results in
(Dudoit & van der Laan, 2005) that when using the es-
timator above to tune the GP hyperparameters via cross-
validation, then the learned length-scale parameters will
satisfy the matching condition for minimax optimality.
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Figure 2. Scatter-plots and linear fits for the PEHE of NSGP on a log-log scale in different simulation setups.

5. Experiments

In this Section, we check the validity of our analyses us-
ing a synthetic simulation setup (Subsection 5.1), and then
evaluate the performance of our proposed model using data
from a real-world clinical trial with simulated potential out-
comes (Subsection 5.2). We will use the acronym NSGP to
refer to the non-stationary GP model proposed in Section 4.

5.1. Learning Brownian Response Surfaces
5.1.1. SYNTHETIC MODEL

Let X = [0, 1], and define a x-fold integrated Brownian mo-
tion By, k € N4, on X as follows:

T Tk To
B,{(x):/ / / By(z1) dzy dxg - - - day, ,
o Jo 0

where By(.) is a standard Brownian motion (Wiener pro-
cess). Sample paths of By are almost surely Holder reg-
ular with exponent % (Karatzas & Shreve, 2012). Since
Bo(z) is almost surely non-differentiable everywhere in
X, then sample paths of B, (z) are Holder with exponent
k+ 3,ie B, €H *+3 with probability 1. Therefore, when
the true response surfaces are x-fold integrated Brownian
paths, the optimality and achievability results in Theorems
1 and 2 should hold. To this end, we simulate the true re-
sponse surfaces fo € H* and fi € H*' as fo ~ Bao_%,
and fi1 ~ Bal_%, where we set acg = 2.5 and a; = 5.5.

The propensity score is modeled as a parametrized logistic
function p(z |n) = (1 4+ e~ 7@~ 2))~1 where n € R is a
parameter that determines the severity of selection bias. For
a pair of fixed Brownian paths f, and f1, synthetic obser-
vational samples (X, W, Yi(Wi))i are generated as fol-
lows: X; ~ Uniform[0, 1], W, ~ Bernoulli(p(x | 7)), and
Y, ") ~ fw, + N(0,5?), where 0 = 0.1.

5.1.2. EXPERIMENTS AND RESULTS

Using the setup in Section 5.1.1, we conducted the follow-
ing Monte Carlo simulations to verify our theoretical find-
ings and highlight the merits of our NSGP model.

o Verifying Theorems 1 and 2: In order to check the va-
lidity of the results of Theorems 1 and 2, we use a NSGP
Matérn prior GP(0, Kg), with length-scale parameters S
and f; that are matched exactly with the regularities of the
Brownian paths fo and f1 (i.e. Bo = 2.5 and 81 = 5.5). Ac-
cording to Theorem 1, the optimal rate for estimating the
CATET = f1 — fois n%s, and from Theorem 2, the NSGP
with 8o = 2.5 and 3; = 5.5 should achieve that rate.

Figure 2a provides a scatter-plot for the PEHE achieved by
the NSGP with respect to the number of samples on a log-
log scale for different settings of . We fit a linear regres-
sion model that describes the PEHE behavior in the log-log
scale. We found the slope of the linear fit to be 0.8437,
which is very close? to the slope of % ~ 0.833 predicted
by Theorem 1. Moreover, by changing the magnitude of n
from O to %, the PEHE curve did not exhibit any significant
change in its slope, and was only moved upwards by a con-
stant offset. On the contrary, Figure 2b shows the PEHE
behavior when the NSGP prior is over-smoothed (8o > o)
for n = 0: as predicted by Theorem 2, learning becomes
sluggish (slopes become less steep) as 8o increase since the
matching condition in (10) does not hold any more.

o NSGPs do not leave any money on the table: In this
experiment, we show that the different components of the
NSGP model allow it to perform well in small and large
sample regimes. We set a strong selection bias of n = %
and compare the log(PEHE) characteristic of NSGP with
a model that uses the same non-stationary kernel as NSGP,
and another model that uses a standard stationary kernel,
but both models are tuned using marginal likelihood max-
imization. As we can see in Figure 2c, the model with
the non-stationary kernel achieves the same learning rate as
NSGP, but exhibits a large offset as it does not account for
selection bias, whereas the stationary model fails to learn
the smoothness of the rougher Brownian motion since it
assigns the same length-scale to both surfaces, and hence it

over-smooths the prior, achieving a suboptimal rate.

