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Abstract
Conventional wisdom in deep learning states that
increasing depth improves expressiveness but
complicates optimization. This paper suggests
that, sometimes, increasing depth can speed up
optimization. The effect of depth on optimization
is decoupled from expressiveness by focusing on
settings where additional layers amount to over-
parameterization – linear neural networks, a well-
studied model. Theoretical analysis, as well as
experiments, show that here depth acts as a pre-
conditioner which may accelerate convergence.
Even on simple convex problems such as linear
regression with `p loss, p > 2, gradient descent
can benefit from transitioning to a non-convex
overparameterized objective, more than it would
from some common acceleration schemes. We
also prove that it is mathematically impossible to
obtain the acceleration effect of overparametriza-
tion via gradients of any regularizer.

1. Introduction
How does depth help? This central question of deep learn-
ing still eludes full theoretical understanding. The general
consensus is that there is a trade-off: increasing depth im-
proves expressiveness, but complicates optimization. Supe-
rior expressiveness of deeper networks, long suspected, is
now confirmed by theory, albeit for fairly limited learning
problems (Eldan & Shamir, 2015; Raghu et al., 2016; Lee
et al., 2017; Cohen et al., 2017; Daniely, 2017; Arora et al.,
2018). Difficulties in optimizing deeper networks have also
been long clear – the signal held by a gradient gets buried
as it propagates through many layers. This is known as
the “vanishing/exploding gradient problem”. Modern tech-
niques such as batch normalization (Ioffe & Szegedy, 2015)
and residual connections (He et al., 2015) have somewhat
alleviated these difficulties in practice.
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Given the longstanding consensus on expressiveness vs. op-
timization trade-offs, this paper conveys a rather counter-
intuitive message: increasing depth can accelerate opti-
mization. The effect is shown, via first-cut theoretical and
empirical analyses, to resemble a combination of two well-
known tools in the field of optimization: momentum, which
led to provable acceleration bounds (Nesterov, 1983); and
adaptive regularization, a more recent technique proven to
accelerate by Duchi et al. (2011) in their proposal of the
AdaGrad algorithm. Explicit mergers of both techniques
are quite popular in deep learning (Kingma & Ba, 2014;
Tieleman & Hinton, 2012). It is thus intriguing that merely
introducing depth, with no other modification, can have a
similar effect, but implicitly.

There is an obvious hurdle in isolating the effect of depth
on optimization: if increasing depth leads to faster train-
ing on a given dataset, how can one tell whether the im-
provement arose from a true acceleration phenomenon, or
simply due to better representational power (the shallower
network was unable to attain the same training loss)? We
respond to this hurdle by focusing on linear neural networks
(cf. Saxe et al. (2013); Goodfellow et al. (2016); Hardt &
Ma (2016); Kawaguchi (2016)). With these models, adding
layers does not alter expressiveness; it manifests itself only
in the replacement of a matrix parameter by a product of
matrices – an overparameterization.

We provide a new analysis of linear neural network opti-
mization via direct treatment of the differential equations
associated with gradient descent when training arbitrarily
deep networks on arbitrary loss functions. We find that the
overparameterization introduced by depth leads gradient
descent to operate as if it were training a shallow (single
layer) network, while employing a particular precondition-
ing scheme. The preconditioning promotes movement along
directions already taken by the optimization, and can be seen
as an acceleration procedure that combines momentum with
adaptive learning rates. Even on simple convex problems
such as linear regression with `p loss, p > 2, overparam-
eterization via depth can significantly speed up training.
Surprisingly, in some of our experiments, not only did over-
parameterization outperform naı̈ve gradient descent, but it
was also faster than two well-known acceleration methods –
AdaGrad (Duchi et al., 2011) and AdaDelta (Zeiler, 2012).
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In addition to purely linear networks, we also demonstrate
(empirically) the implicit acceleration of overparameteri-
zation on a non-linear model, by replacing hidden layers
with depth-2 linear networks. The implicit acceleration of
overparametrization is different from standard regulariza-
tion – we prove its effect cannot be attained via gradients of
any fixed regularizer.

Both our theoretical analysis and our empirical evaluation
indicate that acceleration via overparameterization need not
be computationally expensive. From an optimization per-
spective, overparameterizing using wide or narrow networks
has the same effect – it is only the depth that matters.

