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Abstract

In this paper, we derive bounds on the mu-
tual information of the empirical risk minimiza-
tion (ERM) procedure for both 0-1 and strongly-
convex loss classes. We prove that under the Ax-
iom of Choice, the existence of an ERM learn-
ing rule with a vanishing mutual information is
equivalent to the assertion that the loss class has
a finite VC dimension, thus bridging information
theory with statistical learning theory. Similarly,
an asymptotic bound on the mutual information
is established for strongly-convex loss classes in
terms of the number of model parameters. The
latter result rests on a central limit theorem (CLT)
that we derive in this paper. In addition, we use
our results to analyze the excess risk in stochastic
convex optimization and unify previous works.
Finally, we present two important applications.
First, we show that the ERM of strongly-convex
loss classes can be frivially scaled to big data us-
ing a naive parallelization algorithm with provable
guarantees. Second, we propose a simple infor-
mation criterion for model selection and demon-
strate experimentally that it outperforms the pop-
ular Akaike’s information criterion (AIC) and
Schwarz’s Bayesian information criterion (BIC).

1. Introduction

Learning via the empirical risk minimization (ERM) of
stochastic loss is a ubiquitous framework that has been
widely applied in machine learning and statistics. It is often
regarded as the default strategy to use, due to its simplicity,
generality, and statistical efficiency (Shalev-Shwartz et al.,
2009; Koren & Levy, 2015; Vapnik, 1999; Shalev-Shwartz
& Ben-David, 2014). Given a fixed hypothesis space H,
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a domain Z, and a loss function on the product space f :
H x Z — R, the ERM learning rule selects the hypothesis
h that minimizes the empirical risk:

h = arg min {Fs(h) = :n;f(fu Z)} (D

where S = (z1,...,2m) € Z™ is a sample of m observa-
tions drawn i.i.d. from some unknown probability distribu-
tion D. To simplify notation, we omit the dependence of
h on the sample S. By contrast, the true risk minimizer is
denoted h*:
h — i {Fh:EN h, } 2

argmin 4 F(h) = Exnp [f(h, 2)] 2
Hence, learning via ERM is justified if and only if '(h) <
F(h*) + ¢, for some provably small e.

In some applications, such as classification, the stochastic
loss of interest is often the 0-1 loss. However, minimiz-
ing the 0-1 loss is, in general, computationally intractable
even for simple hypothesis spaces, such as linear classi-
fiers (Feldman et al., 2009). To circumvent this difficulty,
a convex, surrogate loss is used instead, which is justified
by consistency results when the loss is calibrated (Bartlett
et al., 2006). When the stochastic loss is convex, ERM has
occasionally been referred to by various names in the litera-
ture, such as stochastic convex optimization and stochastic
average approximation (Shalev-Shwartz et al., 2009; Feld-
man, 2016). Examples of the latter framework include least
squares, logistic regression, and SVM.

In the literature, several approaches have been proposed for
analyzing the generalization risk and, consequently, the con-
sistency of empirical risk minimization. The most dominant
approach is uniform convergence, with seminal results for
0-1 loss classes dating to the early work of Vapnik and Cher-
vonenkis in the 1970s (Shalev-Shwartz & Ben-David, 2014;
Abu-Mostafa et al., 2012; Vapnik, 1999). The Fundamen-
tal Theorem of Statistical Learning states that a hypothesis
space H is agnostic PAC-learnable via ERM if and only if
it is PAC-learnable at all, and that this occurs if and only
if H has a finite VC dimension (Shalev-Shwartz & Ben-
David, 2014). This elegant characterization shows that the
generalization risk for 0-1 loss classes can be bounded by
computing their VC dimensions.
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Similarly, when the stochastic loss is both convex and of
the generalized linear form, where f(h, z;) = r(h) +
g({h, ¢(2;)), 2z;) and r : H — R is a strongly-convex reg-
ularizer, then, under mild additional conditions of smooth-
ness and boundedness, it has been shown that the true risk
sub-optimality F'(h) — F'(h*) is bounded uniformly in H
by a constant multiple of the empirical risk sub-optimality
Fs(h) — Fs(h) plus an O(1/m) term (Sridharan et al.,
2009). In general, it can be shown that for strongly-convex
stochastic losses, the risk of the empirical risk minimizer
converges to the optimal risk with rate O(1/m), which jus-
tifies learning via the empirical risk minimization (Shalev-
Shwartz et al., 2009). Hence, the consistency of empirical
risk minimization for both 0-1 loss classes and strongly-
convex loss functions is, generally, well-understood.