The minor discrepancy is a result of the residual error in the
linear regression fit.
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QU [Q2] | Model | m-sample VPEHE | Out-of-sample VPEHE | [QU  [Q2] | Model || m-sample vPEHE | Out-of-sample v/PEHE

v v NSGP 0.51 + 0.013 0.64 + 0.030 v T-XGBoost 1.46 + 0.081 1.98 +0.152
SGP 0.95 + 0.021 121 + 0.052 S-XGBoost 297 + 0211 3.04 40216

v v CMGP 0.61 %+ 0.011 0.76 + 0.012 v T-AdaBoost 240 4+ 0.177 279 + 0212
v TARNet 0.88 + 0.021 0.95 + 0.025 S-AdaBoost 453 + 0317 456 +0.312
v' | BNN 221 +0.115 2.15+0.125 v T-OLS 1.85 £ 0.107 1.94 +0.122

v V' | CFRWass. 0.71 £ 0.018 0.76 + 0.032 S-OLS 5.06 %+ 0.357 5.05 £ 0.352
v v | CFRMMD 0.73 + 0.021 0.78 + 0.022 v T-DNN 336 + 0.137 346 +0.142
\/ T-Random Forest 1.41 4+ 0.071 221 +0.162 S-DNN 3.56 +0.217 3.64 +0.212
S-Random Forest 272 +0.241 291 £+ 0.252 V' | MARS 1.66 + 0.106 174 £ 0.112

V' | Causal Forest 241 4+ 0.141 2.82 4+ 0.181 k-NN 2.69 +0.177 4.06 +0.212

BART 2.00 = 0.141 222 £ 0.151 v | psM 492 40312 4.92 40312

\ v | BCF 131 £ 0.061 171 £ 0.102 v’ | TMLE 527 +0.357 527 +0.352 )

Table 1. Simulation results for the IHDP dataset. The values reported correspond to the average PEHE (& 95% confidence intervals).

5.2. The Infant Health and Development Program

We evaluated the performance of the NSGP model pre-
sented in Section 4.1 using the standard semi-synthetic ex-
perimental setup designed by Hill in (Hill, 2011). We re-
port a state-of-the-art result in this setup, and draw connec-
tions between our experimental results and our analyses.

5.2.1. DATA AND BENCHMARKS

The Infant Health and Development Program (IHDP) is an
interventional program intended to enhance the health of
premature infants (Hill, 2011). (Hill, 2011) extracted fea-
tures and treatment assignments from a real-world clinical
trial, and introduced selection bias to the data artificially
by removing a subset of the patients. The potential out-
comes are simulated according to the standard non-linear
”Response Surface B” setting in (Hill, 2011). The dataset
comprised 747 subjects, with 25 features for each subject.
Our experimental setup is identical to (Hill, 2011; Johans-
son et al., 2016; Shalit et al., 2017; Alaa & van der Schaar,
2017): we run 1000 experiments in which we compute
the in-sample and out-of-sample +/PEHE (with 80/20 train-
ing/testing splits), and report average results in Table 1.

We compared the performance of NSGP with a total of 23
CATE estimation benchmarks. We considered: tree-based
algorithms (BART (Hill, 2011), Causal forests (Wager &
Athey, 2017), Bayesian causal forests (Hahn et al., 2017)),
methods based on deep learning (CFR Wass., CFR MMD,
BNN, TARnet (Shalit et al., 2017)), multivariate additive
regression splines (MARS) (Powers et al., 2017), Gaussian
processes (CMGP) (Alaa & van der Schaar, 2017), near-
est neighbor matching (k-NN), propensity score matching
(PSM), and targeted maximum likelihood (TMLE) (Porter
et al., 2011). We also composed a number of T-learners
and S-learners as in (Kiinzel et al., 2017), using a variety
of baseline machine learning algorithms (DNN stands for
deep networks and OLS stands for linear regression).

5.2.2. RESULTS AND CONCLUSIONS

As we can see in Table 1, the proposed NSGP model signif-
icantly outperforms all competing benchmarks. The com-
bined benefit of the two components of an NSGP (non-
stationary kernel and doubly-robust hyperparameters) is
highlighted by comparing its performance to a vanilla SGP
(stationary GP) with marginal likelihood maximization.
The gain with respect to such a model is a 2-fold improve-
ment in the PEHE.

Because the IHDP dataset has a “moderate” sample size,
both selection bias and learning rate seem to impact the
performance. Thus, our method took advantage of having
addressed modeling questions [Q1] and [Q2] appropriately
by being both “rate-optimal” and “bias-aware”.