2. Related Work
Theoretical study of optimization in deep learning is a highly
active area of research. Works along this line typically an-
alyze critical points (local minima, saddles) in the land-
scape of the training objective, either for linear networks
(see for example Kawaguchi (2016); Hardt & Ma (2016) or
Baldi & Hornik (1989) for a classic account), or for specific
non-linear networks under different restrictive assumptions
(cf. Choromanska et al. (2015); Haeffele & Vidal (2015);
Soudry & Carmon (2016); Safran & Shamir (2017)). Other
works characterize other aspects of objective landscapes,
for example Safran & Shamir (2016) showed that under
certain conditions a monotonically descending path from
initialization to global optimum exists (in compliance with
the empirical observations of Goodfellow et al. (2014)).

The dynamics of optimization was studied in Fukumizu
(1998) and Saxe et al. (2013), for linear networks. Like
ours, these works analyze gradient descent through its cor-
responding differential equations. Fukumizu (1998) focuses
on linear regression with `2 loss, and does not consider the
effect of varying depth – only a two (single hidden) layer
network is analyzed. Saxe et al. (2013) also focuses on
`2 regression, but considers any depth beyond two (inclu-
sive), ultimately concluding that increasing depth can slow
down optimization, albeit by a modest amount. In contrast
to these two works, our analysis applies to a general loss
function, and any depth including one. Intriguingly, we find
that for `p regression, acceleration by depth is revealed only
when p > 2. This explains why the conclusion reached
in Saxe et al. (2013) differs from ours.

Turning to general optimization, accelerated gradient (mo-
mentum) methods were introduced in Nesterov (1983), and
later studied in numerous works (see Wibisono et al. (2016)
for a short review). Such methods effectively accumulate
gradients throughout the entire optimization path, using the
collected history to determine the step at a current point in
time. Use of preconditioners to speed up optimization is
also a well-known technique. Indeed, the classic Newton’s
method can be seen as preconditioning based on second

derivatives. Adaptive preconditioning with only first-order
(gradient) information was popularized by the BFGS al-
gorithm and its variants (cf. Nocedal (1980)). Relevant
theoretical guarantees, in the context of regret minimization,
were given in Hazan et al. (2007); Duchi et al. (2011). In
terms of combining momentum and adaptive precondition-
ing, Adam (Kingma & Ba, 2014) is a popular approach,
particularly for optimization of deep networks.

3. Warmup: `p Regression
We begin with a simple yet striking example of the effect
being studied. For linear regression with `p loss, we will
see how even the slightest overparameterization can have an
immense effect on optimization. Specifically, we will see
that simple gradient descent on an objective overparameter-
ized by a single scalar, corresponds to a form of accelerated
gradient descent on the original objective.

Consider the objective for a scalar linear regression problem
with `p loss (p – even positive integer):

L(w) = E(x,y)∼S

[
1
p (x>w − y)p

]
x ∈ Rd here are instances, y ∈ R are continuous labels,
S is a finite collection of labeled instances (training set), and
w ∈ Rd is a learned parameter vector. Suppose now that we
apply a simple overparameterization, replacing the param-
eter vector w by a vector w1 ∈ Rd times a scalar w2 ∈ R:

L(w1, w2) = E(x,y)∼S

[
1
p (x>w1w2 − y)p

]
Obviously the overparameterization does not affect the ex-
pressiveness of the linear model. How does it affect opti-
mization? What happens to gradient descent on this non-
convex objective?

Observation 1. Gradient descent over L(w1, w2), with
fixed small learning rate and near-zero initialization, is
equivalent to gradient descent over L(w) with particular
adaptive learning rate and momentum terms.

