
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

A. Deferred Proofs
A.1. Proof of Theorem 1

Before delving into the proof, we introduce notation that will
admit a more compact presentation of formulae. For 1 ≤
a ≤ b ≤ N , we denote:∏j=b

a
Wj := WbWb−1 · · ·Wa∏b

j=a
W>j := W>a W

>
a+1 · · ·W>b

where W1 . . .WN are the weight matrices of the depth-
N linear network (Equation 2). If a > b, then by defini-
tion both

∏j=b
a Wj and

∏b
j=aW

>
j are identity matrices,

with size depending on context, i.e. on the dimensions of
matrices they are multiplied against. Given any square
matrices (possibly scalars) A1, A2, . . . , Am, we denote by
diag(A1 . . . Am) a block-diagonal matrix holding them on
its diagonal:

diag(A1 . . . Am) =


A1 0 0 0

0
. . . 0 0

0 0 Am 0

0 0 0 0


As illustrated above, diag(A1 . . . Am) may hold additional,
zero-valued rows and columns beyond A1 . . . Am. Con-
versely, it may also trim (omit) rows and columns, from its
bottom and right ends respectively, so long as only zeros
are being removed. The exact shape of diag(A1 . . . Am) is
again determined by context, and so ifB andC are matrices,
the expression B · diag(A1 . . . Am) · C infers a number of
rows equal to the number of columns in B, and a number of
columns equal to the number of rows in C.

Turning to the actual proof, we disregard the trivial case
N = 1, and begin by noticing that Equation 3, along with
the definition of We (Equation 5), imply that for every j =
1 . . . N :

∂LN

∂Wj
(W1, . . .,WN) =

N∏
i=j+1

W>i ·
dL1

dW
(We) ·

j−1∏
i=1

W>i

Plugging this into the differential equations of gradient de-
scent (Equation 6), we get:

Ẇj(t) = −ηλWj(t) (16)

−η
N∏

i=j+1

W>i (t) · dL
1

dW
(We(t)) ·

j−1∏
i=1

W>i (t)

, j = 1. . .N

For j = 1 . . . N−1, multiply the j’th equation by W>j (t)

from the right, and the j+1’th equation by W>j+1(t) from

the left. This yields:

W>j+1(t)Ẇj+1(t) + ηλ ·W>j+1(t)Wj+1(t) =

Ẇj(t)W
>
j (t) + ηλ ·Wj(t)W

>
j (t)

Taking the transpose of these equations and adding to them-
selves, we obtain, for every j = 1 . . . N−1:

W>j+1(t)Ẇj+1(t) + Ẇ>j+1(t)Wj+1(t)+

2ηλ ·W>j+1(t)Wj+1(t) =

Ẇj(t)W
>
j (t) +Wj(t)Ẇ

>
j (t)+

2ηλ ·Wj(t)W
>
j (t) (17)

Denote for j = 1 . . . N :

Cj(t) := Wj(t)W
>
j (t) , C ′j(t) := W>j (t)Wj(t)

Equation 17 can now be written as:

Ċ ′j+1(t) + 2ηλ · C ′j+1(t) = Ċj(t) + 2ηλ · Cj(t)

, j = 1. . .N − 1

Turning to Lemma 1 below, while recalling our assumption
for time t0 (Equation 7):

C ′j+1(t0) = Cj(t0) , j = 1. . .N − 1

we conclude that, throughout the entire time-line:

C ′j+1(t) = Cj(t) , j = 1. . .N − 1

Recollecting the definitions of Cj(t), C ′j(t), this means:

W>j+1(t)Wj+1(t) = Wj(t)W
>
j (t) , j = 1. . .N−1 (18)

Regard t now as fixed, and for every j = 1 . . . N , let:

Wj(t) = UjΣjV
>
j (19)

be a singular value decomposition. That is to say, Uj and Vj
are orthogonal matrices, and Σj is a rectangular-diagonal
matrix holding non-decreasing, non-negative singular values
on its diagonal. Equation 18 implies that for j = 1 . . . N−1:

Vj+1Σ>j+1Σj+1V
>
j+1 = UjΣjΣ

>
j U
>
j

For a given j, the two sides of the above equation are
both orthogonal eigenvalue decompositions of the same ma-
trix. The square-diagonal matrices Σ>j+1Σj+1 and ΣjΣ

>
j

are thus the same, up to a possible permutation of diag-
onal elements (eigenvalues). However, since by defini-
tion Σj+1 and Σj have non-increasing diagonals, it must
hold that Σ>j+1Σj+1 = ΣjΣ

>
j . Let ρ1>ρ2> · · ·>ρm≥0

be the distinct eigenvalues, with corresponding multiplici-
ties d1, d2, . . . , dm ∈ N. We may write:

