
Differentially Private Testing of Distributions

A. General Techniques in Differential Privacy

A standard mechanism in the privacy literature, the Laplace

mechanism, perturbs the output of an algorithm by adding
Laplace noise to make the output private. Assume the algo-
rithm computes a function f : [n]s ! R. The amount of
noise required depends on the privacy parameter, ⇠, and how
much f varies over two neighboring datasets. More pre-
cisely, this variation of f is called sensitivity of the function
and it is defined as:

�f = max
neighboring x,y

|f(x)� f(y)| .

The noise is drawn from a Laplace distribution with param-
eter b = �f/⇠. We denote the noise by Lap(b). More
precisely,

Pr[Lap(b) = x] =
1

2b
exp

✓
� |x|

b

◆
.

The following is well-known:

Lemma A.1 (The Laplace mechanism (Theorem 3.6 in
(Dwork & Roth, 2014))). Assume there is an algorithm

A that on input x, outputs f(x) + Lap(�f/⇠). Then A is

⇠-private.

Note that the expected value of Lap(b) is zero. Therefore,
the expected value of the output remains E[f(x)]. Since we
draw the noise independently from x, the variance of the
output is increased by Var[Lap(b)] = 2b2.

Moreover, the following lemmas help us understand how
the privacy guarantee changes if we process the output of
one or more private algorithm.

Lemma A.2 (Post-processing (Proposition 2.1 in (Dwork
& Roth, 2014))). Assume A is a ⇠-private algorithm. Any

algorithm that on input x outputs a function f(A(x)) is also

⇠-private.

Lemma A.3 (Composition Theorem (Theorem 3.16 in
(Dwork & Roth, 2014))). Let Ai : [n]s ! R be a ⇠i-

private algorithm for i = 1, . . . , k. Any algorithm that on

input x outputs a function f (A1(x),A2(x), . . . ,Ak(x)) is⇣Pk
i=1 ⇠i

⌘
-private.

B. Generic Differentially Private Tester

In this section, we describe a simple generic method to
convert a non-private tester into a private tester with a mul-
tiplicative overhead in the sample complexity. While this
method is known in the differential privacy community, it
is useful to contrast its sample complexity with the (sub-
stantially smaller) sample complexity of our testers in Sec-
tions 3, 4, and 5.

Algorithm 4 Reduction to a non-private tester
1: Input: Sample access to p, explicit access to q, n, ✏
2: m d 6⇠ e
3: s

0  m · s(n, ✏)
4: x1, x2, . . . , xs0  s

0 samples from p.
5: r  Pick a random number from [m].
6: O  A

�
{x(r�1)s+1, x(r�1)s+2, . . . , xrs}

�
.

7: With probability 1/6, O  {accept, reject} \O. hhflip
the answer with probability 1/6.ii

8: Output O.

Assume A is a tester that draws s(n, ✏) samples. The idea is
to draw m · s(n, ✏) samples for a sufficiently large m, and
from this sample, to pick a random subset of size s(n, ✏)
samples. Then, the new tester runs A on the randomly cho-
sen subset and outputs A’s output. Given two sample sets
that differ in one sample, the new private tester will give
the same output whenever a chunk that does not contain the
differing sample is chosen, which happens with probability
at most 1/m. This reduction to a non-private tester is de-
scribed in Algorithm 4. We formally show its correctness in
Theorem B.1.

Theorem B.1. Let A be an ✏-tester for property P that uses

s(n, ✏) samples from distribution p over [n]. Algorithm 4

is an (✏, ⇠)-private property tester for property P using

O (s(n, ✏)/⇠) samples.

Proof: Suppose A is an ✏-tester for property P that uses
s(n, ✏) samples. Without loss of generality, assume the
tester A errs with probability at most 1/62. Since the output
of A is then flipped with probability 1/6, by the union
bound, the probability that Algorithm 4 errs is at most 1/3,
and it is thus an ✏-tester for uniformity.