However, many information-theoretic approaches have been
recently proposed for analyzing machine learning algo-
rithms. These include generalization bounds that are based
on max-information (Dwork et al., 2015), leave-one-out
information (Raginsky et al., 2016), and the mutual informa-
tion (Alabdulmohsin, 2015; Russo & Zou, 2016). They have
found applications in important areas, such as in privacy and
adaptive data analysis, since they naturally lead to guaran-
teed stability, bounded information leakage, and robustness
against post-processing. Compared to other information-
theoretic approaches, uniform generalization bounds using
the variational information, also called T-information (Ra-
ginsky et al., 2016), yield the tightest results for bounded
loss functions, as deduced by the Pinsker inequality (Cover
& Thomas, 1991). It was proposed in (Alabdulmohsin,
2015), who used it to prove that uniform generalization,
algorithmic stability, and bounded information were, in fact,
equivalent conditions on the learning algorithm. A similar
notion, called “robust generalization" was later proposed
in (Cummings et al., 2016), who analyzed its significance
in the adaptive learning setting and showed that it could be
achieved using sample compression schemes, finite descrip-
tion lengths, and differential privacy. However, these two
notions of “uniform" and “robust" generalization turned out
to be equivalent (Alabdulmohsin, 2017).

To describe uniform generalization in informal terms, sup-
pose we have a learning algorithm £ : 2™ — H, which
selects a hypothesis h € H according to a training sam-
ple S € Z™. Let the generalization risk of £ w.r.t. some
bounded loss function [ : H x Z — [0, 1] be defined by:

Ryen(L) = Egpm n [L(h) — Lg(h)], 3)

where L(h) = E,.p[l(h,z)] and Lg is its empirical coun-
terpart Lg(h) = E,ws[l(h, z)]. In Eq. (3), the expectation
is taken over the random choice of the sample and the inter-
nal randomness (if any) in the learning algorithm. Note that
lin Eq. (3) can be different from the loss f in Eq. (1) that is
optimized during the learning stage, e.g. [ can be a 0-1 mis-

classification error rate while f is some convex, surrogate
loss. Then, £ is said to generalize uniformly with rate € > 0
if |[Rgen(L)| < € is guaranteed to hold independently of
the choice of [. That is, the generalization guarantee holds
uniformly in expectation across all parametric loss functions,
hence the name.

Definition 1 (Uniform Generalization). A learning algo-
rithm L : Z™ — H generalizes uniformly with rate € > 0
if for all bounded parametric losses | : H x Z — [0, 1], we
have |Rgen (L)| < €, where Ryey, (L) is given in Eq. (3).

Informally, Definition 1 states that once a hypothesis h is
selected by a learning algorithm £ that achieves uniform
generalization, then no “adversary" can post-process the
hypothesis in a manner that causes over-fitting to occur (Al-
abdulmohsin, 2015; Cummings et al., 2016). Equivalently,
uniform generalization implies that the empirical perfor-
mance of h on the sample S is a faithful approximation to
its true risk, regardless of how that performance is measured.
For example, the loss function [ in Eq. (3) can be the mis-
classification error rate, a cost-sensitive error rate in fraud
detection and medical diagnosis (Elkan, 2001), or it can be
the Brier score in probabilistic predictions (Kull & Flach,
2015). The generalization guarantee would hold in any case.

The main theorem of (Alabdulmohsin, 2015) states that
the uniform generalization risk has a precise information-
theoretic characterization:

Theorem 1 (Alabdulmohsin, 2015). Given a fixed 0 <
€ < 1 and a learning algorithm L : Z™ — H that se-
lects a hypothesis h € H according to a training sample
S ={z1,...,2m}, where z; ~ D are i.i.d., then L general-
izes uniformly with rate € if and only if J (h; ) < €, where
Z ~ S is a single random training example, J(x;y) =
lp(x)p(y), plx.y)ll7. and ||y, q2||7 is the total varia-
tion distance between the probability measures q1 and qs.

Throughout this paper, we will adopt the terminology used
in (Alabdulmohsin, 2017) and call 7 (x; y) the “variational
information" between the random variables x and y. Varia-
tional information is an instance of the class of informativity
measures using f-divergences, for which an axiomatic basis
has been proposed (Csiszar, 1972; 2008).