Σ>j+1Σj+1 = ΣjΣ
>
j = diag(ρ1Id1 , . . . , ρmIdm) (20)

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

where Idr , 1≤r≤m, is the identity matrix of size dr × dr.
Moreover, there exist orthogonal matrices Oj,r ∈ Rdr,dr ,
1≤r≤m, such that:

Uj = Vj+1 · diag(Oj,1, . . . , Oj,m)

Oj,r here is simply a matrix changing between orthogonal
bases in the eigenspace of ρr – it maps the basis comprising
Vj+1-columns to that comprising Uj-columns. Recalling
that both Σj and Σj+1 are rectangular-diagonal, holding
only non-negative values, Equation 20 implies that each
of these matrices is equal to diag(

√
ρ1·Id1 , . . . ,

√
ρm·Idm).

Note that the matrices generally do not have the same shape
and thus, formally, are not equal to one another. Nonethe-
less, in line with our diag notation (see beginning of this
subsection), Σj and Σj+1 may differ from each other only
in trailing, zero-valued rows and columns. By an inductive
argument, all the singular value matrices Σ1,Σ2, . . . ,ΣN
(see Equation 19) are equal up to trailing zero rows and
columns. The fact that ρ1 . . . ρm do not include an index j
in their notation is thus in order, and we may write, for every
j = 1 . . . N−1:

Wj(t) = UjΣjV
>
j

= Vj+1 · diag(Oj,1, . . . , Oj,m) ·
diag(

√
ρ1·Id1 , . . . ,

√
ρm·Idm) · V >j

For the N ’th weight matrix we have:

WN (t) = UNΣNV
>
N

= UN · diag(
√
ρ1·Id1 , . . . ,

√
ρm·Idm) · V >N

Concatenations of weight matrices thus simplify as follows:∏i=N
j Wi(t)

∏N
i=jW

>
i (t) = (21)

UN · diag
(

(ρ1)N−j+1·Id1 , . . . , (ρm)N−j+1·Idm
)
· U>N

∏j
i=1W

>
i (t)

∏i=j
1 Wi(t) = (22)

V1 · diag
(

(ρ1)j ·Id1 , . . . , (ρm)j ·Idm
)
· V >1

, j = 1 . . . N

where we used the orthogonality of Oj,r, and the obvi-
ous fact that it commutes with Idr . Consider Equation 21
with j = 1 and Equation 22 with j = N , while recalling
that by definition We(t) =

∏i=N
1 Wj(t):

We(t)W
>
e (t) = UN ·diag

(
(ρ1)NId1 , . . . , (ρm)NIdm

)
·U>N

W>e (t)We(t) = V1·diag
(

(ρ1)NId1 , . . . , (ρm)NIdm

)
·V >1

It follows that for every j = 1 . . . N :

i=N∏
j

Wi(t)

N∏
i=j

W>i (t) =
[
We(t)W

>
e (t)

]N−j+1
N (23)

j∏
i=1

W>i (t)

i=j∏
1

Wi(t) =
[
W>e (t)We(t)

] j
N (24)

where [·]
N−j+1
N and [·]

j
N stand for fractional power operators

defined over positive semidefinite matrices.

With Equations 23 and 24 in place, we are finally in a po-
sition to complete the proof. Returning to Equation 16,
we multiply Ẇj(t) from the left by

∏i=N
j+1 Wi(t) and from

the right by
∏i=j−1

1 Wi(t), followed by summation over
j = 1 . . . N . This gives:∑N

j=1

(∏i=N

j+1
Wi(t)

)
Ẇj(t)

(∏i=j−1

1
Wi(t)

)
=

−ηλ
∑N

j=1

(∏i=N

j+1
Wi(t)

)
Wj(t)

(∏i=j−1

1
Wi(t)

)
−η
∑N

j=1

(∏i=N

j+1
Wi(t)

∏N

i=j+1
W>i (t)

)
·

dL1

dW
(We(t)) ·

(∏j−1

i=1
W>i (t)

∏i=j−1

1
Wi(t)

)
By definition We(t) =

∏i=N
1 Wj(t), so we can substitute

the first two lines above:

Ẇe(t) = −ηλN ·We(t)

−η
N∑
j=1

(∏i=N

j+1
Wi(t)

∏N

i=j+1
W>i (t)

)
·

dL1

dW
(We(t)) ·

(∏j−1

i=1
W>i (t)

∏i=j−1

1
Wi(t)

)
Finally, plugging in the relations in Equations 23 and 24,
the sought-after result is revealed:

Ẇe(t) = −ηλN ·We(t)

−η
N∑
j=1

[
We(t)W

>
e (t)

]N−j
N ·

dL1

dW
(We(t)) ·

[
W>e (t)We(t)

] j−1
N

Lemma 1. Let I ⊂ R be a connected interval, and let
f, g : I → R be differentiable functions. Suppose that there
exists a constant α ≥ 0 for which:

ḟ(t) + α · f(t) = ġ(t) + α · g(t) , ∀t ∈ I

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

Then, if f and g assume the same value at some t0 ∈ I
(interior or boundary), they must coincide along the entire
interval, i.e. it must hold that f(t) = g(t) for all t ∈ I .