To prove the privacy guarantee, let m be d6/⇠e, and let
X = {x1, x2, . . . , xs0} and Y = {y1, y2, . . . , ys0} be two
sample sets of size s

0 := m · s(n, ✏) that differ in exactly
one sample. Without loss of generality, we assume they
differ in the first sample: xi = yi for i > 1 and x1 6= y1.
Algorithm 4 picks a random number, r, in [m] and feeds A
with the r-th chunk of size s(n, ✏) from the input sample set.
If r 6= 1, the distribution of the output is identical X and Y .
Let T (X) indicate the output of Algorithm 4 on input X .
More precisely, we have

2This can be achieved by the standard amplification method
(i.e., running the tester O(1) times and taking the majority an-
swer). The new sample complexity grows by at most a constant
multiplicative factor.
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Pr[T (X) = reject]

=
mP
i=1

Pr[T (X) = reject|r = i] ·Pr[r = i]

= 1
m

mP
i=1

Pr[T (X) = reject|r = i]

= 1
m

mP
i=2

Pr[T (Y ) = reject|r = i]

+ 1
m Pr[T (X) = reject|r = 1]

 1
m

mP
i=1

Pr[T (Y ) = reject|r = i] + 1
m

 Pr[T (Y ) = reject] + 1
m .

Since we change the output of A with probability 1/6, it is
not hard to see that Pr[T (Y ) = reject] is at least 1/6 for
any input y. Thus,

Pr[T (X) = reject]

Pr[T (Y ) = reject]
 1 +

6

m
 1 + ⇠ < e

⇠
.

Similarly, we can show the above inequality when the output
is accept. Thus, the algorithm is ⇠-private. ⇤

C. Amplification of Confidence Parameter in

the Private Setting

For convenience, throughout this paper we work with test-
ing algorithms that have failure probability at most 1/3.
Here we point out that this is without loss of generality,
since a standard amplification method also succeeds in the
differentially private setting.

Algorithm 5 Amplified confidence parameter
1: m 18dln 1

� e+ 1
2: s s(n, ✏, ⇠)
3: c 0
4: for i = 1, . . . ,m do

5: X
(i)  a set of s samples from p

6: Run A using samples in X
(i).

7: if A accepts then

8: c c+ 1
9: end if

10: end for

11: if c � m/2 then

12: Output accept.
13: else

14: Output reject.
15: end if

Theorem C.1. Given A, an (✏, ⇠)-private tester for prop-

erty P , such that A uses s(n, ✏, ⇠) samples for any input

distribution p over [n]. Algorithm 5 is an (✏, ⇠)-private

tester for property P , using O (log 1/� · s(n, ✏, ⇠)) samples

from p, that outputs the correct answer with probability

1� �.

Proof: First, we show that algorithm 5 is ⇠-private: Let
X and Y be two sample sets of size m · s (where m and
s are as defined in Algorithm 5) that differ only in one
sample. Without loss of generality, assume they differ in the
first sample. Therefore, X(1) and Y

(1) differ in only one
sample, and for i > 1, X(i) and Y

(i) are identical. Hence,
the distribution of the output of A in all of the iterations
except the first one is identical for both X and Y . For the
first iteration, the distribution over the output of A cannot
change drastically, because A is a ⇠-private algorithm. More
formally, we have the following:

Pr[A(X(i)) = accept] = Pr[A(Y (i)) = accept] for i > 1,

and

Pr[A(X(1)) = accept]  e
⇠ ·Pr[A(Y (1)) = accept].

An analogous argument holds when the output is reject. Let
T (X) indicate the output of Algorithm 4 on input X . Let
�(X(i)) be an indicator variable that is one if A outputs
accept on input X(i) and zero otherwise. Since iterations
of the algorithm are independent, we have:

Pr[T (X) = accept] = Pr


mP
i=1

�(X(i)) � 9dln 1
� e+ 1

�

= Pr
⇥
�(X(1)) = 1

⇤
·Pr


mP
i=2

�(X(i)) = 9dln 1
� e
�

+Pr


mP
i=2

�(X(i)) � 9dln 1
� e+ 1

�

 e
⇠ ·Pr

⇥
�(Y (1)) = 1

⇤
·Pr


mP
i=2

�(Y (i)) = 9dln 1
� e
�

+Pr


mP
i=2

�(Y (i)) � 9dln 1
� e+ 1

�

 e
⇠ ·Pr


mP
i=1

�(Y (i)) � 9dln 1
� e+ 1

�

 e
⇠ ·Pr[T (Y ) = accept] .

An analogous inequality holds for the case where the output
is reject. Therefore, Algorithm 5 is ⇠-private. Moreover, the
output of the algorithm is wrong only if the majority of the
invocations of A return the wrong answer (i.e. more than
9dln 1/�e times). However, A errs with probability at most
1/3 by definition. By the Hoeffding bound, the probability
of outputting the wrong answer is
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Pr [T (X) is wrong]  e
�2m/36  � .

