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Abstract
The problem of minimizing sum-of-nonconvex
functions (i.e., convex functions that are aver-
age of non-convex ones) is becoming increas-
ingly important in machine learning, and is the
core machinery for PCA, SVD, regularized New-
ton’s method, accelerated non-convex optimiza-
tion, and more. We show how to provably ob-
tain an accelerated stochastic algorithm for mini-
mizing sum-of-nonconvex functions, by adding
one additional line to the well-known SVRG
method. This line corresponds to momentum,
and shows how to directly apply momentum to
the finite-sum stochastic minimization of sum-
of-nonconvex functions. As a side result, our
method enjoys linear parallel speed-up using
mini-batch.1

1. Introduction
The diverse world of non-convex machine learning tasks
have given rise to numerous non-convex optimization prob-
lems. Some of them are perhaps as hard as minimizing
general non-convex objectives (such as deep learning), but
some others may be only slightly harder than convex opti-
mization (such as matrix completion, principal component
analysis, dictionary learning, etc). Therefore, it is both in-
teresting and challenging to identify classes of optimiza-
tion problems that interplay between non-convex and con-
vex optimization, and (hopefully) optimally and practically
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1This paper is related to the Katyusha method (Allen-Zhu,
2017a) which gives direct accelerated method for minimizing a
function that is an average of convex functions fi(x). The new
method KatyushaX tackles the more challenging case when fi(x)
is non-convex but the average is convex. We borrow the name
from Katyusha because the two papers tackle questions of the
same type, but the algorithms are different.

Full and future versions can be found on https://arxiv.
org/abs/1802.03866.

solving them.

At least tracing back to 2015, Shalev-Shwartz (2016) iden-
tified a class of functions that are convex, but can be written
as finite average of non-convex functions. That is,2

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)
}

(1.1)

where each fi(x) is smooth and non-convex, but their av-
erage f(x) = 1

n

∑n
i=1 fi(x) is convex.

We say f(x) a sum-of-nonconvex (but convex) function fol-
lowing (Garber et al., 2016; Allen-Zhu & Yuan, 2016).

In this paper, we show how to provably obtain an acceler-
ated and stochastic method for minimizing (1.1). Our new
method is based on adding only one additional line to the
well-known SVRG (stochastic variance-reduction gradi-
ent) method (Johnson & Zhang, 2013; Zhang et al., 2013).
This additional line corresponds to momentum. To the best
of our knowledge, this explains for the first time how to di-
rectly apply momentum to the stochastic minimization of
sum-of-nonconvex functions. We hope this new algorithm
and the new insight of this paper could facilitate our un-
derstanding towards how to correctly and provably apply
momentum to non-convex machine learning tasks.

1.1. Motivating Examples

There is an increasing number of machine learning tasks
that are found reducible to minimizing sum-of-nonconvex
functions. For most such tasks, the only known approach
for achieving accelerated stochastic performance is by re-
formulating them as multiple instances of Problem (1.1)
where f is a convex sum of non-convex functions.

Perhaps the most famous example is the shift-and-invert
approach to solve PCA (Saad, 1992). Let A =
1
n

∑n
i=1 aia

>
i ∈ Rd×d be some covariance matrix and λ

be its largest eigenvalue. Then, computing A’s top eigen-
vector reduces to applying power method to a new matrix
B = (µI − A)−1 with µ = λmax(A) · (1 + δ) for some
approximation parameter δ > 0 (Garber et al., 2016). In

2In fact, we study a more general composite minimization set-
ting minx∈Rd

{
F (x) := ψ(x)+ 1

n

∑
i∈[n] fi(x)

}
where ψ(x) is

some proper convex function. In this high-level introduction, we
ignore the ψ(·) term for simplicity.
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other words, PCA reduces to repeatedly minimizing con-
vex functions f(x) := 1

2x
>(µI −A)x+ b>x for different

vectors b. If one defines fi(x) := 1
2x
>(µI−aia>i )x+b>x,

then fi(x) is smooth and non-convex, but f(x) is convex.