Proof. Define h := f − g. h is a differentiable function
from I to R, and we have:

ḣ(t) = −α · h(t) , ∀t ∈ I (25)

We know that h(t0) = 0 for some t0 ∈ I , and would
like to show that h(t) = 0 ∀t ∈ I . Assume by contra-
diction that this is not the case, so there exists t2 ∈ I for
which h(t2) 6= 0. Without loss of generality, suppose that
h(t2) > 0, and that t2 > t0. Let S be the zero set of h,
i.e. S := {t ∈ I : h(t) = 0}. Since h is continuous
in I , S is topologically closed, therefore its intersection
with the interval [t0, t2] is compact. Denote by t1 the maxi-
mal element in this intersection, and consider the interval
J := [t1, t2] ⊂ I . By construction, h is positive along J , be-
sides on the endpoint t1 where it assumes the value of zero.
For t1 < t ≤ t2, we may solve as follows the differential
equation of h (Equation 25):

ḣ(t)

h(t)
= −α =⇒ h(t) = βe−αt

where β is the positive constant defined by h(t2) = βe−αt2 .
Since in particular h is bounded away from zero on (t1, t2],
and assumes zero at t1, we obtain a contradiction to its
continuity. This completes the proof.

A.2. Proof of Claim 1

Our proof relies on the Kronecker product operation for
matrices. For arbitrary matrices A and B of sizes ma × na
and mb × nb respectively, the Kronecker product A�B is
defined to be the following block matrix:

A�B :=


a11·B · · · a1na ·B

...
. . .

...
ama1·B · · · amana ·B

 ∈ Rmamb,nanb

(26)
where aij stands for the element in row i and column j of A.
The Kronecker product admits numerous useful properties.
We will employ the following:

• If A and B are matrices such that the matrix product
AB is defined, then:

vec(AB) = (B> � IrA) · vec(A)

= (IcB �A) · vec(B) (27)

where IrA and IcB are the identity matrices whose
sizes correspond, respectively, to the number of rows

in A and the number of columns in B. vec(·) here, as
in claim statement, stands for matrix vectorization in
column-first order.

• If A1, A2, B1 and B2 are matrices such that the matrix
products A1B1 and A2B2 are defined, then:

(A1 �A2)(B1 �B2) = (A1B1)� (A2B2) (28)

• For any matrices A and B:

(A�B)> = A> �B> (29)

• Equation 28 and 29 imply, that if A and B are some
orthogonal matrices, so is A�B:

A> = A−1 ∧ B> = B−1

=⇒ (A�B)> = (A�B)−1 (30)

With the Kronecker product in place, we proceed to the
actual proof. It suffices to show that vectorizing:

N∑
j=1

[
W (t)
e (W (t)

e)>
] j−1
N · dL

1

dW
(W (t)

e)·
[
(W (t)

e)>W (t)
e

]N−j
N

yields:

P
W

(t)
e
· vec

(
dL1

dW
(W (t)

e)

)
where P

W
(t)
e

is the preconditioning matrix defined in claim
statement. For notational conciseness, we hereinafter omit
the iteration index t, and simply write We instead of W (t)

e .

Let Id and Ik be the identity matrices of sizes d×d and k×
k respectively. Utilizing the properties of the Kronecker
product, we have:

vec

 N∑
j=1

[
WeW

>
e

] j−1
N

dL1

dW
(We)

[
W>e We

]N−j
N


=

N∑
j=1

(
Id �

[
WeW

>
e

] j−1
N

)
·

([
W>e We

]N−j
N � Ik

)
· vec

(
dL1

dW
(We)

)
=

N∑
j=1

([
W>e We

]N−j
N �

[
WeW

>
e

] j−1
N

)
vec

(
dL1

dW
(We)

)
The first equality here makes use of Equation 27, and the
second of Equation 28. We will show that the matrix:

Q :=

N∑
j=1

[
W>e We

]N−j
N �

[
WeW

>
e

] j−1
N (31)

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

meets the characterization of PWe
, thereby completing the

proof. Let:
We = UDV >

be a singular value decomposition, i.e. U ∈ Rk,k and V ∈
Rd,d are orthogonal matrices, and D is a rectangular-
diagonal matrix holding (non-negative) singular values on
its diagonal. Plug this into the definition of Q (Equation 31):