Thus, the total error probability is at most �. Therefore,
Algorithm 5 is an (✏, ⇠)-private tester that outputs the correct
answer with probability 1� �. ⇤

D. Proof of Theorem 3.1

Theorem 3.1. Given an (✏, ⇠)-private uniformity tester us-

ing s(n, ✏, ⇠) samples, there exists an (✏, ⇠)-private tester

for identity using s = s(6n, ✏/3, ⇠) samples.

Proof: Given s samples from p, we map them to s samples
from p

0 using the following mapping:

1. Given sample i from p, the process F1(i) flips a fair
coin. If the coin is Heads, F1(i) outputs i, otherwise,
F1(i) outputs j drawn uniformly from [n]. Let p1
denote the output distribution of F1(i)’s. It is clear that
p1(i) = (1/2)p(i)+1/(2n). We define q1(i) similarly.

2. Let mi = b3n(q(i)+1/n)c. Given j and the output of
process F1(i) where i is drawn from p, process F2(i)
outputs j with probability mi/ (3n(q(i) + 1/n)) and
n+ 1 otherwise. Let p2 denote the output distribution
of the F2(i)’s. It is not hard to see that

p2(j) = p1(j) ·
mj

3n(q(j) + 1/n)

=
1

2
·
✓
p(j) +

1

n

◆
· mj

3n(q(j) + 1/n)

for all i 2 [n], and p2(n+ 1) = 1�
Pn

`=1 p2(`). We
define q2(i) similarly.

3. Given k, the output of process F2(i) where i is drawn
from p, we output F3(i) = (k, a) such that a is uni-
formly chosen from [6nq2(k)]. Note that for k 2 [n],
6nq2(k) is equal to mk and it is an integer, so the set
[6nq2(k)] is well-defined. We denote the distribution
of F3(k)’s as p0. It is not hard to see that if p = q, then

p
0 ((k, a)) =

1

2
·
✓
q(j) +

1

n

◆
· mj

3n(q(j) + 1/n)
· 1

mj

=
1

(6n)

for j 2 [n]. For k = n+ 1, we have:

6n q2(n+ 1) = 6n� 6n
nX

`=1

m`

6n
= 6n�

nX

`=1

m`.

is also an integer. Therefore, p0((n + 1, a)) is also
q2(n+ 1)/(6n q2(n+ 1)) = 1/6n.

Thus, if p = q, then p
0 will be a uniform distribution. Simi-

larly, if kp� qk1 � ✏ then kp0 � Uk1 � ✏/3. For a detailed
proof, see (Goldreich, 2016).

Then, we run the private uniformity tester using the samples
from p

0, and output the answer of the tester. As shown in
(Goldreich, 2016), if p is ✏-far from q, then p

0 is ✏/3-far
from uniform; and if p is identical to q, then p

0 is uniform.
Therefore, the algorithm is an ✏-tester for identity. It suffices
to show that the algorithm preserves differential privacy.

Assume X is the set of samples drawn from p, and denote
by ⇡ the bits of randomness that the mapping used to build
X

0
⇡, the set of samples from p

0. Assume Y is a sample set
from p that differs from X in exactly one location. Then X

0
⇡

also differs from X
0
⇡ in at most one location, because each

sample from p is used in generating exactly one sample from
p
0. Let A be the (✏, ⇠)-private uniformity tester and denote

by A(X 0
⇡) the output of the tester on input X 0

⇡. Since the
algorithm is ⇠-private, we have:

Pr[A(S0
⇡) = accept]  e

⇠ ·Pr[A(Y ) = accept] .

Let T (X) denote the output of our algorithm. By construc-
tion, we have

Pr[T (X) = accept]

Pr[T (Y ) = accept]
=

P
⇡ Pr[A(X 0

⇡) = accept] ·Pr[⇡]P
⇡ Pr[A(Y 0

⇡) = accept] ·Pr[⇡]


P

⇡ e
⇠ ·Pr[A(Y 0

⇡) = accept] ·Pr[⇡]P
⇡ Pr[A(Y 0

⇡) = accept] ·Pr[⇡]

 e
⇠
.

By the same argument, we can show the above inequality
holds when the output is reject. Therefore, our algorithm is
an (✏, ⇠)-private tester. ⇤

E. Proof of Theorem 4.1

Theorem 4.1. Given s = O(
p
n/(✏
p
⇠)+
p
n/✏

2) samples

from a distribution p over [n], Algorithm 1 is an (✏, ⇠)-
private uniformity tester, if s is sufficiently smaller than the

domain size n.