To illustrate Theorem 1, consider the case of a finite hypoth-
esis space |H| < co. Then, a classical argument using the
union bound (Shalev-Shwartz & Ben-David, 2014) can be
used to show that the generalization risk w.r.t. any fixed
bounded loss [ : H x Z — [0,1] is O(+/log [H]/m). This
follows from the fact that the union bound argument does
not make any additional assumptions on the loss [ beyond
the fact that it has a bounded range. Hence, the uniform
generalization risk is O(+/log |H]/m). However, Theorem
1 states that this bound must also hold for the variational
information 7 (h; z) as well. This claim can, in fact, be ver-
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ified readily using information theoretic inequalities since
we have (Alabdulmohsin, 2015):

T i)g\/I(h;i)S\/I(h;S)S\/log|H|7

2 2m 2m

where I(x;y) is the Shannon mutual information measured
in nats (i.e. using natural logarithms). Here, the first in-
equality is due to Pinsker (Cover & Thomas, 1991), the
second inequality follows because z; are i.i.d., and the last
inequality holds because the Shannon mutual information
is bounded by the entropy. Note that in the latter case, only
information-theoretic inequalities were used to recover this
classical result without relying on the union bound.

The generalization guarantee in Theorem 1 depends on the
probability distribution D. It can be made distribution-free
by defining the capacity of a learning algorithm L by:

C(L) = sup{J (h; z) = E;,5)|lp(h) , p(h|2)[|7}, (4

p(2)

where the supremum is taken over all possible distributions
of observations. This is analogous to the capacity of commu-
nication channels in information theory (Cover & Thomas,
1991). Then, the generalization risk of £ is bounded by
C(L) for any distribution D and any bounded loss func-
tion ! : H x Z — [0,1]. In many cases, such as in finite
description lengths, countable domains, mean estimation,
differential privacy, and sample compression schemes, the
capacity of C'(£) can be tightly bounded (Alabdulmohsin,
2015; 2017). In this paper, we derive new bounds for the ca-
pacity of the empirical risk minimization (ERM) procedure.

Finally, we point out that even though uniform generaliza-
tion guarantees are originally defined only in expectation
as shown in Eq. (3), it has recently been established that
these guarantees of uniform generalization in expectation
also implied a generalization with a high probability as well
(Alabdulmohsin, 2017). This is in stark contrast with tradi-
tional generalization in expectation guarantees that do not
imply concentration.

2. Contributions

The first contribution of this paper is to establish tight rela-
tions between uniform generalization and the empirical risk
minimization (ERM) procedure. This will allow us to bridge
information theory with statistical learning theory. More
specifically, we will prove that under the Axiom of Choice,
an ERM learning rule always exists that has a vanishing
learning capacity C'(£) if and only if the 0-1 loss class has
a finite VC dimension.

Second, we prove that the empirical risk minimization of
strongly-convex stochastic loss also generalizes uniformly
in expectation. To establish the latter result, we prove the

asymptotic normality of the empirical risk minimizer over
the random choice of the training sample, which is a useful
result in its own right, such as for uncertainty quantification
and hypothesis testing. In the machine learning literature,
central limit theorems have been employed to analyze on-
line learning algorithms. For instance, (Polyak & Juditsky,
1992) derived a central limit theorem (CLT) when using
an averaging method to accelerate convergence. More re-
cently, (Mandt et al., 2016) derived a central limit theorem
for SGD with a fixed learning rate under simplifying as-
sumptions. Then, (Mandt et al., 2016) used their result to
select the learning rate such that the trajectory of SGD gen-
erates samples from the posterior distribution. Unlike the
work in (Mandt et al., 2016), we prove our CLT without
relying on some unnecessary simplifying assumptions, such
as the Gaussianity of noise. As a consequence of our work,
we present a generalization bound for stochastic convex
optimization, which only depends on the number of model
parameters and applies to any learning task, such as regres-
sion, multi-class classification, and ranking. Next, we use
our results to analyze the excess risk in stochastic convex
optimization and unify previous works.

Finally, we demonstrate two important applications. First,
we show that the ERM of strongly-convex loss classes can
be trivially distributed and scaled to big data using a naive
parallelization algorithm whose performance is provably
equivalent to that of the ERM learning rule. Unlike previ-
ous works, our parallelization algorithm does not rely on
advanced treatments, such as the ADMM procedure (Boyd
etal., 2011). Second, we use our results to propose a simple
information criterion for model selection in terms of the
number of model parameters and demonstrate experimen-
tally that it outperforms the popular Akaike’s information
criterion (AIC) (Akaike, 1998; Bishop, 2006) and Schwarz’s
Bayesian information criterion (BIC) (Schwarz, 1978).

3. Notation

Our notation is fairly standard. Some exceptions that may
require further clarification are as follows. First, when x is a
random variable whose value is drawn uniformly at random
from a finite set .S, we will write x ~ S to denote this fact.
Second, if x is a predicate, then I{x} = 1 if and only if x is
true, otherwise I{x} = 0. Third, A < B is a linear matrix
inequality (LMI), i.e. A < B is equivalent to the assertion
that B — A is positive semidefinite.