Q =

N∑
j=1

[
V D>DV >

]N−j
N �

[
UDD>U>

] j−1
N

=

N∑
j=1

(
V
[
D>D

]N−j
N V >

)
�
(
U
[
DD>

] j−1
N U>

)

=

N∑
j=1

(V � U)

([
D>D

]N−j
N �

[
DD>

] j−1
N

)
(V > � U>)

= (V � U)

 N∑
j=1

[
D>D

]N−j
N �

[
DD>

] j−1
N

 (V � U)>

The third equality here is based on the relation in Equa-
tion 28, and the last equality is based on Equation 29. De-
noting:

O := V � U (32)

Λ :=

N∑
j=1

[
D>D

]N−j
N �

[
DD>

] j−1
N (33)

we have:
Q = OΛO> (34)

Now, since by definition U and V are orthogonal, O is or-
thogonal as well (follows from the relation in Equation 30).
Additionally, the fact that D is rectangular-diagonal im-
plies that the square matrix Λ is also diagonal. Equation 34
is thus an orthogonal eigenvalue decomposition of Q. Fi-
nally, denote the columns of U (left singular vectors of We)
by u1 . . .uk, those of V (right singular vectors of We) by
v1 . . .vd, and the diagonal elements of D (singular val-
ues of We) by σ1 . . . σmax{k,d} (by definition σr = 0 if
r > min{k, d}). The definitions in Equations 32 and 33
imply that the columns of O are:

vec(urv
>
r′) , r = 1 . . . k , r′ = 1 . . . d

with corresponding diagonal elements in Λ being:∑N

j=1
σ

2N−jN
r σ

2 j−1
N

r′ , r = 1 . . . k , r′ = 1 . . . d

We conclude that Q indeed meets the characterization
of PWe

in claim statement. This completes the proof.

A.3. Proof of Claim 2

We disregard the trivial case N = 1, as well as the scenario
W

(t)
e = 0 (both lead Equations 10 and 12 to equate). Omit-

ting the iteration index t from our notation, it suffices to
show that:

N∑
j=1

[
WeW

>
e

] j−1
N · dL

1

dW
(We) ·

[
W>e We

]N−j
N = (35)

‖We‖
2− 2

N
2

(
dL1

dW (We) + (N − 1)PrWe

{
dL1

dW (We)
})

where PrWe
{·} is the projection operator defined in claim

statement (Equation 13), and we recall that by assump-

tion k = 1 (We ∈ R1,d).
[
WeW

>
e

] j−1
N is a scalar, equal

to ‖We‖
2 j−1
N

2 for every j = 1 . . . N .
[
W>e We

]N−j
N on the

other hand is a d × d matrix, by definition equal to iden-
tity for j = N , and otherwise, for j = 1 . . . N − 1, it

is equal to ‖We‖
2N−jN
2 (We/‖We‖2)

>
(We/‖We‖2). Plugging

these equalities into the first line of Equation 35 gives:

N∑
j=1

[
WeW

>
e

] j−1
N

dL1

dW
(We)

[
W>e We

]N−j
N =

N−1∑
j=1

‖We‖
2 j−1
N

2

dL1

dW
(We) ‖We‖

2N−jN
2

(
We

‖We‖2

)> (
We

‖We‖2

)
+ ‖We‖

2N−1
N

2 · dL
1

dW
(We) =

(N − 1) ‖We‖
2N−1

N
2

dL1

dW
(We)

(
We

‖We‖2

)> (
We

‖We‖2

)
+ ‖We‖

2N−1
N

2 · dL
1

dW
(We)

The latter expression is precisely the second line of Equa-
tion 35, thus our proof is complete.

A.4. Proof of Theorem 2

Our proof relies on elementary differential geometry:
curves, arc length and line integrals (see Chapters 8 and 9
in Buck (2003)).

Let U ⊂ R1,d be a neighborhood of W = 0 (i.e. an open
set that includes this point) on which dL1

dW is continuous
(U exists by assumption). It is not difficult to see that F (·)
(Equation 14) is continuous on U as well. The strategy of our
proof will be to show that F (·) does not admit the gradient
theorem (also known as the fundamental theorem for line
integrals). According to the theorem, if h : U → R is a
continuously differentiable function, and Γ is a piecewise
smooth curve lying in U with start-point γs and end-point γe,

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

then: ∫
Γ

dh

dW
= h(γe)− h(γs)

In words, the line integral of the gradient of h over Γ, is
equal to the difference between the value taken by h at the
end-point of Γ, and that taken at the start-point. A direct
implication of the theorem is that if Γ is closed (γe = γs),
the line integral vanishes:∮

Γ

dh

dW
= 0

We conclude that if F (·) is the gradient field of some func-
tion, its line integral over any closed (piecewise smooth)
curve lying in U must vanish. We will show that this is not
the case.