Proof: Algorithm 1 draws s samples from the underlying
distribution p. We use the Laplace mechanism to make the
algorithm private: Let K be the number of unique elements
in the sample set. Since changing one sample in the sample
set can change the number of unique elements by no more
than two, adding Laplace noise with parameter 2/⇠ to K

makes it ⇠-private. Using the composition Theorem A.3, the
algorithm is ⇠-private.

To show the algorithm is an ✏-tester, we prove the statistic
K

0 concentrates well around its expected value in both the
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soundness and completeness cases. Using Lemmas 1 and 2
in (Paninski, 2008), we have the following inequalities for
the number of unique elements:

EU [K]�EP [K] � s
2kp� Unk21

n
(7)

and

Var[K]  EU [K]�EP [K] +
s
2

n
. (8)

First, we show the algorithm is an ✏-tester for uniformity.
Then, we prove that it is ⇠-private.

Assume that the underlying distribution is the uniform distri-
bution. Note that E[K] = E[K 0]. Then, by the Chebyshev
inequality and Equation 8 we have that:

Pr[|K 0 �EU [K]| � C
2

2✏2
]

= Pr[|K 0 �EU [K
0]| � C

2

2✏2
]

 4✏4

C4
Var[K 0]

 4✏4

C4
(Var[K] +Var[Lap(2/⇠)])

 4✏4

C4
(
s
2

n
+

8

⇠2
)

 4

C2
+

32✏4

C4⇠2

 1

3
,

where the last inequality comes from the fact that C �
max(3.73 ✏/

p
⇠, 4.9). Thus, the probability of rejecting P

is less than 1/3.

Now suppose P is a distribution which is ✏-far from uniform.
Again by the Chebyshev inequality and Equation (8) we
have that:

Pr[|K 0 �EP [K]| � (EU [K]�EP [K])/2]

= Pr[|K 0 �EP [K
0]| � (EU [K]�EP [K])/2]

 4Var[K 0]

(EU [K]�EP [K])2

=
4(Var[K] +Var[Lap(2/⇠)])

(EU [K]�EP [K])2

=
4(Var[K] + 8⇠�2)

(EU [K]�EP [K])2

 4(EU [K]�EP [K] + s
2
/n+ 8⇠�2)

(EU [K]�EP [K])2

 4

EU [K]�EP [K]
+

4s2/n+ 32/⇠2

(EU [K]�EP [K])2
.

On the other hand by Equation 7, EU [K] � EP [K] is at
least C2

/✏
2. Thus,

Pr [|K 0 �EP [K]| � (EU [K]�EP [K])/2]

 4✏2

C2
+

4s2✏4

C4n
+

32✏4

C4⇠2

 1

3
,

where the last inequality is true when C �
max

�
6✏, 6, 4.12✏/

p
⇠
�
. Thus, the probability of ac-

cepting is less than 1/3. ⇤

F. Proof of Theorem 4.2

Theorem 4.2. Algorithm 2 is an (✏, ⇠)-private tester for

uniformity.

Proof: Let X = {x1, . . . , xs} be a set of s samples from p.
Let f(X) be the number of collisions in X . All variables
are as defined in Algorithm 2. First, we show that f̂(X) and
nmax(X) concentrate well around their expected values.

Lemma F.1. If s is ⇥

✓p
n

✏2 +
p
n logn
✏ ⇠1/2

+
p

nmax(1,log 1/⇠)

✏ ⇠ + 1
✏2 ⇠

◆
,

the following holds with probability at least 11/12:

• If p is the uniform distribution, then f̂(X) is less than

1+✏2/6
n

�s
2

�
.

• If p is ✏-far from uniform, then f̂(X) is greater than

1+✏2/6
n

�s
2

�
.

Proof: First, we compute the expected value of f̂(X). Since
the expected value of the noise is zero, E[f̂(X)] is equal
to E[f(X)]. So, if p is uniform, then E[f̂(X)] is

�s
2

�
/n,

and if p is ✏-far from uniform E[f̂(X)] is at least (1 +
✏
2)
�s
2

�
/n. Let ↵ satisfy kpk22 = (1 + ↵)/n and � be the

standard deviation of f̂(X). We make an assumption that
|✏2/6� ↵|

�s
2

�
/n is at least

p
12�. Below, this assumption

concludes the statement of the lemma. Later, we prove that
the assumption holds for sufficiently large s.