Moreover, we will use the order in probability notation for
real-valued random variables. Here, we adopt the notation
used in (Janson, 2011; Tao, 2012). In particular, let x = x,,
be a real-valued random variable that depends on some pa-
rameter n € N. Then, we will write x,, = O,(f(n)) if for
any § > 0, there exists absolute constants C' and ng such
that for any fixed n > ny, the inequality |x,,| < C'|f(n)]
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holds with a probability of, at least, 1 — §. In other words,
the ratio x,,/ f (n) is stochastically bounded (Janson, 2011).
Similarly, we write X, = 0,(f(n)) if x,,/ f(n) converges to
zero in probability. As an example, if x ~ N (0, ) is a stan-
dard multivariate Gaussian vector, then ||x || = O,(V/d)
even though || x ||2 can be arbitrarily large. Intuitively, the
probability of the event || X || > d2 ¢ when ¢ > 0 goes to
zero as d — 00 50 || X ||z is effectively of the order O(v/d).

Finally, let H be a fixed hypothesis space and let Z be a
fixed domain of observations. Given a 0-1 loss function
f:Hx Z—{0,1}, we will abuse terminology slightly by
speaking about the “VC dimension" of ‘H, when we actually
mean the VC dimension of the loss class {f(h,-) : h € H}.
Because the 0-1 loss f will be clear from the context, this
should not cause any ambiguity.

4. Empirical Risk Minimization of 0-1 Loss
Classes

We begin by analyzing the ERM learning rule for 0-1 loss
classes. Before we establish that a finite VC dimension is
sufficient to guarantee the existence of ERM learning rules
that generalize uniformly in expectation, we first describe
why ERM by itself is not sufficient even when the hypothesis
space has a finite VC dimension'.

Proposition 1. For any sample size m > 1 and a positive
constant € > 0, there exists a hypothesis space H, a domain
Z, and a 0-1 loss function f : H x Z — {0,1} such
that: (1) H has a VC dimension d = 1, and (2) a learning
algorithm L : Z™ — H exists that outputs an empirical
risk minimizer h with J(iz; Z) > 1—¢ wherez ~ Sisa
single random training example.

Proposition 1 shows that one cannot obtain a non-trivial
bound on the uniform generalization risk of an ERM learn-
ing rule in terms of the VC dimension d and the sample
size m without imposing some additional restrictions. Next,
we prove that an ERM learning rule exists that satisfies the
uniform generalization property if the hypothesis space has
a finite VC dimension.

We begin by recalling a fundamental result in modern set
theory. A non-empty set Q is said to be well-ordered if
Q is endowed with a total order < such that every non-
empty subset of Q contains a least element. The following
fundamental result is due to Ernst Zermelo.

Theorem 2 (Well-Ordering Theorem). Under the Axiom of
Choice, every non-empty subset can be well-ordered.

Theorem 2 was proved by Zermelo in 1904 (Kolmogorov &
Fomin, 1970).

"Detailed formal proofs are available in the supplementary
materials.

Theorem 3. Given a hypothesis space ‘H, a domain Z, and
a0-1loss f: H x Z — {0,1}, let < be a well-ordering on
H and let L : Z"™ — H be the learning rule that outputs
the “least” empirical risk minimizer to the training sample
S € Z™ according to <. Then, C(L) — 0as m — oo if
H has a finite VC dimension. In particular:

1+ dlog 24*
< 3+ +dogd’
Vm m

where C(L) is given by Eq. (4) and d is the VC dimension
of H, provided that m > d.

c(L)

Next, we prove a converse statement. Before we do this, we
present a learning problem that shows why a converse to
Theorem 3 is not generally possible without making some
additional assumptions. Hence, our converse will be later
established for the binary classification setting only.

Example 1 (Integer Subset Learning Problem). Let Z =
{1,2,3,...,d} be a finite set of positive integers. Let H =
2% and define the loss of a hypothesis h € H to be f(h, z) =
I{z ¢ h}. Then, the VC dimension is d. However, the
learning rule that outputs h = Z is always an ERM learning
rule that generalize uniformly with rate ¢ = 0 regardless of
the sample size and the distribution of observations.

The previous example shows that a converse to Theorem 3 is
not possible without imposing some additional constraints.
In particular, in the Integer Subset Learning Problem, the
VC dimension is not a useful measure of the complexity
of the hypothesis space H because many hypotheses dom-
inate others (i.e. perform better across all distributions of
observations). For example, the hypothesis h’ = {1, 2,3}
dominates " = {1} because there is no distribution on
observations in which 2" outperforms h’. Even worse, the
hypothesis h = Z dominates all other hypotheses.

Consequently, in order to prove a lower bound for all ERM
rules, we consider the standard binary classification setting.

