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Abstract

We study the fundamental problems of identity
and equivalence testing over a discrete popula-
tion from random samples. Our goal is to develop
efficient testers while guaranteeing differential pri-
vacy to the individuals of the population. We pro-
vide sample-efficient differentially private testers
for these problems. Our theoretical results signif-
icantly improve over the best known algorithms
for identity testing, and are the first results for pri-
vate equivalence testing. The conceptual message
of our work is that there exist private hypothesis
testers that are nearly as sample-efficient as their
non-private counterparts. We perform an experi-
mental evaluation of our algorithms on synthetic
data. Our experiments illustrate that our private
testers achieve small type I and type II errors with
sample size sublinear in the domain size of the
underlying distributions.

1. Introduction

We consider the problem of designing sample-efficient algo-
rithms to understand properties of distributions over large
discrete domains. Such statistical tests have been tradi-
tionally studied in statistics because of their importance in
virtually every scientific endeavor that involves data. Re-
cent work in the theoretical computer science community
has investigated the setting where the discrete domains are
large and no a priori assumptions can be made about the
underlying data distribution (for example, when it cannot be
assumed that the distribution is normal, Gaussian, or even
smooth). In the last few years, optimal methods with sublin-
ear sample complexity have been obtained for testing a range
of properties, including whether a distribution is uniform,
identical to a known distribution (testing “goodness-of-fit”),

*Equal contribution 1CSAIL, MIT, Cambridge, MA 02139,
USA 2Department of Computer Science, USC, Los Angeles, CA
90089, USA 3TAU, Tel Aviv-Yafo, Israel. Correspondence to:
Maryam Aliakbarpour <maryama@mit.edu>, Ilias Diakonikolas
<diakonik@usc.edu>, Ronitt Rubinfeld <ronitt@csail.mit.edu>.

Proceedings of the 35 th
International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

equivalence of two distributions (two sample testing), and
independence.

While statistical tests are very important for advancing sci-
ence, when they are performed on sensitive data represent-
ing specific individuals, such as data describing medical or
other behavioral phenomena, it may be that the outcomes
of the tests reveal private information that should not be
divulged. Techniques from differential privacy give us hope
that one may obtain the scientific benefit of statistical tests
without compromising the privacy of the individuals in the
study. Concretely, differential privacy requires that similar
datasets have statistically close outputs – once this property
is achieved, then provable privacy guarantees can be made.
Differential privacy is a rich and active area of study, in
which techniques have been developed and applied to obtain
private algorithms for a range of data analysis tasks.

Our Contributions We study the general problem of hy-
pothesis testing in the setting of differential privacy (Dwork
& Roth, 2014). Our emphasis is on the sublinear regime,
i.e., when the number of samples available is sublinear in
the domain size of the underlying distribution(s). We ob-
tain sample-efficient private algorithms for the problems of
testing the identity and equivalence of discrete distributions.
The main conceptual message of our work is that we can
achieve differential privacy with only a small increase in the
sample complexity compared to the non-private case. Our
theoretical results significantly improve over the best known
algorithms for identity testing, and are the first results for
private equivalence testing. Our experimental evaluation
illustrates that our testers achieve small type I and type II
errors with a sublinear number of samples when the domain
size is large. The sample complexity of our private iden-
tity tester significantly outperforms the sample complexity
of recently proposed methods for this problem. For both
identity and equivalence testing, our experiments show that
differential privacy can be achieved essentially for free, i.e.,
with a very mild increase in sample complexity.

Technical Overview We now provide a brief overview of
our techniques. We start by observing that there is a simple
generic method to convert a non-private tester into a private
tester with a multiplicative overhead in the sample complex-
ity. This method is known in differential privacy, but for the
sake of completeness we describe it in Appendix B. It will
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be useful to contrast the sample complexity of the generic
method with the (substantially better) sample complexity of
our testers (Sections 3-5). For convenience, throughout our
theoretical analysis, we obtain testing algorithms that have
failure probability at most 1/3. As shown in Appendix C,
this is without loss of generality: we can achieve error prob-
ability � at the expense of a log(1/�) multiplicative increase
in the sample complexity, even in the differentially private
setting.