The conditions of the lemma hold if f̂(X) is closer to its
expected value than the distance of the threshold, 1+✏2/6

n

�s
2

�
,

to its expected value. Using the Chebyshev inequality, the
probability that the conditions do not hold is at most

Pr

���f̂(X)�E[f(X)]
��� >

����
1 + ✏

2
/6

n

✓
s

2

◆
�E[f(X)]

����

�

= Pr

���f̂(X)�E[f(X)]
��� >

|✏2/6� ↵|
n

✓
s

2

◆
]

�

 Pr
h
|f̂(X)�E[f(x)]| �

p
12�

i
 1

12
.
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Thus, it is sufficient to show that

|✏2/6� ↵|
n

✓
s

2

◆
�
p
12�. (9)

Recall that �2 is equal to Var[f(X)] +Var[Lap(2⌘f/⇠)],
so � is at most:

q
2max(Var[f(x)], 8⌘2f/⇠

2) .

Hence, we prove two stronger inequalities that yield to
Equation (9):

s �

s
20n

p
Var[f(X)]

|✏2/6� ↵| , (10)

and

s �

s
28n ⌘f

⇠|✏2/6� ↵| . (11)

Using a similar proof to the proof of Lemma 4 in (Diakoniko-
las et al., 2016), the inequality of Equation (10) holds for
s = c

p
n/✏

2 for sufficiently large constant c. Now, we
focus on Equation (11). If p is a uniform distribution, ↵ is
zero, and if p is ✏-far form being uniform, then ↵ is at least
✏
2. Therefore, the denominator is at least ✏2/6. Solving

Equation (11) for s, we have:

s � c
0 ·
 

1

✏2 ⇠
+

p
n log n

✏ ⇠1/2
+

p
nmax(1, log 1/⇠)

✏ ⇠

!
.

Hence, for sufficiently large constant c0, Equation (9) holds
and the proof is complete. ⇤
We have the following lemma:
Lemma F.2. Let X be a sample set of size s from the uni-

form distribution over [n]. With probability 11/12, we have

n̂max  max

✓
3

2
· s
n
, 12 e2 ln 24n

◆
+

2 ln 12

⇠
.

Proof: First, we show that nmax(X) is at most
max

�
3s/(2n), 12 e2 ln 24n

�
with probability at least 23/24.

It suffices to show that all of the ni(X)’s are smaller
than this bound. Consider the following cases: First,
assume s is at most 12n · ln(24n). Let k := 12 e2 ·
ln(24n) � e

2
s/n. If s  k, then nmax(X) is at most

max
�
3s/(2n), 12e2 ln 24n

�
. Otherwise,

Pr [ni(X) > k] 
✓
s

k

◆
· 1
nk

⇣
s · e
k

⌘k
· 1
nk
 e

�k  1

24n
.

Second, assume s is greater than 12n · ln(24n). By the
Chernoff bound, we have

Pr


ni(X) >

s

n

✓
1 +

1

2

◆�
 exp(� s

12n
)  1

24n
.

Thus,

Pr
⇥
ni(X) > max

�
3s/(2n), 12 e2 ln 24n

�⇤
 1

24n
.

Using the union bound, with probability 23/24 all the
ni(X)’s, and consequently nmax(X), are smaller than
max

�
3s/(2n), 12 e2 ln 24n

�
.

Moreover, based on the properties of the Laplace distribu-
tion, we have

Pr


Lap(2/⇠) � 2 ln 12

⇠

�
 exp(� ln 12)

2
 1

24
.

By the union bound, nmax(X) and Lap(2/⇠) are not ex-
ceeding the aforementioned bounds with probability 11/12.
Therefore, we have

Pr


n̂max < max

�
3s/(2n), 12 e2 ln 24n

�
+

2 ln 12

⇠

�
� 11

12
.

Thus, the proof is complete. ⇤
Given X , we define two probabilistic events, E1(X) and
E2(X), to be

E1(X) : n̂max < T E2(X) : f̂(X) <
6 + ✏

2

6n

✓
s

2

◆
,

where the probability is taken over the randomness of the
noise. Observe that E1(X) and E2(X) are independent.
We use E1(X) and E2(X) to indicate the complementary
events. Let M(X) denote the output of the algorithm when
the input sample set is X . We set the output, O, to accept,
if both E1(X) and E2(X) are true, and at the end of the
algorithm we may flip the output with small probability.
Here, we prove the probability of outputting the correct
answer is at least 2/3. Consider two following cases:

(i) p is uniform: Using Lemma F.2, with probability at least
11/12 we have that n̂max is less than T . By Lemma F.1, f̂
is less than

�s
2

�
|1 + ✏

2
/6|/n with probability at least 11/12.