• HIGH ACCURACY NEEDED. In the above reduction,
we need very high accuracy (e.g., 10−10) when mini-
mizing f(x), because we need to apply power method
on B so the error blows up. This is very different
from classical empirical minimization problems (such
as Lasso, SVM), where we only need to minimize the
training objective to some accuracy such as 10−3.

• NECESSITY OF PROBLEM (1.1) While there are many
algorithms to solve PCA, to the best of our knowledge,
the only known stochastic method which gives a prov-
able accelerated rate requires solving Problem (1.1).
We discuss more in Related Works.

Other problems that reduce to Problem (1.1) include:

• The accelerated stochastic algorithms for computing
top k principle components (k-PCA) and top k singular
vectors (k-SVD) require solving Problem (1.1) (Allen-
Zhu & Li, 2016).

• The fastest way to compute the near-optimal strategy
for the online eigenvector problem (against an adversar-
ial opponent) is by solving Problem (1.1) (Allen-Zhu &
Li, 2017b).

• Up to this date, the fastest finite-sum stochastic algo-
rithm for finding approximate local minima of a gen-
eral non-convex smooth function is either based on cu-
bic regularized Newton’s method (Agarwal et al., 2017)
or a special reduction (Carmon et al., 2016). Both ap-
proaches require solving Problem (1.1).

• In certain parameter regimes, the fastest finite-
sum stochastic algorithm for minimizing “approx-
imately convex functions” is based on solving
Problem (1.1) (Allen-Zhu, 2017b; Carmon et al., 2016).

1.2. Known Approaches

In the online stochastic setting (i.e., when n is infinite),
there is hardly any difference between fi(x) being con-
vex or not. The stochastic gradient descent (SGD) method
gives a Tgrad ∝ ε−2 rate to Problem (1.1), or Tgrad ∝
(σε)−1 rate if f(x) is σ-strongly convex. Both rates are
optimal, regardless of fi(x) being convex or not.

Variance Reduction. In the finite-sum stochastic setting
(i.e., when n is finite), it was discovered by Shalev-Shwartz
(2016) and Garber et al. (2016) that one can solve (1.1)
using variance reduction: for instance, using the SVRG
method that was originally designed for convex optimiza-
tion (Johnson & Zhang, 2013; Zhang et al., 2013).

Specifically, if f(x) is σ-strongly convex and each fi(x)
is L-smooth, then the SVRG method converges to an ε-

minimizer of Problem (1.1) using Tgrad stochastic gradient
computations, where

Tgrad = O
((
n+

√
nL

σ

)
log

1

ε

)
if σ > 0 or

Tgrad = O
(
n log

1

ε
+

√
nL

ε

)
if σ = 0 . (1.2)

Both rates outperform their corresponding counterparts in
the SGD case.

Remark 1.1. The two complexity bounds in (1.2) are better
than the original work of Shalev-Shwartz (2016) and Gar-
ber et al. (2016). They showed Tgrad = O

(
(n+ L2

σ2 ) log 1
ε

)
in the case of σ > 0; and Allen-Zhu & Yuan (2016) showed
Tgrad = O

(
n log 1

ε + L2

ε2

)
in the case of σ = 0. Both com-

plexity bounds are no better than (1.2). We prove (1.2) as a
side result of this paper in the full version.

How to Accelerate. If Nesterov’s accelerated gradi-
ent method (Nesterov, 2004; 2005) (also known as the
momentum method) is used, one can achieve Tgrad =

O
(
n
√
L√
σ

log 1
ε

)
and Tgrad = O

(
n
√
L√
ε

)
in the two cases. This

square-root dependence on σ or ε is known as the acceler-
ated convergence rate.

However, Nesterov’s method is not stochastic and its Tgrad
linearly scales with n. Can we design a stochastic first-
order method that also has an accelerated convergence rate?

Remark 1.2. Obtaining accelerated rates is crucial for
Problem (1.1), because high accuracy is usually needed as
we discussed in Section 1.1.