Our algorithm for identity testing is obtained via the follow-
ing modular approach: First, we adapt a recently discovered
reduction of identity testing to uniformity testing (Goldreich,
2016), building on (Diakonikolas & Kane, 2016). We show
(Section 3) that this reduction can be adapted to work in
the private setting as well. Therefore, we can translate any
private uniformity tester to a private identity tester without
increasing the sample size by more than a constant factor.
It remains to develop sample-efficient private uniformity
testers. We develop two such private methods (Section 4):
Our first method is a private version of (Paninski, 2008),
which relies on the number of domain elements that appear
in the sample exactly once. This statistic has low sensitiv-
ity, allowing a translation to the private setting via standard
techniques. The sample complexity of our aforementioned
uniformity tester is

⇥(
p
n/✏

2 +
p
n/(✏

p
⇠)) , (1)

where n is the domain size, ✏ is the accuracy of the tester,
and ⇠ is the privacy parameter. Our experimental results
illustrate that this private tester performs exceptionally well
in practice, significantly outperforming recently proposed
private algorithms for identity testing (see Section 6).

We note that the uniformity tester of (Paninski, 2008) is
known to completely fail when the sample size is larger than
the domain size (even in the non-private setting). To obtain
a uniformity tester that works for the non-sparse regime,
we develop our second algorithm: a private version of the
collisions-based tester of (Goldreich & Ron, 2000). A colli-
sion refers to the event that two random samples drawn from
the underlying distribution correspond to the same domain
element. The collisions-based tester was recently shown to
be sample-optimal in the non-private setting (Diakonikolas
et al., 2016). The main difficulty in turning this non-private
tester into a private tester is that the underlying statistic
(number of collisions) has very high worst-case sensitivity.
Hence, the standard approach of adding Laplace noise to
the statistic fails in this setting. To overcome this obstacle,
we add an appropriate pre-processing step to our tester that
rejects when there is a single element that appears many
times in the sample. (We note that a similar idea was in-
dependently used in (Cai et al., 2017), though the details
are somewhat different.) This step allows us to reduce the
effective sensitivity of the statistic and can be shown to yield

a sample-efficient private tester. Specifically, the sample
complexity of our collisions-based private tester is

Õ
�p

n/✏
2 +
p
n/(✏⇠) + 1/(✏2⇠)

�
. (2)

For the problem of equivalence testing, we build on the
recently developed chi-square tester of (Chan et al., 2014),
which is sample-optimal in the non-private testing. We show
that this statistic has bounded sensitivity. Hence, developing
a sample-efficient private version can be achieved by adding
Laplace noise. A careful analysis shows that the noisy
statistic is still accurate without substantially increasing the
sample complexity. Specifically, the sample complexity of
our private equivalence tester is

O

⇣p
n/✏

2 + n
2/3

/✏
4/3 +

p
n/(

p
⇠✏) + 1/(⇠✏2)

⌘
. (3)

We note that the effect of the privacy constraint on the
sample complexity of our testers is in some sense additive,
as opposed to multiplicative. In particular, for each case, the
sample complexity of the private tester equals the sample
complexity of the corresponding non-private tester plus a
term that depends on the privacy parameter. For reasonable
settings of the privacy parameter, this additive term can
be negligible compared to the first term, in which case we
obtain differential privacy essentially for free. As a concrete
example, the second term in (1) is dominated by the first
term (which is provably necessary for any identity tester,
even in the non-private setting (Paninski, 2008)), as long as
⇠ � ✏

2. This phenomenon is confirmed in our experimental
evaluation.

Related Work During the past two decades, distribution

property testing (Batu et al., 2000) – whose roots lie in
statistical hypothesis testing (Neyman & Pearson, 1933;
Lehmann & Romano, 2005) – has received considerable at-
tention by the computer science community, see (Rubinfeld,
2012; Canonne, 2015) for two recent surveys. The majority
of the early work in this field has focused on characterizing
the sample size needed to test properties of arbitrary distri-
butions of a given support size. After two decades of study,
this “worst-case” regime is well-understood: for many prop-
erties of interest there exist sample-optimal testers (matched
by information-theoretic lower bounds) (Paninski, 2008;
Daskalakis et al., 2013; Chan et al., 2014; Valiant & Valiant,
2014; Diakonikolas et al., 2015b;c; Acharya et al., 2015; Di-
akonikolas & Kane, 2016; Canonne et al., 2016; Diakoniko-
las et al., 2016; Canonne et al., 2017; Diakonikolas et al.,
2017b).