Therefore, Pr[E1(X)] and Pr[E2(X)] are at most 1/12.
At the end of the algorithm, we flip the output with proba-
bility at most 1/6. Using the union bound, we have

Pr [M(X) = accept]

� 1�Pr
⇥
E1(X)

⇤
�Pr

⇥
E2(X)

⇤
� 1

6
� 2

3
.

(ii) p is ✏-far from uniform: By Lemma F.1, f̂(X) is
greater than

�s
2

�
|1+ ✏

2
/6|/n with probability at least 11/12,

so Pr[E2(X)] is at most 1/12. We flip the output of the
algorithm with probability at most 1/6. As a result, we have

Pr [M(X) = reject] � 1�Pr [E2(X)]� 1

6
� 2

3
.
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Thus, with probability at least 2/3 we output the correct
answer.

In the rest of the proof, we focus on proving the privacy
guarantee. It is not hard to see that |nmax(X)� nmax(Y )|
is at most one. By the properties of the Laplace mech-
anism in Lemma A.1, n̂max(X) is ⇠/2-private. Assume
|f(X) � f(Y )| is at most ⌘f . Then, f̂(X) is ⇠/2-private
as well. Since privacy preserved after post-processing
(Lemma A.2), both E1(X) and E2(X) are ⇠/2-private. Us-
ing the composition Lemma A.3, the output is ⇠-private (by
Lemma A.3).

Now, assume |f(X) � f(Y )| is greater than ⌘f . In this
case, we show that nmax(X) has to be large. Therefore, the
output is reject with high probability regardless of f̂(X).
Although f̂(X) is not private, it cannot affect the output
drastically and the output remains private. We prove this
formally below. Without loss of generality, assume we
replace a sample i in X with j to get Y . Thus, we have

|f(X)� f(Y )|

=
���
�ni(X)

2

�
+
�nj(X)

2

�
�
�ni(Y )

2

�
�
�nj(Y )

2

����

=
���
�ni(X)

2

�
+
�nj(X)

2

�
�
�ni(X)�1

2

�
�
�nj(X)+1

2

����

= |ni(X)� 1� nj(X)|

 nmax(X) ,

where the inequality comes from the assumption that there
is at least one copy of i in X . Therefore, nmax(X) is greater
than ⌘f as well. Since T is even smaller than ⌘f , it is very
unlikely that n̂max be smaller than the threshold T . More
formally, by the properties of the Laplace distribution, we
have:
Pr[E1(X)] = Pr[n̂max(X)  T ]

= Pr[n̂max(X)� nmax(X)  T � ⌘f ]

 Pr
h
Lap(2/⇠)  � 2max(ln 3,ln 3/⇠)

⇠

i

 exp (�max(ln 3, ln 3/⇠))/2

 min(1/6, ⇠/6) .
(12)

Now, consider the case that the algorithm output accept on
input X . It is not hard to see that

Pr [M(X) = accept]

= (5/6) ·Pr[E1(X) ^ E2(X)]

+(1/6) · (1�Pr[E1(X) ^ E2(X)])

= (2/3) ·Pr[E1(X) ^ E2(X)] + 1/6

= (2/3) ·Pr[E1(X)] ·Pr[E2(X)] + 1/6 .

(13)

Observe that since we flip the answer with probability 1/6
at the end, Pr[M(X) = accept] and Pr[M(Y ) = accept]

are at least 1/6. By this fact, Equation (12), and Equation
(13), we have:

Pr[M(X) = accept]

Pr[M(Y ) = accept]
 Pr[E1(X)] + 1/6

1/6
 ⇠+1 < e

⇠
.

Now, consider the case where the output of the algorithm
is reject on the input X . Similar to Equation (12), we
can prove Pr[E1(Y )] is at most min(1/6, ⇠/6). Similar to
Equation (13), it is not hard to see that

Pr [M(X) = reject] = (2/3)·(Pr[E1(X)_E2(X)])+1/6 .

(14)
If Pr[M(X) = reject] is at most Pr[M(Y ) = reject],
then clearly, we have:

Pr[M(X) = reject]

Pr[M(Y ) = reject]
 1 < e

⇠
.