The check marks in columns [Q1] and [Q2] designate meth-
ods that address modeling questions [Q1] and [Q2] “ap-
propriately” in the light of the analysis presented in Sec-
tion 3. Methods with [Q1] checked use a regression struc-
ture with “outcome-specific”’ hyperparameters, and meth-
ods with [Q2] checked adjust for selection bias. A general
observation is that the structure of the regression model
seem to matter much more than the strategy for handling
selection bias. This is evident from the fact that the TAR-
net model (does not handle bias but models outcomes sep-
arately) significantly outperforms BNN (handles bias but
uses a single-surface model (Shalit et al., 2017)), and that
all T-learners (models 2 separate response surfaces) outper-
formed their S-shaped counterparts (models a single sur-
face). For parametric models, such as OLS, the issue of
selecting the right regression structure is even more crucial.

To sum up, the results in Table 1 imply that selecting the
right regression structure is crucial for rate-optimality in
sufficiently large dataset, whereas handling selection bias
provides an extra bonus. In Table 1, methods that address
both [Q1] and [Q2] (NSGP, CMGP, and CFR. Wass and
MMD) displayed a superior performance.
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6. Supplementary Material
6.1. Proof of Theorem 1

Let 0, be the solution to H(du; F*) =< n 52, where
H(d,,; F*«) is the metric entropy of the function space F°«.
We will prove that the optimal rate is ©(53 V §7) by first showing
that I;;(F2°, F*1) is lower bounded by, i.e. ¢)(T) = £2(62V63),
and then show that 1)(T") = O(62 V §7). We start by observing
that the causal inference problem can be described through the
following Markov chain

(foafl) — Dp — (f07f1) —>T

The amount of information shared between the true function 7°(.)
and the estimate 7'(.) can be quantified by the mutual information
I(T;T). Given the Markov chain above, we can upper bound
I(T;T) as follows

I(T;T) @ I(T;D,) @ sup I(T; Dn), (11

where (*) follows from the data processing inequality (Cover &
Thomas, 2012), and the supremum in (x) is taken over all possible

priors. I(T} T) is bounded below by the rate-distortion function

I(T;T) > inf
T,T:E|T-T|% < R}

I(T5T), (12)
for any 7' satisfying E||7 — T'||3 < Rj;, where the infimum
is taken over all joint distributions of (7,7). Combining (11)
and (12), we can upper and lower bound the mutual information
I(T; T) as follows

inf I(T;T) < I(T;T) <sup I(T; Dy).  (13)

E|T-T|3 < R} 1

The lower bound in the chain of inequalities above is intractable,
and hence we further lower bound I(T'; T") using Fano’s method
(?Yang & Barron, 1999). That is, we take discrete subsets JF©

and F*1 of the function spaces F*° and F*!, and convert the
estimation problem to a testing problem. The spaces

‘F “ :{fé})""’fi\zw}’ ﬁaw Cfaw? we{()?l}’

are constructed such that || fi— fiH > 6, Vi # j. Let Q be

a quantizer that maps elements of 7%~ to F*,6 w € {0,1}.
Thus, the causal inference problem can be described through the
following Markov chain:

(fo, f1) = D = (fo, 1) = Q(fo, fr). (14)

LetT = fi* — f~(§’ , where f¢ and f}‘ are the functions in F°
and F1 that are closest to fo and f1. The discrete element T be-
longs toaset {17, ..., ™7}, which corresponds to a discretized
version of the function space to which 7" belongs. Using the data
processing inequality, we have that

I(T5T) > I(T;Q(T)). (15)

An “error event” is an event where Q (7T’ A) does not correspond to

the true discretized function T, i.e. the event {T' # Q(T)}. The
error event occurs when

IT — QD) < IT T, {T # Q(T)}. (16)

Thus, the error event implies that § < ||Q(T") — T)||. Using the
triangular inequality, (16) can be further bounded as follows:

5 < lQ(E) = Tl = |Q(F) T+ T ~ T
< 1Q(T) ~ 71|+ 1T~ T
<olf T = T -T2 5. ()

Let P. be the probability of the error event {T # QT )} From
(17), P, can be bounded above as follows

(T #Q(1)})

—T|| > 6) = B(|T = T|| > 6/2)

4 *
< = R, (18)

where (o) is an application of Markov’s inequality. By combining
(15) with the result in (18), the lower bound in (13) can be further
bounded below as follows

inf I(T;T) > inf I(T;T)
E|T—T2 < R E||T— TH2<R*
<353 R}k-f
> inf  I(T;Q(T)).
Pe< <y Ry

The mutual information I(7; Q(1")) can be bounded above as
follows

[(T;Q(T)) = I(fl - fo; Q(fl - fo))