This can be partially answered by the APPA (Frostig et al.,
2015) and Catalyst (Lin et al., 2015) reduction, that we both
refer to as Catalyst.3 Mathematically, Catalyst turns any
non-accelerated method into an accelerated one. For in-
stance, when σ > 0, Catalyst on SVRG (often referred to
as AccSVRG) uses the following logic:

— Define a “new problem” arg minx
{
f(x)+L′

2 ‖x−x̂‖
2
}

for some x̂ ∈ Rd and L′ = L/
√
n.

— Use Nesterov’s method to minimize f(x), which re-
quires solving the “new problem” Õ

(
1 +

√
L′√
σ

)
times.

— Solve each “new problem” by SVRG: (1.2) gives
T ′grad = Õ

((
n+

√
nL
L′

))
= Õ(n).

In total, this requires Tgrad stochastic gradient computa-
tions for Tgrad = Õ

((
1 +

√
L′√
σ

)
× T ′grad

)
. In other words,

3Both reductions are based on an outer-inner loop structure
first proposed by Shalev-Shwartz & Zhang (2014). The applica-
tion of Catalyst to solving Problem (1.1) first appeared in (Shalev-
Shwartz, 2016; Garber et al., 2016) in the context of PCA.
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AccSVRG requires4

Tgrad = O
((
n+

n3/4
√
L√

σ

)
log2 1

ε

)
if σ > 0 or

Tgrad = O
((
n+

n3/4
√
L√

ε

)
log

1

ε

)
if σ = 0 . (1.3)

Unfortunately, the practicality of AccSVRG remains some-
what unsettled. To mention a few issues:

• Since error propagates, one needs to run each SVRG
until a very accurate point is obtained.

• To optimize the complexity, one needs to terminate each
call of SVRG at a different accuracy.

• One needs to tune three parameters: (1) the regularizer
weight L′, (2) the learning rate of SVRG, and (3) the
weight of the momentum.

When all of these factors are putting together, the practi-
cal performance of AccSVRG may be even worse than the
non-accelerated SVRG.5

1.3. Our Main Result

In this paper, we propose a new method KatyushaX

which, copying the original SVRG method but adding
only one additional line, achieves the accelerated stochas-
tic convergence rate. We give two different specifications,
KatyushaXs and KatyushaXw, where

• KatyushaXs needs a momentum parameter in addition
to the learning rate for SVRG; and

• KatyushaXw needs no additional parameter whatsoever
on top of SVRG.

We explain how they work below, and Figure 1(a)
gives a quick performance comparison between SVRG,
KatyushaXs and KatyushaXw on some synthetic dataset.

We first recall how SVRG works. Each epoch of SVRG
consists of n iterations. Each epoch starts with a point w0

(known as the snapshot) where the full gradient∇f(w0) is
computed exactly. Then, in each iteration t = 0, 1, . . . , n−
1 of this epoch, SVRG updates wt+1 ← wt − η∇̃t where
the gradient estimator ∇̃t = ∇fi(wt)−∇fi(w0)+∇f(w0)
for some random i ∈ [n], and η > 0 is the learning rate.

If we summarize the above one epoch process of SVRG as
SVRG1ep(w0, η) := wn, then

• The classical SVRG method can be described by the

4For why these logarithmic factors show up, we refer readers
to the journal version of Catalyst (Lin et al., 2017). In particular,
one of the two log factors in the case of σ > 0 is because SVRG
is a randomized algorithm.

5This is so already in the easier case where each fi(x) is
convex (Allen-Zhu, 2017a). In this simpler case, direct accel-
eration (without applying the Catalyst reduction) is more prac-
tical and already known (see Katyusha (Allen-Zhu, 2017a) and
DASVRDA (Murata & Suzuki, 2017)).

iterative update

xk+1 = SVRG1ep(xk, η) .

• Our KatyushaXs, parameterized by a momentum pa-
rameter τ ∈ (0, 1), is

yk ← SVRG1ep(xk, η)

xk+1 ←
3
2yk + 1

2xk − (1− τ)yk−1

1 + τ
.

• Our KatyushaXw is

yk ← SVRG1ep(xk, η)

xk+1 ←
(3k + 1)yk + (k + 1)xk − (2k − 2)yk−1

2k + 4
.