Thus, assume Pr[M(X) = reject] is less than
Pr[M(Y ) = reject]. Then, we have:

Pr[M(X) = reject]

Pr[M(Y ) = reject]

=
(2/3) · (Pr[E1(X) _ E2(X)]) + 1/6

(2/3) · (Pr[E1(Y ) _ E2(Y )]) + 1/6

 Pr[E1(X) _ E2(X)]

Pr[E1(Y ) _ E2(Y )]
 1

1�Pr[E1(Y )]

 1

1�min(1/6, ⇠/6)
< 1 + ⇠ < e

⇠
.

The second to last inequality is true since we showed previ-
ously that Pr[E1(Y )] is at most min(1/6, ⇠/6). Hence, the
proof is complete. ⇤

G. Proof of Theorem 5.1

Theorem 5.1. Given sample access to two distributions p

and q, Algorithm 3 is an (✏, ⇠)-private tester for equivalence

of p and q.

Proof: Our proof has two main parts. First, we show that
the algorithm outputs the correct answer with probability
2/3. Second, we show that the algorithm is private.

Proof of Correctness: First, assume p and q are equal. In
the algorithm, we compute Z and add Laplace noise, ⌘, to
it. Then we compare it to threshold T := ✏

2
m

2
/(8n+ 4m).

Based on Equation (5), we have

E[Z 0] = E[Z] +E[⌘] = E[Z].

Using the Chebyshev inequality and Equation (6),
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Pr[outputting reject] = Pr[Z 0
> T ]

 Var[Z 0]

T 2
 Var[Z] +Var[⌘]

T 2

 2min{m,n}+ 128/⇠2

T 2
 1

3
,

where the last inequality is true for a sufficiently large uni-
versal constant C.

Case 1: Consider the case m  n. Then,

2min{m,n}
T 2

=
2m (8n+ 4m)2

m4✏4
 2m (12n)2

m4✏4

 288

✓
n
2/3

✏4/3
· 1

m

◆3

 288

C3
 1

6
,

where the last inequality is true for C greater than 12. More-
over,

128 ⇠�2

T 2
 128 (8n+ 4m)2

⇠2 m4 ✏4
 128 (12n)2

⇠2 m4 ✏4

 18432

✓ p
np
⇠✏

· 1

m

◆4

 18432

C4
 1

6
,

where the last inequality is true for C greater than 19. Thus,
for sufficiently large C, the probability of rejecting two
identical distribution p and q is less than 1/3.
Case 2: Consider the case n < m. Then,

2min{m,n}
T 2

=
2n (8n+ 4m)2

m4✏4
 2n (12m)2

m4✏4

 288

✓p
n

✏2
· 1

m

◆2

 288

C2
 1

6
,

where the last inequality is true for C greater than 42. More-
over,

128 ⇠�2

T 2
 128 (8n+ 4m)2

⇠2 m4 ✏2
 128 (12m)2

⇠2 m4 ✏2

 18432

✓
1

⇠ ✏
· 1

m

◆2

 18432

C2
 1

6
,

where the last inequality is true for C greater than 136.
Thus, for sufficiently large C the probability of rejecting
two identical distribution p and q is less than 1/3.

Now, suppose p and q are at least ✏-far from each
other in `

1-distance. We show that in this case Z
0 is greater

than T with high probability using Chebyshev’s inequality.
Based on Equation (6), we bound the variance of Z

0 in
terms of the expected value of Z 0. First, observe that, by
Equation (5), we have that E[Z 0] is at least C/6 for any
setting of parameters. Thus, for sufficiently large C, we
can assume E[Z 0] is at least 360. Let I1 be the set of all
indices i such that (1� (1� e

�m(pi+qi))/(m(pi + qi))) is
greater 1/2, and let I2 be the set of remaining indices, i.e.,
I2 = [n] \ I1. By Equation (5), we have

E[Z 0]2 =

 
X

i

(pi � qi)2

pi + qi
m

✓
1� 1� e

�m(pi+qi)

m(pi + qi)

◆!2

� 360
X

i

(pi � qi)2

pi + qi
m

✓
1� 1� e

�m(pi+qi)

m(pi + qi)

◆

� 360
X

i2I1

(p(i)� q(i))2

p(i) + q(i)
m

✓
1� 1� e

�m(p(i)+q(i))

m(p(i) + q(i))

◆

� 36
X

i2I1

5m
(p(i)� q(i))2

p(i) + q(i)
.