< 1Ga Fs @i~ o)

< I(fo, f1;Q(f0), Q(f1))

= I(fo; Q(fo)) + I(f1; Q(f1))

< 2max{I(fo; Q(f0)), I(f1;Q(f1))},  (19)

where (®) follows from the data processing inequality. Note that

the mutual information I(7'; Q(T')) can be written in terms of the
KL divergence as (Cover & Thomas, 2012)

I(T;Q(T)) = DB(T; Q(T A)) | P(T) - P(Q(T)))
> D(Bern(P.) || Bern(1 — 1/n))
1-F
= Fel g<1_ /MT) 1 Pe)log<1/MT>
= —h(P.) + log(Mr) — P, log(Mr — 1)
> —log(2) + log(ilr) — P. log(Mr),  (20)

where h(.) is the binary entropy. From (20), we have that

I(T; Q(T)) + log(2) @1

)

P.>1-— N
log(Mr)

which is an incarnation of Fano’s inequality. By combining (19)
with (21), we have the following inequality

I(fo;Q(fo))Vf(fl;Q(fl))JrlOg(ﬂ). 22)

P.>1— . <
5 log(Mr)
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From (18), the minimax risk R}; is bounded below by

62
> — —
Ry > (1

L(fo; Qo)) V I(/1: Q) + logwm) |
3 log(Mr)

The discretization Fo = {f}, o fS W} corresponds to a J-

packing of the function space 7, and hence M, is given by
the covering number N (4, F°«), for w € {0,1}. It follows that

My > N (8, F*0) Vv N(§, F*1), and hence we have that

. L 02
>2 (1-—
Ry (1

The mutual information I( f.,; Q(f.,)) can be bounded via the KL
divergence as

1(fo; Q(f0)) V I(f1; Q1)) + log<¢§>)
% log(N (9, Feo) V N(§, For)) '

I(fo; Q(f)) < ZD (fo) IP(f2))

N2(§, Fow) 6.7-"0
< 2nd2.

Thus, the minimax risk can be bounded below as follows

52 4n 6% +log(2)
Ry >-—(1- ,
4 log(N (8, Feo) vV N(§, For))
and hence we have that

2_ 54n+62
log(N (6, F*0) V N(8, Fo1))’

Ri > 6 (23)

Since R7; is strictly positive, then we have that
Ry 2 6%,
where § is the solution to the transcendental equation

2 _ (5417,
“ log(N (8, Foo) V N(§, For))’

or equivalently
log(N (8, F*°) V N (8, F*1)) < 6 n. (24)

The metric entropy of a function space F“ is given by
H(5, F*) = log(N (0, F*«), and hence (24) is written as

H(6, F*)V H(8, F*') < 6’ n. (25)

Since the metric entropy H (6, F**) is a decreasing function of
the smoothness parameter o, then it follows that the solution §*
of the transcendental equation in (25) is given by §* = do V 61,
where d,, is the solution to the equation

H (0w, F*) < 62 n, w € {0,1}. (26)

The equation in (26) has a solution for all n when the func-
tion space F“* has a polynomial or a logarithmic metric entropy
(Van der Vaart, 1998), which is the case for all function spaces of
interest (see Table I for evaluations of ¢ V d; for various function
spaces). It follows from (23) and (26) that

Ry = (65 V 61), H(b,, F*) = 62n, w € {0,1},

and hence, from (??), we have that

W(T) = 2055V 631), H(bw, F*) = 62n, we {0,1}. (27)
We now focus on upper bounding R7;. From (?), we know that
the minimax risk is upper bounded by the channel capacity in
(11), which is further bounded above by the covering numbers as
follows

R < = (log(N(6, F*°)) V1og(N(6, F*1)) +nd”) .

3\>~

For ¢ satisfying (26), we have that

log(N (8, F*°)) V log(N (8, F*1)) = 6% n,

and hence R}y < 62V 8%. It follows that

W(T) =083V 61), H(bw, F*) =820, we {0,1}. (28)

By combining (27) and (28), we have that I = £2(62 A 6%) and
I} = O(d3 Vv 67), and hence it follows that

W(T) =683V 61), H(bw, F*) = 82n, we {0,1}. (29)

For Holder balls, 6, = n2a:va+wdw . The variable selection term

follows straightforwardly from model M2 in (Yang et al., 2015).
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6.2. Proof of Theorem 2

We start by providing the following Lemma, which we will use to
prove the statement of the Theorem.