A recent line of work (Wang et al., 2015; Gaboardi et al.,
2016; Kifer & Rogers, 2017; Kakizaki et al., 2017; Cai
et al., 2017) has studied distribution testing with privacy
constraints. The majority of these works (Wang et al., 2015;
Gaboardi et al., 2016; Kifer & Rogers, 2017) only obtain
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type I error guarantees subject to the privacy constraint,
which is a significantly weaker guarantee than ours. The
recent work by Cai et al. (Cai et al., 2017) provides an
identity tester with finite sample guarantees and bounded
type I and type II errors. Specifically, (Cai et al., 2017) give
a private identity tester with sample complexity

Õ

⇣p
n/✏

2 +
p
n/(✏3/2⇠) + n

1/3
/(✏5/3⇠2/3)

⌘
. (4)

The above bound is always asymptotically worse than (1)
and worse than (2) for most parameter settings. We remind
the reader that (Cai et al., 2017) does not consider the more
general problem of equivalence testing, and that ours are
the first results in this setting. Finally, (Diakonikolas et al.,
2015a) has provided differentially private algorithms for
learning various families of discrete distributions. For the
case of unstructured discrete distributions, as the ones con-
sidered here, such algorithms inherently require sample size
at least linear in the domain size, even for constant values
of the approximation parameter.

Independent and concurrent work (Acharya et al., 2017)
obtained similar upper bounds for private identity and close-
ness testing. In addition, they obtained nearly matching
sample lower bounds in some regimes.

2. Preliminaries

Notation and Basic Definitions. We use [n] to denote the
set {1, 2, . . . , n}. We say that p is a distribution over [n]
if p : [n] ! [0, 1] is a function such that

Pn
i=1 p(i) = 1,

where p(i) denotes the probability of element i. For a set
S ✓ [n], p(S) denotes the total probability of the elements
in S (i.e., p(S) =

P
i2S p(i)). For any integer k > 0,

the `
k-norm of p is equal to

�Pn
i=1 |p(i)|k

� 1
k , and it is

denoted by kpkk. The `k-distance between two distributions
p and q over [n] is equal to

�Pn
i=1 |p(i)� q(i)|k

� 1
k . We use

Lap(b) to denote a random variable that is drawn from a
Laplace distribution with parameter b and mean zero.

The problem of identity testing (or goodness-of-fit) is the
following: Given sample access to an unknown distribution
p over [n] and an explicit distribution q over [n], we want to
distinguish, with probability at least 2/3, between the cases
that p = q (completeness) and kp � qk1 � ✏ (soundness).
(If kp � qk1 � ✏, we will say that p and q are ✏-far from
each other.) The special case of this problem when q =
Un, the uniform distribution over [n], is called uniformity

testing. The generalization of identity testing when both p

and q are unknown and only accessible via samples is called
equivalence testing.

Differential Privacy. In our context, a dataset is a multiset
of samples drawn from a distribution over [n]. We say that
X and Y are neighboring datasets if they differ in exactly

one element.

Definition 2.1. A randomized algorithm A : [n]s ! R,
is ⇠-differentially private if for any S ✓ R and any neigh-

boring datasets X,Y , we have that Pr[A(X) 2 S] 
e
⇠ ·Pr[A(Y ) 2 S] .

We will say that a tester is (✏, ⇠)-private, to mean that ✏
is the accuracy parameter, ⇠ is the privacy parameter, and
the tester outputs the right answer with probability at least
2/31. For conciseness, we use the term ⇠-private instead
of ⇠-differentially private. We provide more details about
general techniques in differential privacy in Appendix A.

3. Private Identity Testing: Reduction to

Private Uniformity Testing

In this section, we provide a reduction of private identity
testing (against a fixed distribution) to its special case of
private uniformity testing. Specifically, we prove that a
recent reduction (Goldreich, 2016) of (non-private) identity
testing to (non-private) uniformity testing can be adapted to
work in the private setting as well.