Theorem 4. In any fixed domain Z = X X)), let the hypoth-
esis space H be a concept class on X and let f(h,z,y) =
I{y # h(x)} be the misclassification error. Then, any ERM
learning rule L w.r.t. f has a learning capacity C (L) that
is bounded from below by C (L) > % (1 — %)m, where m
is the training sample size and d is the VC dimension of H.

Using both Theorem 3 with Theorem 4, we arrive a crisp
characterization of the VC dimension of concept classes in
terms of information theory.

Theorem 5. Given a fixed domain Z2 = X x ), let
the hypothesis space H be a concept class on X and let
f(hyz,y) = {y # h(z)} be the misclassification error.
Let m be the sample size. Then, the following statements
are equivalent under the Axiom of Choice:
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1. ‘H admits an ERM learning rule L whose learning
capacity C(L) satisfies C(L) — 0 as m — oo.

2. H has a finite VC dimension.

Proof. The lower bound in Theorem 4 holds for all ERM
learning rules. Hence, an ERM learning rule exists that
generalize uniformly with a vanishing rate across all dis-
tributions only if H has a finite VC dimension. However,
under the Axiom of Choice, H can always be well-ordered
by Theorem 2 so, by Theorem 3, a finite VC dimension is
also sufficient to guarantee the existence of a learning rule
that generalize uniformly. O

Theorem 5 presents a crisp characterization of the VC di-
mension in terms of information theory. According to the
theorem, an ERM learning rule can be constructed that does
not encode the training sample if and only if the hypothesis
space has a finite VC dimension.

Remark 1. In (Cummings et al., 2016), it has been argued
that uniform generalization, called “robust generalization”
in the paper, is important in the adaptive learning setting
because it implies that no adversary can post-process the
hypothesis and causes over-fitting to occur. In other words,
no adversary can use the hypothesis to infer new conclu-
sions, which do not themselves generalize. It was shown in
(Cummings et al., 2016) that this robust generalization guar-
antee was achievable by sample compression schemes and
differential privacy. Theorem 3 shows that an ERM learning
rule of 0-1 loss classes with finite VC dimensions always
exists that satisfies this robust generalization property.

Remark 2. One method of constructing a well-ordering on
a hypothesis space H is to use the fact that computers are
equipped with finite precisions. Hence, in practice, every
hypothesis space is enumerable, from which the normal
ordering of the integers is a valid well-ordering.

5. Empirical Risk Minimization of
Strongly-Convex Loss Classes

Next, we analyze the ERM learning rule for strongly-convex
loss classes. To recall, the ERM learning rule selects the
hypothesis h given by Eq. (1), which is identical to what
was assumed before. However, we now further assume
that f(h, z) is y-strongly convex, L-Lipschitz, and twice-
differentiable on its first argument. Moreover, the hypothesis
space is R? for some finite d < 0o.

5.1. Central Limit Theorem

We begin by establishing a central limit theorem (CLT).
Throughout this section, we will simplify notation by writ-

ing fi(h) = f(h, z).

Figure 1. This figure presents the predicted (left) and actual (right)
covariance matrices of the empirical risk minimizer to an ¢a-
regularized logistic regression problem, where d = 10 and
m = 1000. The colormap used is parula, and similar colors
correspond to similar values.

Theorem 6. Let h and h* be as given in Eq. (1) and Egq.
(2) respectively for some i.i.d. realizations of the stochastic
loss f ~ D. If the distribution D is supported on y-strongly
convex, L-Lipschitz, and twice differentiable loss functions,
then \/m (iz —h*) — N(0, ) asm — oo, where X is

equal to:
(Esan V2f (")) - Cov(V f(h*)) - (Epn V2 f(RY)])

Proof. Here is the outline of the proof. First, we use strong
convexity, the first-order optimality condition of h*, and
Theorem 6 in (Shalev-Shwartz et al., 2009) to show that
|lh — h*||; = O,(1/+/m). This allows us to estimate the
error term of the second-order Taylor expansion. Next, we
use the continuous mapping theorem (Mann & Wald, 1943)
and the matrix inversion lemma (Hager, 1989) to show that:

hoh® = - (Ep[V2 S (0)]) Y V) o, ()
m pt m

Because (1/m) Y ", V f;(h*) is an average of i.i.d. real-
izations, applying the classical central limit theorem, the
first-order optimality condition on h*, and the affine prop-
erty of the multivariate Gaussian distribution will yield the
desired result. O

Remark 3. The CLT in Theorem 6 is an asymptotic re-
sult; it holds for a sufficiently large m. When the gradient
V fi(w) is, additionally, R-Lipschitz, it can be shown using
the Matrix-Hoeffding bound (Tropp, 2012) that the normal
approximation is valid as long as m > L? /v* + RLlogd.