Remark 1.3. When choosing τ = 1/2, KatyushaXs is ex-
actly identical to SVRG and yk ≡ xk+1.
Remark 1.4. In KatyushaXs, if we replace 3

2yk+ 1
2xk with

2yk, then the update becomes xk+1 ← yk + 1−τ
1+τ

(
yk −

yk−1
)
. This corresponds to a classical momentum scheme

by Nesterov (2004). The smaller τ > 0 is the “stronger”
the momentum behaves.
Remark 1.5. KatyushaXw is in fact KatyushaXs with τ =
2
k+2 decreasing in k. See full version for the details.

Our main theorems are the following:

Theorem 1 (informal). If f(x) is σ-strongly convex and
each fi(x) is L-smooth, then KatyushaXs with η =

Θ
(

1√
nL

)
and τ = min{ 12 ,Θ(n

1/4√σ√
L

)
}

outputs a point
x with E[f(x)− f(x∗)] ≤ ε using

Tgrad = O
((
n+

n3/4
√
L√

σ

)
log

1

ε

)
stochastic gradient computations.

Theorem 2 (informal). If f(x) is convex and each fi(x)
is L-smooth, then KatyushaXw with η = Θ

(
1√
nL

)
out-

puts a point x with E[f(x)− f(x∗)] ≤ ε using

Tgrad = O
(
n+

n3/4
√
L√

ε

)
stochastic gradient computations.

In sum, we have not only tightened the complexity bounds
by removing a logarithmic factor each (comparing to
AccSVRG (1.3)), but also obtained a much simpler, prac-
tical acceleration (i.e., momentum) scheme for minimizing
sum-of-nonconvex functions stochastically.

1.4. Our Side Results

To demonstrate the strength of KatyushaX, we prove our
main theorem in several more general settings.

(1) Upper and Lower Smoothness. For non-convex func-
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Figure 1: A simple illustration on minimizing f(x) = 1
2
(µI − BB>

)
where B ∈ R1000×1000 is a random ±1 matrix, and µ =

λ1(BB
>) + 0.5

(
λ1(BB

>)− λ2(BB
>)
)
. Such f(x) is a typical instance in stochastic PCA (Garber et al., 2016).

Remark 1. In SVRG, the best learning rate is η = 0.4/L after tuning.
Remark 2. We used η = 0.4/L for KatyushaXw. We used η = 0.4/L and τ = 0.1 for KatyushaXs.
Remark 3. In the mini-batch experiment, we used η = 0.4b

L
and τ = 0.1. The parallel speed-up is in terms of achieving

objective error 10−3, 10−5, 10−7, 10−9.

tions, its upper and lower smoothness parameters (i.e.,
maximum eigenvalue vs. negated minimum eigenvalue of
Hessian) may be very different. This is especially true for
all PCA and SVD related applications (Garber et al., 2016;
Allen-Zhu & Li, 2016; 2017a), where fi(x) = µ

2 ‖x‖
2 −

〈ai, x〉2 so its upper smoothness is µ and lower smoothness
is 2‖ai‖2. (It usually happens that ‖ai‖2 � µ.)

Assuming fi(x) is `1-upper and `2-lower smooth (and `2 ≥
`1), it is known that by simply changing the learning rate
of SVRG, its runs in a worst-case complexity proportional
to
√
`1`2 instead of L (Allen-Zhu & Yuan, 2016).

We show KatyushaX enjoys this speed up as well. It runs
in a complexity proportional to (`1`2)1/4 instead of L1/2.

(2) Composite Minimization. Consider objective
F (x) = ψ(x) + 1

n

∑n
i=1 fi(x) where ψ(x) is some proper

convex (not necessarily smooth) function, usually referred
to as the proximal term.6 Then, most stochastic gradient
methods can be extended to minimize composite objec-
tives, if we replace the update wt+1 ← wt − η∇̃t with
wt+1 ← arg minz∈Rd

{
1
2η‖z − wt‖

2
2 + 〈∇̃t, z〉+ ψ(z)

}
.

We show that KatyushaX also extends to the composite
minimization setting.