Suppose we want to test identity between an unknown dis-
tribution p over [n] and an explicit distribution q. The reduc-
tion of (Goldreich, 2016) transforms the distribution p into a
new distribution p

0, over a domain of size O(n), such that if
p = q then p

0 is the uniform distribution, and if p is far from
q, p0 is also far from uniform. Specifically, the reduction
defines a randomized mapping of a sample i 2 [n] from p

to a sample (j, a) from p
0 that depends only on the explicit

distribution q. This property is crucial as it allows us to
show that the transformation preserves differential privacy,
as the following theorem states:

Theorem 3.1. Given an (✏, ⇠)-private uniformity tester us-

ing s(n, ✏, ⇠) samples, there exists an (✏, ⇠)-private tester

for identity using s = s(6n, ✏/3, ⇠) samples.

The detailed proof of the theorem is deferred to Appendix D.

4. Private Uniformity Testing

In this section, we provide two sample-efficient private uni-
formity testers. Our testers are private versions of two
well-studied (non-private) testers, due to Goldreich and
Ron (Goldreich & Ron, 2000) and Paninski (Paninski, 2008).
Paninski’s uniformity tester (Paninski, 2008) relies on the
number of unique elements in the sample, while (Goldre-
ich & Ron, 2000) relies on the number of collisions. Both
testers are known to be sample-optimal in the non-private
setting (Paninski, 2008; Diakonikolas et al., 2016).

1We emphasize that the confidence probability 2/3 can be in-
creased to 1�� at the expense of a log(1/�) multiplicative increase
in the sample complexity. See Appendix C.



Differentially Private Testing of Distributions

Algorithm 1 Private Uniformity Testing via Unique Ele-
ments: Private-Unique-Elements-Uniformity

1: Input: Sample access to p, n, ✏, ⇠
2: s 5

p
n/(✏
p
⇠) + 6

p
n/✏

2

3: C  s✏2p
n

4: x1, x2, . . . , xs  s samples drawn from p

5: K  the number of unique elements in
{x1, x2, . . . , xs}

6: K
0  K + Lap(2/⇠)

7: T  EU [K] � C
2
/(2✏2) {where EU [K] equals to

s ·
�
1� 1

n

�s�1}
8: if K

0
< T then

9: Output reject.
10: end if

11: Output accept.

We give private versions of both of these algorithms. The
sample complexity of our private Paninski uniformity tester
is O(

p
n/✏

2 +
p
n/(✏
p
⇠)) . Therefore, as long as ⇠ =

⌦(✏2), the privacy requirement increases the sample com-
plexity by at most a constant factor.

Unfortunately, the aforementioned tester only succeeds
when its sample size is smaller than the domain size n. To
be able to handle the entire range of parameters, we develop
a private version of the collisions-based tester from (Goldre-
ich & Ron, 2000). Our private version of the collisions tester
has sample complexity Õ

�p
n/✏

2 +
p
n/(✏⇠) + 1/(✏2⇠)

�
.

Similarly, the effect of the privacy is mild as long as
⇠ = ⌦(✏).

4.1. Private Uniformity Tester via Unique Elements

We provide a private tester for uniformity based on the num-
ber of unique elements. The number of unique elements
is (negatively) related to the number of collisions and the
`
2-norm of the distribution. Therefore, the greater the num-

ber of unique elements is, the more the distribution appears
uniform. To make the algorithm private, we use the Laplace
mechanism which adds a small amount of noise to the num-
ber of unique elements. Then, we compare the number of
unique elements with a threshold to decide if the distribution
is uniform or far from uniform. The noise rate is chosen
appropriately so that the following conflicting goals are si-
multaneously achieved: (1) the algorithm is guaranteed to
be private, and (2) the accuracy of the tester does not signif-
icantly decrease. This is formalized in Theorem 4.1. The
algorithm is described in the following pseudocode:

Theorem 4.1. Given s = O(
p
n/(✏
p
⇠)+
p
n/✏

2) samples

from a distribution p over [n], Algorithm 1 is an (✏, ⇠)-
private uniformity tester, if s is sufficiently smaller than the

domain size n.

Let K be the number of unique elements in the sample set.
Since changing one sample in the sample set can change the
number of unique elements by no more than two, adding
Laplace noise with parameter 2/⇠ to K makes it ⇠-private.
Using the composition theorem of differential privacy, we
conclude that the overall algorithm is ⇠-private. To show
that the algorithm is an ✏-tester, we prove that the statistic
K

0 concentrates well around its expectation in both the
completeness and soundness cases. To establish this, we
exploit the fact that the variance introduced by the added
noise is sufficiently small. Since there is a non-trivial gap
between the expected values of K 0 in the two cases, the
proof follows by an application of Chebyshev’s inequality.
See Appendix E for the formal details.