For notational conciseness we hereinafter identify R1,d

and Rd, so in particular U is now a subset of Rd. To further
simplify, we omit the subindex from the Euclidean norm,
writing ‖·‖ instead of ‖·‖2. Given an arbitrary continuous
vector field φ : U → Rd, we define a respective (continuous)
vector field as follows:

Fφ : U → Rd

Fφ(w) = (36){
‖w‖2−

2
N

(
φ(w)+(N−1)

〈
φ(w), w

‖w‖

〉
w
‖w‖

)
,w 6=0

0 ,w=0

Notice that for φ = dL1

dW , we get exactly the vector field F (·)
defined in theorem statement (Equation 14) – the subject of
our inquiry. As an operator on (continuous) vector fields,
the mapping φ 7→ Fφ is linear.5 This, along with the linear-
ity of line integrals, imply that for any piecewise smooth
curve Γ lying in U , the functional φ 7→

∫
Γ
Fφ, a mapping

of (continuous) vector fields to scalars, is linear. Lemma 2
below provides an upper bound on this linear functional in
terms of the length of Γ, its maximal distance from origin,
and the maximal norm φ takes on it.

In light of the above, to show that F (·) contradicts the
gradient theorem, thereby completing the proof, it suffices
to find a closed (piecewise smooth) curve Γ for which the
linear functional φ 7→

∮
Γ
Fφ does not vanish at φ = dL1

dW .
By assumption dL1

dW (W=0) 6= 0, and so we may define the
unit vector in the direction of dL

1

dW (W=0):

e :=
dL1

dW (W=0)∥∥dL1

dW (W=0)
∥∥ ∈ Rd (37)

5 For any φ1, φ2 : U → Rd and c ∈ R, it holds that Fφ1+φ2 =
Fφ1 + Fφ2 and Fc·φ1 = c · Fφ1 .

Let R be a positive constant small enough such that the Eu-
clidean ball of radius R around the origin is contained in U .
Let r be a positive constant smaller than R. Define Γr,R to
be a curve as follows (see illustration in Figure 1):6

Γr,R := Γ1
r,R → Γ2

r,R → Γ3
r,R → Γ4

r,R (38)

where:

• Γ1
r,R is the line segment from −R · e to −r · e.

• Γ2
r,R is a geodesic on the sphere of radius r, starting

from −r · e and ending at r · e.

• Γ3
r,R is the line segment from r · e to R · e.

• Γ4
r,R is a geodesic on the sphere of radius R, starting

from R · e and ending at −R · e.

Γr,R is a piecewise smooth, closed curve that fully lies
within U . Consider the linear functional it induces: φ 7→∮

Γr,R
Fφ. We will evaluate this functional on φ = dL1

dW . To
do so, we decompose the latter as follows:

dL1

dW (·) = c · e(·) + ξ(·) (39)

where:

• c is a scalar equal to ‖dL
1

dW (W=0)‖.

• e(·) is a vector field returning the constant e (Equa-
tion 37).

• ξ(·) is a vector field returning the values of dL1

dW (·)
shifted by the constant −dL

1

dW (W=0). It is continuous
on U and vanishes at the origin.

Applying Lemma 2 to ξ over Γr,R gives:∣∣∣∣∣
∮

Γr,R

Fξ

∣∣∣∣∣ ≤ N · len(Γr,R) · max
γ∈Γr,R

‖γ‖2−
2
N · max

γ∈Γr,R
‖ξ(γ)‖

= N · (πr + πR+ 2(R− r)) ·R2− 2
N · max

γ∈Γr,R
‖ξ(γ)‖

≤ N · 2π ·R3− 2
N · max

γ∈Γr,R
‖ξ(γ)‖

On the other hand, by Lemma 3:∮
Γr,R

Fe =

(
2N

3− 2/N
− 2

)(
R3− 2

N − r3− 2
N

)
6 The proof would have been slightly simplified had we used

a curve that passes directly through the origin. We avoid this in
order to emphasize that the result is not driven by some point-wise
singularity (the origin received special treatment in the definition
of F (·) – see Equations 14 and 13).

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

The linearity of the functional φ 7→
∮

Γr,R
Fφ, along with

Equation 39, then imply:∮
Γr,R

F dL1

dW

= c ·
∮

Γr,R

Fe +

∮
Γr,R

Fξ

≥ c ·
(

2N

3− 2/N
− 2

)(
R3− 2

N − r3− 2
N

)
−N · 2π ·R3− 2

N · max
γ∈Γr,R

‖ξ(γ)‖

We will show that for proper choices of R and r, the lower
bound above is positive. Γr,R will then be a piecewise
smooth closed curve lying in U , for which the functional
φ 7→

∮
Γr,R

Fφ does not vanish at φ = dL1

dW . As stated, this
will imply that F (·) violates the gradient theorem, thereby
concluding our proof.