To verify Theorem 6 empirically, we have implemented the
{o-regularized logistic regression on a mixture of two Gaus-
sians with different means and covariance matrices, one
corresponding to the positive class and one corresponding
to the negative class. Both the actual and predicted covari-
ance matrices of the empirical risk minimizer fl, whose
randomness is derived from the randomness of the training
sample, are depicted in Fig. 1. As shown in the figure, the
actual covariance matrix matches with the one predicted by
Theorem 6.
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Theorem 6 shows that the sample complexity of stochastic
convex optimization depends on the curvature of the risk
Es~p[f(h)] at its minimizer h*. Next, we show that the
dependence of ERM on this curvature is, in fact, optimal.

Proposition 2. There exists a stochastic loss f : R — R
that satisfies the conditions of Theorem 6 and a distribu-
tion D such that if h is an unbiased estimator of i* =
arg miny cga{Esp[f(h)], then the covariance of the esti-
mator is bounded from below (in the positive semidefinite
sense) by:

Espn[(h — h*) - (R = h*)] = (1/m) %,

where Y is the covariance of ERM given by Theorem 6.

5.2. The Excess Risk

Theorem 6 states that when the loss f is strongly convex, the
empirical risk minimizer his normally distributed around
the population risk minimizer h* with a vanishing O(1/m)
covariance. This justifies learning via the empirical risk
minimization rule.

We use this central limit theorem, next, to derive the asymp-
totic behavior of the excess risk F'(h) — F'(h*), where F(h)
is defined in Eq. (2). In particular, we would like to deter-
mine the impact of regularization on the asymptotic behav-

ior of the excess risk. We write:

£ = 311 1B+ 9(h), ®

where A > 0, g is a k-strongly-convex function for some
Kk > 0,and A + k = v > 0. Because f satisfies the
conditions of Theorem 6, we know that h — h* as m — oo.
Hence, we can take the Taylor expansion of F'(h) around
h* and write:

F(R)~F(h) = |

which holds since VF(h*) = 0 and ||h — h*|] =
O,(1/4/m). Using Theorem 6 and simplifying yields:

(h—h*)T V2F(h*) (h—h*)+o0, (%)

" *\ _ L TrrT o2 * i

F(h) - F(h*) = 5 —x"U" V*F(h )Ux+op(m), ©)
where © = UUT, x = U~(h — h*), and ¥ is given by
Theorem 6.

By substituting Eq. (5), we arrive at the following corollary.

Corollary 1. Let f be decomposed into the sum of a regu-
larization term and an unregularized loss, as given by Eq.
(5). Write G(h) to denote the unregularized risk:

G(h) = Eseplg(h)] = Epup[f(h) — (\/2)l[ R ]3],

Then, under the conditions of Theorem 6, G(h) —G(h*) con-
verges in distribution (over the random choice of the train-

T
"23‘ for some c € R and some

ing sample) to \/%ch +

D = 0 that are both independent of m, where x ~ N (0, 1)
is a standard multivariate Gaussian random variable.

We can interpret Corollary 1 in sharp O(:) terms. In the
following remarks, both “expectation” and "probability" are
taken over the random choice of the training sample:

o In the absence of regularization, the ERM learning rule
of strongly convex loss enjoys a fast learning rate of
©(1/m) both in expectation and in probability.

e When regularization is used, the unregularized risk
converges to its infinite-data limit with a ©(1/m) rate
only in expectation. By contrast, it has a ©(1/1/m)
rate of convergence in probability.

Corollary 1 unifies previous results, such as those reported
in (Shalev-Shwartz & Ben-David, 2014; Sridharan et al.,
2009; Shalev-Shwartz et al., 2009). It also illustrates why
a fast ©(1/m) learning rate in expectation, such as those
reported for Exp-Concave minimization (Koren & Levy,
2015), do not necessarily correspond to fast learning rates
in practice because the same excess risk can be ©(1//m)
in probability even if it is ©(1/m) in expectation.

To validate these claims experimentally, we have imple-
mented a linear regression problem by minimizing the Hu-
ber loss of the residual. The mean and the standard deviation
of G(h) — G(h*) are plotted in Fig 2 against the sample
size m. As shown in Fig 2 (a, b), we have a fast ©(1/m)
convergence both in expectation and in probability when
no regularization is used. However, when regularization is
used (v = 0.01 in this experiment), then the expectation
of G(h) — G(h*) is O(1/m) but its standard deviation is
O(1/+/m) as shown in Fig 2 (c, d). These results are in
agreement with Corollary 1.