4.2. Private Uniformity Tester via Collisions

In this subsection, we describe the private version of our
collisions-based uniformity tester. Recall that a collision
refers to the event that two random samples drawn from
the underlying distribution correspond to the same domain
element. The main difficulty in turning this into a private
tester is that the underlying statistic (number of collisions)
has very high worst-case sensitivity. Specifically, if the
sample set contains s copies of a given domain element,
by changing just one of the copies to another element, the
number of collisions drops by an additive s. So, if we add
enough noise to the statistic to cover the sensitivity of s, the
tester accuracy substantially degrades.

To overcome this obstacle, we add a pre-processing step to
our tester. We notice that the sensitivity of the number of
collisions, f(X), for sample set X , depends on the maxi-
mum frequency of any element in the sample set. Let ni(X)
denote the number of occurrences of element i in the sample
set X , and let nmax(X) denote the maximum ni(X). We
note that for two neighboring sample sets X and Y , the
difference of the number of collisions, |f(X) � f(Y )|, is
at most nmax(X). Therefore, the sensitivity of f is high on
X’s with large nmax(X). If the underlying distribution is
uniform, we do not expect any particular element to show up
very frequently. Hence, if nmax(X) is high, the algorithm
can output reject regardless of f(X). So, the final output
of the algorithm does not change drastically on X and Y ,
while the number of collisions varies a lot.

This simple idea forms the basis for our modified tester. The
algorithm uses two statistics: nmax and f (or more precisely
the noisy version of them, n̂max and f̂ ). If n̂max is too large,
it outputs reject. Otherwise, f̂(X) determines the output. In
the second case, since nmax is not too large, f has bounded
sensitivity. Therefore, we can make it private by adding a
small amount of noise to it.

To prove the privacy guarantee, note that if f(X) has low-
sensitivity, then f̂(X) is easily seen to be private. By the
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Algorithm 2 Private uniformity tester based on the number
of collisions: Private-Collisions-Uniformity

1: Input: Sample access to p, n, ✏, ⇠

2: s ⇥

✓p
n

✏2 +
p
n logn
✏ ⇠1/2

+
p

nmax(1,log 1/⇠)

✏ ⇠ + 1
✏2 ⇠

◆
.

3: Let X = {x1, x2, . . . , xs} be a multiset of s samples
drawn from p

4: ni(X) |{j|xj 2 x and xj = i}|

5: nmax(X) max
i

ni(X)

6: n̂max(X) nmax(X) + Lap(2/⇠)

7: f(X) collisions(X)

8: ⌘f  max
�
3s
2n , 12 e

2 ln 24n
�

+ (2 ln 12)/⇠ +
2max(ln 3, ln 3/⇠)/⇠

9: T  max
�
3s
2n , 12 e

2 ln 24n
�
+ (2 ln 12)/⇠

10: f̂(X) f(X) + Lap(2 ⌘f/⇠)

11: if n̂max(X) < T & f̂(X) < 6+✏2

6n

�s
2

�
then

12: O  accept.

13: else

14: O  reject.

15: end if

16: With probability 1/6, O  {accept, reject} \O. hhflip

the answer with probability 1/6.ii
17: Output O.

composition theorem of differential privacy (Lemma A.3),
in this case the overall algorithm will be private. The diffi-
culty appears in the complementary case, i.e., when f(X)
is highly sensitive. In this case, nmax(X) has to be large.
From that we can deduce, that it is very unlikely (over the
random noise) that n̂max is small. Given the above and the
fact that our algorithm flips its answer with probability 1/6
in the last step, we can compute a closed form formula for
the probability that our tester accepts, which allows us to di-
rectly prove the privacy guarantee. With a similar argument,
we show the privacy guarantee holds for the case that our
tester rejects.

The detailed procedure is explained in Algorithm 2. We
have the following (see Appendix F for the proof):

Theorem 4.2. Algorithm 2 is an (✏, ⇠)-private tester for

uniformity.

Remark 4.3. Recent work (Diakonikolas et al., 2017a) has
obtained an optimal (non-private) uniformity tester based
on the `1-distance of the empirical distribution from the uni-
form distribution. Since this new tester is Lipschitz, we can
make it private by adding Laplace noise to the distribution.