All that is left is to affirm that the expression:

c ·
(

2N
3−2/N − 2

)(
R3− 2

N − r3− 2
N

)
−N · 2π ·R3− 2

N ·maxγ∈Γr,R ‖ξ(γ)‖

can indeed be made positive with proper choices of R and r.
Recall that:

• N > 2 by assumption; implies 2N
3−2/N − 2 > 0.

• R is any positive constant small enough such that the
ball of radius R around the origin is contained in U .

• r is any positive constant smaller than R.

• Γr,R is a curve whose points are all within distance R
from the origin.

• c = ‖dL
1

dW (W=0)‖ – positive by assumption.

• ξ(·) is a vector field that is continuous on U and van-
ishes at the origin.

The following procedure gives R and r as required:

• Set r to follow R such that: r3− 2
N = 0.5 ·R3− 2

N .

• Choose ε > 0 for which 0.5c
(

2N
3− 2

N

−2
)
−2πNε > 0.

• Set R to be small enough such that ‖ξ(w)‖ ≤ ε for
any point w within distance R from the origin.

The proof is complete.

Lemma 2. Let φ : U → Rd be a continuous vector field,
and let Γ be a piecewise smooth curve lying in U . Consider
the (continuous) vector field Fφ : U → Rd defined in Equa-
tion 36. The line integral of the latter over Γ is bounded as
follows:∣∣∣∣∫

Γ

Fφ

∣∣∣∣ ≤ N · len(Γ) ·max
γ∈Γ
‖γ‖2−

2
N ·max

γ∈Γ
‖φ(γ)‖

where len(Γ) is the arc length of Γ, and γ ∈ Γ refers to a
point lying on the curve.

Proof. We begin by noting that the use of max (as opposed
to sup) in stated upper bound is appropriate, since under our
definition of a curve (adopted from Buck (2003)), points
lying on it constitute a compact set. This subtlety is of little
importance – one may as well replace max by sup, and the
lemma would still serve its purpose.

It is not difficult to see that for any w ∈ U , w 6= 0:

‖Fφ(w)‖= ‖w‖2−
2
N

∥∥∥∥φ(w)+(N−1)

〈
φ(w),

w

‖w‖

〉
w

‖w‖

∥∥∥∥
≤ ‖w‖2−

2
N

(
‖φ(w)‖+(N−1)

∣∣∣∣〈φ(w),
w

‖w‖

〉∣∣∣∣·∥∥∥∥ w

‖w‖

∥∥∥∥)
= ‖w‖2−

2
N

(
‖φ(w)‖+(N−1)

∣∣∣∣〈φ(w),
w

‖w‖

〉∣∣∣∣)
≤ ‖w‖2−

2
N(‖φ(w)‖+(N−1)‖φ(w)‖)

≤ N ‖w‖2−
2
N ‖φ(w)‖

Trivially, ‖Fφ(w)‖ ≤ N ‖w‖2−
2
N ‖φ(w)‖ holds for w=0

as well. The sought-after result now follows from the prop-
erties of line integrals:∣∣∣∣∫

Γ

Fφ

∣∣∣∣ ≤ ∫
Γ

‖Fφ‖ ≤
∫

Γ

N ‖w‖2−
2
N ‖φ(w)‖

≤ N · len(Γ) ·max
γ∈Γ
‖γ‖2−

2
N ·max

γ∈Γ
‖φ(γ)‖

Lemma 3. Let e be a unit vector, let Γr,R be a piecewise
smooth closed curve as specified in Equation 38 and the text
thereafter, and let φ 7→ Fφ be the operator on continuous
vector fields defined by Equation 36. Overloading notation
by regarding e(·) ≡ e as a constant vector field, it holds
that: ∮

Γr,R

Fe =

(
2N

3− 2/N
− 2

)(
R3− 2

N − r3− 2
N

)
Proof. We compute the line integral by decomposing Γr,R
into its smooth components Γ1

r,R . . .Γ
4
r,R:∮

Γr,R

Fe =

∫
Γ1
r,R

Fe +

∫
Γ2
r,R

Fe +

∫
Γ3
r,R

Fe +

∫
Γ4
r,R

Fe (40)