Corollary 1 provides the excess risk between the regularized
empirical risk minimizer h and its infinite data limit h*. We
can use the same corollary to obtain a bound on the excess
risk G(h) — infj,cpa {G(h)} using oracle inequalities in
a manner that is similar to (Sridharan et al., 2009; Shalev-
Shwartz & Ben-David, 2014). Moreover, the regularization
magnitude A may be optimized to minimize this excess risk.
Because this is quite similar to previous works, the reader
is referred to (Sridharan et al., 2009; Shalev-Shwartz &
Ben-David, 2014) for further details.

5.3. Uniform Generalization Bound

Theorem 6 can be a viable tool in uncertainty quantification
and hypothesis testing. In this section, however, we focus
on its implication for the uniform generalization risk. We
begin with the following “conditional” version of the central
limit theorem.
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Figure 2. This figure plots the quantity F(m

5000 10000

) = G(h) — G(h*) vs. the sample size m for a regression problem, where we minimize the

Huber loss of the residual. Figures (a) and (b) display the expectation and standard deviation of E(m), respectively, when v = 0 (no
regularization). By contrast, Figures (c) and (d) display the same quantities when v = 0.01. The blue curves are the best fitted curves
assuming a fast ©(1/m) convergence while the red curves are the best fitted curves assuming a standard ©(1/1/m) convergence.

Proposition 3. Let f ~ D be a fixed instance of the
stochastic loss, and let the training sample be S = {f} U
{fo, f3,-- -y fm} with f; ~ D drawn i.i.d. and indepen-
dently of f Let h € R? be the empirical risk minimizer
given by Eq. (1). Then, under the conditions of Theorem 6:

Pl 1) = N, ——

_12)’

where:

[t = arg min
heRd

{Bronlf(h) + 2 fn)]}

Here, 3 is the covariance matrix given by Theorem 6.

Proposition 3 states, in other words, that a single realization
of the stochastic loss shifts the expectation of the empirical
risk minimizer h and rescales its covariance. Both Theorem
6 and Proposition 3 imply that the capacity of the ERM
learning rule of stochastic, strongly-convex loss classes sat-
isfies C(L£) — 0 as m — co. We establish a more useful
quantitative result in the following theorem.

Theorem 7. Suppose that normality holds, where the em-
pirical risk minimizer h has the probability density p(it) =
N (u, X /m) with i and 3 given by Theorem 6, and for any
given single realization of the stochastic loss f we also
have p(h|f) = N (i1, 2/(m — 1)) as given by Proposition
3. Then:

L d 1
Ih; <& (7) 7
<< vol @
where I(x;y) is the Shannon mutual information between
the random variables x and y.

Corollary 2. Under the conditions of Theorem 7, the uni-
form generalization risk satisfies:

T < @m(}n)

Proof. This follows immediately from Theorem 7 and
Pinsker’s inequality (Cover & Thomas, 1991). O

®)

6. Applications
6.1. Large-Scale Stochastic Convex Optimization

Theorem 6 states that the empirical risk minimizer of
strongly convex stochastic loss is normally distributed
around the population risk minimizer h* with covariance
(1/m)X. This justifies learning via the empirical risk mini-
mization procedure. However, the true goal behind stochas-
tic convex optimization in the machine learning setting is
not to compute the empirical risk minimizer h per se but to
estimate h*. The empirical risk minimizer provides such an
estimate. However, a different estimator can be constructed,
which is as effective as the empirical risk minimizer h.

Theorem 8. Under the conditions of Theorem 6, let S =
{f1,-.-, fm} be m i.i.d. realizations of the stochastic loss
f ~ D and fix a positive integer K > 1. Let ulesj be a
partitioning of S into K subsets of equal size and define
itj to be the empirical risk minimizer for S; only. Then,
h = % ZJK=1 ilj is asymptotically normally distributed
around the population risk minimizer h* with covariance
(1/m)X, where ¥ is given by Theorem 6.

Proof. By Theorem 6, every ﬁj is asymptotically normally
distributed around h* with covariance (K/m)Y. Hence,
the average of those hypotheses is asymptotically normally
distributed around h* with covariance (1/m)X. O

Theorem 8 shows that in the machine learning setting, one
can trivially scale the empirical risk minimization procedure
to big data using a naive parallelization algorithm. Indeed,
the estimator h described in the theorem is not a minimizer
to the empirical risk but it is as effective as the empirical risk
minimizer in estimating the population risk minimizer h*.
Hence, both h and h enjoy the same performance guarantee.