The simple proof of this fact will appear in a revised version
of this paper. A similar observation was made independently
in (Acharya et al., 2017).

5. Private Equivalence Testing

In this section, we give a private algorithm for testing equiv-
alence of two unknown discrete distributions. Our tester
relies on the chi-squared type sample-optimal (non-private)
equivalence tester of (Chan et al., 2014). The equivalence
tester relies on the following statistic:

Z :=
X

i

(Xi � Yi)2 �Xi � Yi

Xi + Yi
,

where Xi is the number of occurrences of element i in the
sample set from p, and Yi is the number of occurrences of
element i in the sample set from q. The statistic Z is chosen
in a way so that its expected values in the completeness
and soundness cases differ substantially. The challenging
part of the analysis involves a tight upper bound on the
variance, which allows to show that Z is well-concentrated
after an appropriate number of samples. More precisely, the
following statements were shown in (Chan et al., 2014):

E[Z] =
X

i

(p(i)� q(i))2

p(i) + q(i)
m

✓
1� 1� e

m(p(i)+q(i))

m(p(i) + q(i))

◆

� m
2

4n+ 2m
kp� qk21 . (5)

and

Var[Z]  2min{m,n}+
X

i

5m
(p(i)� q(i))2

p(i) + q(i)
. (6)

The private version of the above statistic is simple: We add
noise to the random variable Z and work with the noisy
statistic, denoted by Z

0. We need to show that we still can
infer the correct answer from Z

0, and the noise does not
incapacitate our tester. The main reason that this is indeed
possible is because the statistic Z has bounded sensitivity.

Algorithm 3 is our private equivalence tester and we prove
its correctness in Theorem 5.1.
Theorem 5.1. Given sample access to two distributions p

and q, Algorithm 3 is an (✏, ⇠)-private tester for equivalence

of p and q.

Since the sensitivity of Z is small, we can add a small
amount of noise to it to make it private, using the Laplace
mechanism. Then, we show that adding the noise to Z

does not increase its variance drastically. Finally, we prove
by the Chebyshev inequality that, with high probability, Z
concentrates well around its expected value given the size of
the sample set. The proof of the theorem is in Appendix G.
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Algorithm 3 Private Equivalence Tester: Private-

Equivalence-Test

1: Input: Sample access to p and q, n, ✏, ⇠

2: m C ·max

✓p
n

✏2
,
n
2/3

✏4/3
,

p
np
⇠✏

,
1

⇠✏2

◆

3: Draw m samples from distributions p and q.
4: Xi  the number of occurrences of the i-th element in

the samples from p

5: Yi  the number of occurrences of the i-th element in
the samples from q

6: Z  
P
i

(Xi � Yi)2 �Xi � Yi

Xi + Yi
hhfor Xi + Yi 6= 0.ii

7: ⌘  Lap(8/⇠)

8: Z
0 = Z + ⌘

9: T  m
2
✏
2

8n+ 4m

10: if Z
0  T then

11: Output accept.
12: else

13: Output reject.
14: end if

6. Experiments

We provide an empirical evaluation of the proposed algo-
rithms on synthetic data. All experiments were performed
on a computer with a 1.6 GHz Intel(R) Core(TM) i5-4200U
CPU and 3 GB of RAM.

Before we describe our methodology and experimental re-
sults in detail, we make two crucial remarks. First, as we
explain in more detail below, we note that our synthetic
datasets include the provably hardest instances of the corre-
sponding testing problems in the non-private setting. That is,
we provide as input to our algorithms sets of samples from
pairs of discrete distributions that are the hardest to distin-
guish information-theoretically. The related work (Cai et al.,
2017) evaluated the empirical performance of their iden-
tity tester on essentially identical synthetic inputs. Second,
since theoretical sample upper bounds in distribution test-
ing typically use big-O notation, the practical performance
of the various algorithms depends on the hidden absolute
constants in these bounds (which are notoriously hard to
pin-down theoretically). As a result, our experimental eval-
uation reveals phenomena which are not directly implied by
our theoretical upper bounds.

We now briefly describe our methodology. To measure the
accuracy of our algorithms, we empirically estimate the
error probability, i.e., the probability that our algorithms
output the wrong answer. We run our algorithms on input
of s samples from a distribution q (or a pair of distributions)
that either satisfies the property (completeness) or is ✏-far

in `
1-distance from satisfying the property. We denote the

distribution q in these two cases by q
+ and q

� respectively.
We repeatedly run our algorithm r times and compute the
ratio of the incorrect answers among these r trials for both
q
+ and q

�. This gives as estimates for the type I and II
errors of our algorithm. We want to understand how fast the
error probability converges to 0 as the sample size increases.