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

Starting from Γ1
r,R, notice that for every point w lying on

this curve: 〈e, w
‖w‖ 〉

w
‖w‖ = e. Therefore:∫

Γ1
r,R

Fe =

∫
Γ1
r,R

‖w‖2−
2
N (e+(N−1)e) = N

∫
Γ1
r,R

‖w‖2−
2
N e

The line integral on the right translates into a simple univari-
ate integral:∫

Γ1
r,R

‖w‖2−
2
N e =

∫ −r
−R
|ρ|2−

2
N dρ =

∫ R

r

ρ2− 2
N dρ

=
1

3− 2/N

(
R3− 2

N − r3− 2
N

)
We thus have:∫

Γ1
r,R

Fe =
N

3− 2/N

(
R3− 2

N − r3− 2
N

)
(41)

Turning to Γ2
r,R, note that for any point w along this curve

‖w‖2−
2
N = r2− 2

N , and w
‖w‖ is perpendicular to the direc-

tion of motion. This implies:∫
Γ2
r,R

Fe = r2− 2
N

∫
Γ2
r,R

e

The line integral
∫

Γ2
r,R
e is simply equal to the progress Γ2

r,R

makes in the direction of e, which is 2r. Accordingly:∫
Γ2
r,R

Fe = r2− 2
N · 2r = 2r3− 2

N (42)

As for Γ3
r,R and Γ4

r,R, their line integrals may be computed
similarly to those of Γ1

r,R and Γ2
r,R respectively. Such com-

putations yield:∫
Γ3
r,R

Fe =
N

3− 2/N

(
R3− 2

N − r3− 2
N

)
(43)∫

Γ4
r,R

Fe = −2R3− 2
N (44)

Combining Equation 40 with Equations 41, 42, 43 and 44,
we obtain the desired result.

B. A Concrete Acceleration Bound
In Section 7 we illustrated qualitatively, on a family of
very simple hypothetical learning problems, the potential
of overparameterization (use of depth-N linear network in
place of classic linear model) to accelerate optimization. In
this appendix we demonstrate how the illustration can be
made formal, by considering a special case and deriving a
concrete bound on the acceleration.

In the context of Section 7, we will treat the setting of p = 4
(`4 loss) and N = 2 (depth-2 network). We will also as-
sume, in accordance with the problem being ill-conditioned –
y1�y2, that initialization values are ill-conditioned as well,
and in particular ε1/ε2 ≈ y1/y2, where εi := |w(0)

i |. An ad-
ditional assumption we make is that y2 is on the order of 1,
and thus the near-zero initialization of w1 and w2 implies
y2 � ε1, ε2. Finally, we assume that ε1y1 � 1.

As shown in Section 7, under gradient descent, w1 and w2

move independently, and to prevent divergence, the learning
rate must satisfy η < min{2/yp−2

1 , 2/yp−2
2 }. In our setting,

this translates to (GD below stands for gradient descent):

ηGD < 2/y2
1 (45)

For w2, the optimal learning rate (convergence in a single
step) is 1/y2

2 , and the constraint above will lead to very slow
convergence (see Equation 15 and its surrounding text).

Suppose now that we optimize via overparameterization,
i.e. with the update rule in Equation 12 (single output). In
our particular setting (recall, in addition to the above, that
we omitted weight decay for simplicity – λ = 0), this update
rule translates to:

[w
(t+1)
1 , w

(t+1)
2]> ←[[w(t)

1 , w
(t)
2]> (46)

−η
(

(w
(t)
1)2 + (w

(t)
2)2

)1/2
· [(w(t)

1 − y1)3, (w
(t)
2 − y2)3]>

−η
(

(w
(t)
1)2 + (w

(t)
2)2

)−1/2

·
(
w

(t)
1 (w

(t)
1 − y1)3 + w

(t)
2 (w

(t)
2 − y2)3

)
· [w(t)

1 , w
(t)
2]>

For the first iteration (t = 0), replacing εi := |w(0)
i |, while

recalling that y1 � y2 � ε1 � ε2, we obtain:

[w
(1)
1 , w

(1)
2]> ≈ η · ε1 · [y3

1 , y
3
2]> + η · y3

1 · [ε1, ε2]>

= η · [2ε1y3
1 , ε1y

3
2 + ε2y

3
1]>

Set η = 1/2ε1y
2
1 . Then w(1)

1 ≈ y1 and w(1)
2 ≈ y3

2/2y
2
1 +

ε2y1/2ε1. Our assumptions thus far (y1 � y2 and ε1 � ε2)
imply w(1)

1 � w
(1)
2 . Moreover, since ε2/ε1 ≈ y2/y1, it

holds that w(1)
2 ∈ O(y2) = O(1). Taking all of this into ac-

count, the second iteration (t = 1) of the overparameterized
update rule (Equation 46) becomes:

[w
(2)
1 , w

(2)
2]> ≈ [y1, w

(1)
2]>

− 1

2ε1y1
[(w

(1)
1 − y1)3, (w

(1)
2 − y2)3]>

−y1(w
(1)
1 − y1)3 + w

(1)
2 (w

(1)
2 − y2)3

2ε1y3
1

[y1, w
(1)
2]>

≈ [y1, w
(1)
2 − 1/2ε1y1 · (w(1)

2 − y2)3]>

In words, w1 will stay approximately equal to y1, whereas
w2 will take a step that corresponds to gradient descent with
learning rate (OP below stands for overparameterization):

ηOP := 1/2ε1y1 (47)

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

By assumption ε1y1�1 and y2∈O(1), thus ηOP<2/y2
2 ,

meaning that w2 will remain on the order of y2 (or less).
An inductive argument can therefore be applied, and our
observation regarding the second iteration (t = 1) continues
to hold throughout – w1 is (approximately) fixed at y1, and
w2 follows steps that correspond to gradient descent with
learning rate ηOP .

To summarize our findings, we have shown that while stan-
dard gradient descent limits w2 with a learning rate ηGD

that is at most 2/y2
1 (Equation 45), overparameterization

can be adjusted to induce on w2 an implicit gradient descent
scheme with learning rate ηOP = 1/2ε1y1 (Equation 47),
all while admitting immediate (single-step) convergence
for w1. Since both ηGD and ηOP are well below 1/y2

2 , we
obtain acceleration by at least ηOP /ηGD > y1/4ε1 (we
remind the reader that y1 � 1 is the target value of w1, and
ε1 � 1 is the magnitude of its initialization).

C. Implementation Details
Below we provide implementation details omitted from our
experimental report (Section 8).

C.1. Linear Neural Networks

The details hereafter apply to all of our experiments besides
that on the convolutional network (Figure 5-right).

In accordance with our theoretical setup (Section 4), evalu-
ated linear networks did not include bias terms, only weight
matrices. The latter were initialized to small values, drawn
i.i.d. from a Gaussian distribution with mean zero and stan-
dard deviation 0.01. The only exception to this was the
setting of identity initialization (Figure 5-left), in which
an offset of 1 was added to the diagonal elements of each
weight matrix (including those that are not square).

When applying a grid search over learning rates, the values
{10−5, 5 · 10−5, . . . , 10−1, 5 · 10−1} were tried. We note
that in the case of depth-8 network with standard near-zero
initialization (Figure 5-left), all learning rates led either to
divergence, or to a failure to converge (vanishing gradients).

For computing optimal `2 loss (used as an offset in respec-
tive convergence plots), we simply solved, in closed form,
the corresponding least squares problem. For the optimal
`4 loss, we used scipy.optimize.minimize – a nu-
merical optimizer built into SciPy (Jones et al., 2001–), with
the default method of BFGS (Nocedal, 1980).

C.2. Convolutional Network

For the experiment on TensorFlow’s MNIST convolutional
network tutorial, we simply downloaded the code,7 and
introduced two minor changes:

• Hidden dense layer: 3136×512 weight matrix replaced
by multiplication of 3136×512 and 512×512 matrices.

• Output layer: 512×10 weight matrix replaced by mul-
tiplication of 512×10 and 10×10 matrices.

The newly introduced weight matrices were initialized in the
same way as their predecessors (random Gaussian distribu-
tion with mean zero and standard deviation 0.1). Besides the
above, no change was made. An addition of roughly 250K
parameters to a 1.6M -parameter model gave the speedup
presented in Figure 5-right.

To rule out the possibility of the speedup resulting from sub-
optimal learning rates, we reran the experiment with grid
search over the latter. The learning rate hardcoded into the
tutorial follows an exponentially decaying schedule, with
base value 10−2. For both the original and overparameter-
ized models, training was run multiple times, with the base
value varying in {10−5, 5 · 10−5, . . . , 10−1, 5 · 10−1}. We
chose, for each model separately, the configuration giving
fastest convergence, and then compared the models one
against the other. The observed gap in convergence rates
was similar to that in Figure 5-right.

An additional point we set out to examine, is the sensitivity
of the speedup to initialization of overparameterized layers.
For this purpose, we retrained the overparameterized model
multiple times, varying in {10−3, 5 · 10−3, . . . , 10−1, 5 ·
10−1} the standard deviation of the Gaussian distribution
initializing overparameterized layers (as stated above, this
standard deviation was originally set to 10−1). Convergence
rates across the different runs were almost identical. In par-
ticular, they were all orders of magnitude faster than the con-
vergence rate of the baseline, non-overparameterized model.

7 https://github.com/tensorflow/models/
tree/master/tutorials/image/mnist

https://github.com/tensorflow/models/tree/master/tutorials/image/mnist
https://github.com/tensorflow/models/tree/master/tutorials/image/mnist