(3) Parallelism / Mini-batch. Instead of using a single
stochastic gradient ∇fi(·) per iteration, for any stochastic
method, one can replace it with the average of b stochas-
tic gradients 1

b

∑
i∈S ∇fi(·) where S is a random subset of

[n] with cardinality b. This is known as the mini-batch tech-
nique and it allows the stochastic gradients to be computed
in a distributed manner, using up to b processors.

6Examples of proximal terms include ψ(x) = ‖x‖1 or

ψ(x) =

{
0, x ∈ X ;
+∞, x 6∈ X . for some convex set X ⊆ Rd.

Our KatyushaX methods extends to this mini-batch setting
too. Using mini-batch size b, the worst-case number of par-
allel iterations of KatyushaX reduces by{

O(b), if b ≤
√
n;

O(
√
b), if b ∈ [

√
n, n].

Therefore, at least for small b ∈ {1, 2, . . . , d
√
ne},

KatyushaX enjoys a linear speed-up in the parallel worst-
case running time. We do not find such result recorded
before this work.

(4) Non-Uniform Sampling. When functions fi(x) are
of non-uniform hardness (say, with different smoothness
parameters), instead of sampling each function fi(x) uni-
formly at random, one can sample i with a probability pro-
portional to its “hardness.” This can improve the perfor-
mance of stochastic gradient methods.

We show that KatyushaX also enjoys non-uniform sam-
pling benefits. If each function fi(x) is Li-smooth, one can
sample i with probability proportional to L2

i . If we denote
by L = (

∑
i L

2
i /n)1/2, then the worst-case complexities

can be improved to depend on L instead of maxi{Li}.

1.5. Other Related Works

Since sum-of-nonconvex optimization is closely related to
PCA, let us mention the most standard variants of PCA and
their relationships to Problem (1.1).

Offline Stochastic PCA. In the offline setting, we assume
A = 1

n

∑n
i=1 aia

>
i and a stochastic method can compute

〈ai, x〉 for some vector x in each iteration.

To approximate the top eigenvector of A (i.e., 1-PCA), the
first variance reduction method is by Shamir (2015) and
does not need sum-of-nonconvex optimization. Unfortu-
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nately, his method is not gap-free7 and not accelerated.
Garber et al. (2016) obtained a stochastic, gap-free, and ac-
celerated method by reducing 1-PCA to Problem (1.1) us-
ing shift-and-invert. To this date, this seems to be the only
approach to obtain a stochastic and accelerated method for
1-PCA.

To approximate the top k eigenvectors of A (i.e., k-PCA),
the first variance reduction method is by Shamir (2016) and
does not need sum-of-nonconvex optimization. His method
is not gap-free, not accelerated, and has a slow worst-case
complexity. Allen-Zhu & Li (2016) obtained a stochastic,
gap-free, and accelerated method for k-PCA by reducing
the problem to Problem (1.1). To this date, this seems to
be the only approach to obtain a stochastic and accelerated
method for k-PCA.

Online Stochastic PCA. In the online setting, we assume
A = Ei[aia>i ] where there may be infinitely many vec-
tors ai so the complexity of the stochastic method cannot
depend on n.

In the case of online 1-PCA, the optimal algorithm is Oja’s
method (Oja, 1982), whose first optimal analysis was due
to (Jain et al., 2016) and first optimal gap-free analysis was
due to (Allen-Zhu & Li, 2017b). In the case of online
k-PCA, the optimal algorithm is a block variant of Oja’s
method, whose first optimal analysis was due to (Allen-Zhu
& Li, 2017a).

In the online stochastic setting, due to information-
theoretic lower bounds (Allen-Zhu & Li, 2017a;b), one
cannot apply variance reduction or acceleration to improve
the worst-case complexity.

Online Adversarial PCA. In an online learning scenario
where the player chooses a unit vector vt at round t and
the adversary chooses a matrix At, one can design regret-
minimizing strategy for the player in terms of maximiz-
ing

∑
t v
>
t Atv

t. In this game, the regret-optimal strat-
egy for the player is follow-the-regularized-leader (FTRL)
but it runs very slow; an efficient strategy for the player
is follow-the-perturbed-leader (FTPL) but it gives a poor
regret (Ma et al., 2015). The recent result follow-the-
compressed-leader (FTCL) gives a strategy that is both re-
gret near-optimal and efficiently computable (Allen-Zhu &
Li, 2017b). Both strategies FTCL and FTPL rely on solv-
ing multiple instances of Problem (1.1).