For the case of uniformity testing, we observe that Private-
Unique-Elements-Uniformity (Algorithm 1) performs sig-
nificantly better on our datasets than algorithm Private-

Collisions-Uniformity (Algorithm 2), especially when the
domain size n is very large (Figure 1). For the case of pri-
vate identity testing, we show (Figures 3 and 4) that our
identity tester obtained by combining our reduction with
Private-Unique-Elements-Uniformity significantly outper-
forms all previous algorithms for this problem. Finally, for
the case of equivalence testing, our experiments illustrate
(Figure 5) that we can obtain differential privacy essentially
for free.

Private Uniformity Testing. We implemented Private-

Unique-Elements-Uniformity (Algorithm 1) and Private-

Collisions-Uniformity (Algorithm 2) to test the uniformity
of a distribution in `

1-distance.

Let q+ be the uniform distribution on [n] and q
� be a distri-

bution that has probability (1 + ✏)/n on half of the domain
and probability (1� ✏)/n on the other half. Note that q� is
✏-far from uniform in `

1-distance. It is known that q� is the
hardest distribution to distinguish from uniform among all
distributions that are ✏-far (Paninski, 2008), without losing
any constant factor (Diakonikolas et al., 2017a).

We run our two algorithms using samples from q
+ and q

�

with the following parameters: n = 800, 000, ✏ = 0.3,
r = 300, and ⇠ = 0.2. We estimate how the empirical error
probability of the tester changes by increasing the number
of samples. As shown in Figure 1, for such a large do-
main, the algorithm Private-Unique-Elements-Uniformity

reaches empirical error of almost zero with sample size sub-

linear in the size of the domain. We emphasize that none
of the previous algorithms in this setting was able to obtain
meaningful guarantees in this sparse sample regime.

As predicted by our theoretical bounds, the tester Private-
Unique-Elements-Uniformity completely fails if it uses
more samples than the domain size. This fact is impor-
tant when the domain size n and accuracy ✏ are such that
the quantity

p
n/✏

2 is comparable to the domain size n.
For example, if n = 1000 and ✏ = 0.1, Private-Unique-
Elements-Uniformity is unable to provide any meaningful
guarantees, hence we need to resort to Private-Collisions-

Uniformity. This is illustrated in Figure 2.

A plausible interpretation for the apparent superiority of
Private-Unique-Elements-Uniformity in the sparse regime
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is that: (1) The non-private version of this tester is known
to achieve optimal constants in the big-O of the sample
complexity (Huang & Meyn, 2013). (2) The non-private
tester has low sensitivity, hence we do not require a pre-
processing phase (as in Private-Collisions-Uniformity) to
obtain a private algorithm.

Figure 1. The estimated error probability of Private-Unique-
Elements-Uniformity and Private-Collisions-Uniformity whenp
n/✏

2 = o(n).

Figure 2. The estimated error probability of Private-Unique-
Elements-Uniformity and Private-Collisions-Uniformity whenp
n/✏

2 = ⌦(n).

Private Identity Testing. We now describe our two private
identity testers and experimentally compare them to previ-
ous private identity testers developed in the recent literature.
As explained in Section 3, we proceed to reduce private iden-
tity testing to private uniformity testing. More specifically,
our identity testers work by first mapping the sample set S to

a new set S0 on a somewhat larger domain, and then testing
uniformity on the new domain using samples in S

0. Since
we have two uniformity testers, Private-Unique-Elements-

Uniformity and Private-Collisions-Uniformity, we thus ob-
tain two identity testers based on which uniformity tester we
use. We term these two private identity testers Private-

Unique-Elements-Identity and Private-Collisions-Identity

respectively.

We compare our algorithms with the two recent algorithms:
Priv’IT proposed in (Cai et al., 2017) and MCGOF pro-
posed in (Gaboardi et al., 2016). It should be noted that
our algorithms (and those of (Cai et al., 2017)) provides
significantly stronger guarantees compared to (Gaboardi
et al., 2016). More specifically, (Gaboardi et al., 2016) only
provides type I error guarantees: the algorithm outputs re-
ject with small probability when the distribution is identical
to the given distribution. In contrast, our identity testers
provably provide small type I and type II error probabilities.