On the other hand, for any i in I2, we can conclude that
m(p(i) + q(i)) is less than 2. Therefore, m (p(i)�q(i))2

p(i)+q(i) is

at most 2. Thus,
P
i2I2

5m (p(i)�q(i))2

p(i)+q(i) is at most 10n. Since

(p(i)�q(i))2

p(i)+q(i) is less than p(i) + q(i),
P
i2I2

5m (p(i)�q(i))2

p(i)+q(i) is

also less than 10m. Hence, we have

Var[Z]  2min{m,n}+
X

i

5m
(p(i)� q(i))2

p(i) + q(i)

 2min{m,n}+
X

i2I1

5m
(p(i)� q(i))2

p(i) + q(i)

+
X

i2I2

5m
(p(i)� q(i))2

p(i) + q(i)

 12min{m,n}+ E[Z 0]2

36
.

By Equation (5), the expected value of Z 0 is at least 2T .



Differentially Private Testing of Distributions

Using Chebyshev’s inequality, we obtain

Pr[outputting “Accept”]
= Pr[Z 0  T ]  Pr[E[Z 0]� Z

0 � E[Z 0]� T ]

 Pr


E[Z 0]� Z

0 � E[Z 0]

2

�

 4Var[Z 0]

E[Z 0]2
 4(Var[Z] +Var[⌘])

E[Z 0]2

 48min{m,n}
E[Z 0]2

+
10

A +
512

E[Z 0]2 ⇠2

 48min{m,n}(4n+ 2m)2

m4✏4
+

1

9
+

512(4n+ 2m)2

m4 ✏4 ⇠2

 1

3
,

where the last inequality is true for sufficiently large C.

Proof of Privacy Guarantee: First, observe that the value
of Z does not change drastically over two neighboring
datasets. More formally, we have the following simple
lemma:

Lemma G.1. The sensitivity of the statistic Z is at most 8.

Proof: Assume two neighboring dataset x and y. Let Z(x)

and Z
(y) be the statistic for x and y respectively. We define

Zi as follows:

Zi :=

8
><

>:

|Xi + Yi|�Xi � Yi

Xi + Yi
if Xi + Yi 6= 0

0 otherwise.

We use a superscript (x) or (y) for Xi, Yi, Zi to indicate
the corresponding dataset we calculate them from. Since
x and y are two neighboring datasets, there is a sample i

in the x which has been replaced by j. Without loss of
generality, assume i was a sample from p. This implies that
X

(x)
i �X

(y)
i = 1 and Y

(x)
i = Y

(y)
i .

If X(y)
i +Y

(y)
i is zero, then Z

(x)
i is one. Thus, the difference

of Z(x)
i and Z

(y)
i is one. Now, assume X

(y)
i + Y

(y)
i is at

least one. Then, we have
���Z(x)

i � Z
(y)
i

���

=

�������

⇣
X

(x)
i � Y

(x)
i

⌘2

X
(x)
i + Y

(x)
i

�

⇣
X

(y)
i � Y

(y)
i

⌘2

X
(y)
i + Y

(y)
i

�������

=

�������

⇣
X

(y)
i � Y

(y)
i + 1

⌘2

X
(y)
i + Y

(y)
i + 1

�

⇣
X

(y)
i � Y

(y)
i

⌘2

X
(y)
i + Y

(y)
i

�������

=

�������

⇣
X

(y)
i � Y

(y)
i

⌘2
+ 2

⇣
X

(y)
i � Y

(y)
i

⌘
+ 1

X
(y)
i + Y

(y)
i + 1

�

⇣
X

(y)
i � Y

(y)
i

⌘2

X
(y)
i + Y

(y)
i

�������

=

������

2
⇣
X

(y)
i � Y

(y)
i

⌘
+ 1

X
(y)
i + Y

(y)
i + 1

� (X(y)
i � Y

(y)
i )2⇣

X
(y)
i + Y

(y)
i + 1

⌘
·
⇣
X

(y)
i + Y

(y)
i

⌘

������

 4 .

Similarly, we can show |Z(x)
j �Z

(y)
j | is at most four. Hence,

we can conclude that |Z(x) � Z
(y)| is at most eight. ⇤

Therefore, using the property of the Laplace mechanism
(Lemma A.1), Z 0 is ⇠-private. Using Lemma A.2 and the
fact that the output of the algorithm is a function of Z 0, we
conclude the algorithm is ⇠-private. ⇤