In the literature, methods for scaling machine learning al-
gorithms to big data using distributed algorithms do not
always distinguish between optimization as it is used in
the traditional setting vs. the optimization that is used in
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Algorithm Test Error Time
ERM (m = 50, 000) 14.8 4+ 0.3% | 2.93s
ERM (m = 1,000) 15.3 £0.5% | 0.03s
Parallelized (K = 50,m = 1,000) | 14.8 £ 0.1% | 0.03s

Table 1. In this experiment, we run the /2 regularized logistic re-
gression on the MiniBooNE Particle Identification problem (Blake
& Merz, 1998). The first row corresponds to running the algorithm
on 50,000 training examples, the second row is for 1,000 examples,
while the last row is for the parallelization algorithm of Theorem 8§,
which splits 50,000 examples into 50 separate smaller problems.

the machine learning setting despite several calls that high-
lighted such a subtle distinction (Bousquet & Bottou, 2008;
Shalev-Shwartz et al., 2012). One popular, and often-cited,
procedure that does not make such a distinction is the alter-
nating direction method of the multiplier (ADMM) (Boyd
et al., 2011). The ADMM procedure produces a distributed
algorithm with message passing for minimizing the empir-
ical risk by reformulating stochastic convex optimization
into a “global consensus problem". However, the empirical
risk is merely a proxy for the true risk that one seeks to
minimize. Theorem 8, by contrast, presents a much simpler
algorithm that achieves the desired goal. Table 1 validates
this claim experimentally.

Remark 4. The theoretical guarantee of Theorem 8 is es-
tablished for stochastic convex optimization only. When the
stochastic loss is non-convex, such as the case in neural
networks, then the parallelization method is likely to fail.
Intuitively, the average of good solutions is not necessarily
a good solution itself when the loss is non-convex.

6.2. Information Criterion for Model Selection

Theorem 7 shows that under the assumption of normality,
which is justified by the central limit theorems (Theorem 6
and Proposition 3), the uniform generalization risk of the
ERM learning rule of stochastic, strongly-convex loss is
asymptotically bounded by \/d/(2m). Remarkably, this
bound does not depend on the strong-convexity parameter
-, nor on any other properties of the stochastic loss f that
is optimized during the training stage. In addition, because
it is a uniform generalization bound, it also holds for any
bounded loss function [ : R x Z — [0,1]. Hence, it can
serve as a simple information criterion for model selection.
As aresult, a learning algorithm should aim at minimizing
the Uniform Information Criterion (UIC) given by:

UIC = Eysll(h, z)] + %, 9)

where d is the number of learned parameters.

The UIC above is analogous to the Akaike information crite-
ria (AIC) (Akaike, 1998; Bishop, 2006) which seeks to min-
imize E,s[f (h, z)] + d/m. Itis also similar to Schwarz’s

107 107

Figure 3. In this experiment, we have a least-squares polynomial
regression where X = [—1,+1],y = f(x) + ¢, f is a polynomial
of degree d*, and € is i.i.d. Gaussian noise. The model selection
problem seeks to determine the optimal polynomial degree d*. In
each of the three figures above, a value of d* is selected, which is
marked by the dashed vertical line. Then, 100 d* training examples
are provided. Each curve plots an information criterion against
d. Ideally, d* minimizes the corresponding curve. As shown
above, only UIC succeeds in estimating d* in all problems. In this
experiment, the empirical risk is normalized in the range [0, 1] by
dividing it by the maximum observed loss in the training sample.

Bayesian information criterion (BIC) (Schwarz, 1978),
which seeks to minimize E,s[f(h, z)] + (logm/2) d/m.
In all three criteria, the generalization risk is estimated by
the number of learned parameters. However, the penalty for
the number of model parameters is proportional to d in both
AIC and BIC, which, by the discretization trick (Shalev-
Shwartz & Ben-David, 2014), is known to be pessimistic.
Indeed, the discretization trick suggests that the generaliza-
tion risk is proportional to O(y/d/m), which agrees with
the UIC. Experimentally, the UIC succeeds when both AIC
and BIC fail, as demonstrated in Fig. 32,

7. Conclusion

In this paper, we derive bounds on the mutual information of
the ERM rule for both 0-1 and strongly-convex loss classes.
We prove that under the Axiom of Choice, the existence
of an ERM rule with a vanishing mutual information is
equivalent to the assertion that the loss class has a finite VC
dimension, thus bridging information theory with statistical
learning theory. Similarly, an asymptotic bound on the
mutual information is established for strongly-convex loss
classes in terms of the number of model parameters. The
latter result uses a central limit theorem that we derive in
this paper. After that, we prove that the ERM learning rule
for strongly-convex loss classes can be trivially scaled to
big data. Finally, we propose a simple information criterion
for model selection and demonstrate experimentally that it
outperforms previous works.

>The MATLAB codes that generate Table 1 and Fig. 3 are
provided in the supplementary materials.
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