We evaluate the various identity testers on two different pairs
of distributions: (1) q+1 is the uniform distribution on [n],
while q�1 assigns probability (1+✏)/n on half of the domain
and probability (1 � ✏)/n on the other half. (2) q+2 is a 4-
histogram distribution, i.e., the probability mass function is
piecewise constant with 4 pieces, and q

�
2 is obtained from

q
+
2 by perturbing the probability of each element by ±✏/n.

Testing uniformity is a special case of identity testing, and it
is known to be essentially the hardest instance of this more
general problem.

For (1), we explicitly give the uniform distribution, q+1 , to
our identity testing algorithm, and draw samples from q

+
1

or q�1 . We use the parameters n = 800, 000, ✏ = 0.3, and
⇠ = 0.2. We vary the sample size staring from 50, 000
and up to 3 ⇥ 106, increasing it by 50, 000 at each step,
and repeat the algorithm for r = 200 times to estimate the
maximum of type I and type II errors. We repeat the same
process for all the testers we compared against. The results
are shown in Figure 3.

For (2), we use the same methodology on input the 4-
histogram distribution q

+
2 with interval pieces I1, I2, I3, I4

each of size n/4 such that q+2 (I1) = 4q+2 (I4), q
+
2 (I2) =

3q+2 (I4), and q
+
2 (I3) = 2q+2 (I4). The results are shown in

Figure 4.

In both cases, we observe that our identity tester Private-
Unique-Elements-Identity converges much faster than all
other algorithms.

We remind the reader that (Gaboardi et al., 2016) did not
provide any type II error guarantees for their tester MCGOF.
We included two different curves in our plots illustrating the
empirical type I and type II errors of the (Gaboardi et al.,
2016) tester.
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Figure 3. The estimated error probability of various private iden-
tity testers given samples form q

+
1 and q

�
1 .

Private Equivalence Testing. The focus of the experimen-
tal evaluation for equivalence testing is as follows: For a
range of increasing domain sizes, n, we want to find the
smallest sample size such that the error probability (maxi-
mum of type I and type II errors) drops below 1/3.

We implemented Algorithm 3 to test equivalence of two
unknown distributions. We show that for sufficiently large
domain size n, our private algorithm succeeds with a sublin-

ear number of samples.

For given domain size n, to find the (approximately) mini-
mum number of samples such that the error probability of
the algorithm drops below 1/3, we proceed as follows: We
start with an initial number of samples s. Then, we estimate
the empirical error of the algorithm for these sample sets. If
it is more than 1/3, we increase s appropriately and repeat
the process until we find s that results in an error of at most
1/3.

We choose our input distributions to be the information-
theoretically hardest distributions to distinguish in the non-
private setting (Batu et al., 2013; Chan et al., 2014). In
particular, p is defined to be the distribution such that n2/3

of the domain elements have probability (1�✏/2)/n2/3 (the
“heavy elements”) and n/4 “light” elements have probability
2✏/n. (The rest of the domain elements have mass 0.) Simi-
larly, q is defined to be be a distribution that has probability
(1� ✏/2)/n2/3 on the same set of heavy elements as p, and
for a disjoint set of n/4 light elements assigns probability
2✏/n. Since the light elements are disjoint, it is clear that p
is ✏-far from q.

To evaluate the sample complexity of our algorithm, we use
the tester to distinguish the following pairs: (q, q) and (p, q).

Figure 4. The estimated error probability of various identity testers
given samples form q

+
2 and q

�
2 .

We set ✏ = 0.3, r = 200, and ⇠ = 0.2. We calculate the
required number of samples of this tester in order to achieve
accuracy at least 2/3, for n raging from 104 up to 2⇥ 106,
increasing n by 104 at each step.

As a point of comparison, we also implemented the non-
private equivalence tester of (Chan et al., 2014). As shown in
Figure 5, the sample complexities of private and non-private
equivalence testing are very close to each other. This result
was expected given the theoretical sample complexity of
our equivalence tester, since the dependence on the privacy
parameter ⇠ appears in an additive term, and is dominated
by the other term, when ⇠ is a constant.

Figure 5. Sample complexity of private and non-private equiva-
lence testers.
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