Lemma 1. The PEHE ¢ (1) = E

cally bounded above as follows:

[ |\ T -T H%] is asymptoti-

W) SE[IELf— fo 3] +E [IELA - £1 13].

Proof. The PEHE w(T) for a given observational dataset is given
by:
() = || (fil@) = fo(@)) = (fulx) = fo@) 3, (30)

where fo(x) = E[ fu(z) | Dy ], for w € {0,1}. The norm in
(30) can be expressed as follows:

BT = || (Fi(@) — fole)) — (hi(@) — fola) |13
= /X (Fi(2) = fo(@)) — (1(2) — fo(x)))? dP(x)

=/X((f1() (@) + (fola) -
<2 /X (Fu() = Fr(@)? + (o) — folx))?) dP(z)

fo(2)))? d(z)

:2/X<f1(> f1(2))? dB(z,w = 1)
2/X(fo(x)—fo(x))2dIP(a:,w:0). (31)

Thus, we have that

W(T) =2 /X (Fi(@) — f1(2))? pla) - dP(z)

2 / (Fo(@) — fo(@))? (1 - p(x)) - dP(z)
X

=2[lvp(z) - ( ))H%Q(P)
+2H\/1* fo @)1 )

Using Cauchy-Schwarz inequality, we obtain the following:

V(@) (fi( @3 < llp@)ll2 - I(fa(2) = fr(@)?]l2,
and similarly for ||\/1 — p(x) - (fo( z))||3.

The proof of the Lemma is concluded by observmg that ||p(x)||2
is O(1) and

I(fr(@) = f1@)?ll2 = ([ (a(2) —

The same can be arrived at via Minkowski inequality. [

fi@)E. 32

The minimax rate achieved by the prior (S0, 31) is upper
bounded by the posterior contraction rates (van der Vaart & van
Zanten, 2008) (rate of convergence of the L?(IP) loss) over the
surfaces fo and f1. For a prior GP(Matérn(,,)) and a true func-
tion f, € H*v, the contraction rate £~ is given by solving the
following transcendental equation (Vaart & Zanten, 2011):

¢r.(e) <n- &, (33)

where ¢y (¢) is the concentration function defined as (van der
Vaart & van Zanten, 2008):

¢5.,(e) = —log(Pri(p) (I f — fulls <€))- (34)

The concentration function measures the amount of prior mass

that /7 places around the true function f,,. In Lemma 4 in (Vaart
& Zanten, 2011), the concentration function ¢y, (¢) for a suffi-
ciently smooth prior GP(Matérn(8,,)), with B, > d/2, and a
sufficiently smooth true function f, € H**, with 8, > d/2,
was obtained as follows:

2By —2ay+d

e Bw 4+ e aw . 35)

b1, (€) S

Thus, combining (33) and (35), the posterior contraction rate for
II(Bw) around f,, is the solution to:

n-e?<e Bu +e aw , (36)
The solution to (36) is given by
__Bw —_Qw
e<Sn 2Puwtd +n 2Pwtd
(BwAaw)

=n” 2Butd . (37)

That is, we can characterize the L (P) loss surfaces on fo and fi

as follows:
_ (Bwhaw)
Ep, [|Ea[fu|D] = ful3] Sn™ 2we,  (38)
and so it follows that:
~ _ (Bgrag) _(Byroy)
W(T) S 2ord v

which concludes the proof of the Theorem.
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6.3. Derivation of Equation (6)

From Lemma 1, we have that:
IVp(@)(fi(x @3 < lIp@)llz - [1(fi(@) = fi(@))?]l2,
and similarly for ||\/1— p(z) - (fo(x) — fo(z))||3. Thus, we

can upper bound the PEHE as follows:

(1) S llp@) |2,y - 1(fi(@) = f1(2)) ]2 ey
(@ = p@)ll2e0) - [1(Fo(@) = fo(@))? [l 2 o)

Note that:

o) 2@,y = [ plx)dP(X =x|W =1)

IP’( =1|X=2)dP(X =2|W = 1)
d

P(W =1,X = z)

I
><\\><\

dP(X =z |W =1)

dP(X = )
[ dP(X =z | W =1),P(W =1) B B
-/ PR =) dP(X =z |W = 1)
pay . [ W =)

W =1). exp(lOg (/ dP?(X d]P’(_Xxlw)_l))>

P
= P(W = 1) - exp (Da(dP(X = 2 |W = 1)||dP(X = )))
P(W =1) - exp (D2(Q1]|Q)) -

The same can be shown for ||1 — p(z)|L2(p,), and the bound in
(6) follows.