Stochastic Nonconvex Optimization. In the harder prob-
lem where f(x) = 1

n

∑n
i=1 fi(x) is also non-convex, vari-

ance reduction is also proven useful, both in terms of find-
ing approximate stationary points and approximate local
minima.

In the finite-sum case (i.e., when n is finite), the SVRG
7We say a method is gap-free if it does not need an eigengap

assumption between the top two eigenvalues.

method finds an ε-approximate stationary point in Tgrad =
O(n2/3/ε2) where in contrast SGD needsO(1/ε4) and full
gradient descent needs O(n/ε2).8 This was obtained inde-
pendently by Reddi et al. (2016) and Allen-Zhu & Hazan
(2016a). To find an ε-approximate local minima, one needs
an additional second-order smoothness assumption, and
the two independent works Agarwal et al. (2017); Carmon
et al. (2016) need Tgrad = O

(
n
ε1.5 + n3/4

ε1.75

)
(both these al-

gorithms reduce the task to solving Problem (1.1)).

In the online case (i.e., when n is infinite), the SCSG
method of Lei et al. (2017) is a variant of SVRG and finds
ε-approximate stationary points in Tgrad = O(1/ε3.333).
To find an ε-approximate local minima, one needs an ad-
ditional second-order smoothness assumption and the rate
can be improved to Tgrad = O(1/ε3.25) using variance re-
duction (Allen-Zhu, 2017b); in contrast, without variance
reduction, the best rate (achieved by a variant of SGD) is
Tgrad = O(1/ε3.5) (Allen-Zhu, 2018). None of these algo-
rithms rely on Problem (1.1), and momentum is not known
to be helpful in the online setting.

Stochastic Convex Optimization. Variance reduction
was first discovered for the purpose of minimizing the sim-
pler problem f(x) = 1

n

∑n
i=1 fi(x) where each fi(x)

is also convex (Schmidt et al., 2013). Its accelerated
variant was first discovered by the APPA/Catalyst reduc-
tion (Frostig et al., 2015; Lin et al., 2015; Shalev-Shwartz
& Zhang, 2014). A number of simpler accelerated schemes
have been proposed since then, including (Allen-Zhu,
2017a; Lan & Zhou, 2015), but they do not address the
case when each fi(x) is nonconvex. For more details, see
(Allen-Zhu, 2017a) and the references therein.

Relationship to Katyusha. We have borrowed the algo-
rithm name from (Allen-Zhu, 2017a), where the author ob-
tained a direct accelerated stochastic method Katyusha for
minimizing a function f(x) that is a finite average of con-
vex functions fi(x). The two algorithms are different:

• Katyusha applies a momentum step every iteration, but
KatyushaX applies a momentum step every epoch (i.e.,
every n iterations).

• KatyushaX applies to a more general class of sum-of-
nonconvex functions than Katyusha.

• Katyusha gives a better complexity than KatyushaX

when restricted to convex fi(x).

The two works also share some similarity.

• Both works provably and directly add momentum to a
stochastic method. This can have practical impacts.

• Both works introduce some “negative momentum” on
top of SVRG. In every iteration of Katyusha, the

8In this high-level summary, we have hidden the smoothness
and variance parameters inside the big-O notion.



Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization

point retracts towards the most recent snapshot (this is
achieved by a three-point linear coupling (Allen-Zhu,
2017a)). In KatyushaX, after each epoch we applied
xk+1 ←

3
2yk+

1
2xk−(1−τ)yk−1

1+τ which is different from

the classical update xk+1 ← 2yk−(1−τ)yk−1

1+τ . This can
also be viewed as retracting yk towards the most recent
snapshot xk.

Full Version. For the full and future versions of this paper,
see https://arxiv.org/abs/1802.03866.
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