To see this, consider the gradients of L(w) andL(w1, w2):
∇w := E(x,y)∼S

[
(x>w − y)p−1x

]
∇w1

:= E(x,y)∼S
[
(x>w1w2 − y)p−1w2x

]
∇w2

:= E(x,y)∼S
[
(x>w1w2 − y)p−1w>1 x

]
Gradient descent over L(w1, w2) with learning rate η > 0:

w
(t+1)
1 ← [ w(t)

1 −η∇w
(t)
1

, w
(t+1)
2 ← [ w(t)

2 −η∇w(t)
2

The dynamics of the underlying parameter w = w1w2 are:

w(t+1) = w
(t+1)
1 w

(t+1)
2

←[ (w(t)
1 −η∇w

(t)
1

)(w
(t)
2 −η∇w(t)

2
)

= w
(t)
1 w

(t)
2 − ηw

(t)
2 ∇w

(t)
1
− η∇

w
(t)
2
w

(t)
1 +O(η2)

= w(t) − η(w
(t)
2 )2∇w(t) − η(w

(t)
2 )−1∇

w
(t)
2
w(t) +O(η2)

η is assumed to be small, thus we neglect O(η2). De-
noting ρ(t):=η(w

(t)
2 )2 ∈R and γ(t):=η(w

(t)
2 )−1∇

w
(t)
2
∈R,

this gives:
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w(t+1) ←[ w(t) − ρ(t)∇w(t) − γ(t)w(t)

Since by assumption w1 and w2 are initialized near zero,
w will initialize near zero as well. This implies that at every
iteration t, w(t) is a weighted combination of past gradients.
There thus exist µ(t,τ) ∈ R such that:

w(t+1) ← [ w(t) − ρ(t)∇w(t) −
∑t−1

τ=1
µ(t,τ)∇w(τ)

We conclude that the dynamics governing the underlying
parameter w correspond to gradient descent with a momen-
tum term, where both the learning rate (ρ(t)) and momentum
coefficients (µ(t,τ)) are time-varying and adaptive.

4. Linear Neural Networks
Let X := Rd be a space of objects (e.g. images or word
embeddings) that we would like to infer something about,
and let Y := Rk be the space of possible inferences.
Suppose we are given a training set {(x(i),y(i))}mi=1 ⊂
X × Y , along with a (point-wise) loss function l : Y ×
Y → R≥0. For example, y(i) could hold continuous val-
ues with l(·) being the `2 loss: l(ŷ,y) = 1

2 ‖ŷ − y‖22;
or it could hold one-hot vectors representing categories
with l(·) being the softmax-cross-entropy loss: l(ŷ,y) =

−
∑k
r=1 yr log(eŷr/

∑k
r′=1 e

ŷr′ ), where yr and ŷr stand
for coordinate r of y and ŷ respectively. For a predic-
tor φ, i.e. a mapping from X to Y , the overall training loss
is L(φ) := 1

m

∑m
i=1 l(φ(x(i)),y(i)). If φ comes from some

parametric family Φ := {φθ : X → Y|θ ∈ Θ}, we view the
corresponding training loss as a function of the parameters,
i.e. we consider LΦ(θ) := 1

m

∑m
i=1 l(φθ(x

(i)),y(i)). For
example, if the parametric family in question is the class of
(directly parameterized) linear predictors:

Φlin := {x 7→Wx|W ∈ Rk,d} (1)
the respective training loss is a function from Rk,d to R≥0.

In our context, a depth-N (N ≥ 2) linear neural network,
with hidden widths n1, n2, . . . , nN−1∈N, is the follow-
ing parametric family of linear predictors: Φn1...nN−1 :=
{x 7→WNWN−1· · ·W1x|Wj∈Rnj ,nj−1 , j=1...N}, where
by definition n0 := d and nN := k. As customary, we refer
to each Wj , j=1...N , as the weight matrix of layer j. For
simplicity of presentation, we hereinafter omit from our no-
tation the hidden widths n1...nN−1, and simply write ΦN

instead of Φn1...nN−1 (n1. . .nN−1 will be specified explic-
itly if not clear by context). That is, we denote:

ΦN := (2)
{x 7→WNWN−1· · ·W1x|Wj ∈ Rnj ,nj−1 , j=1...N}

For completeness, we regard a depth-1 network as the family
of directly parameterized linear predictors, i.e. we set Φ1 :=
Φlin (see Equation 1).

The training loss that corresponds to a depth-N lin-
ear network – LΦN (W1, ...,WN ), is a function from
Rn1,n0×· · ·×RnN ,nN−1 to R≥0. For brevity, we will de-
note this function by LN (·). Our focus lies on the behavior

of gradient descent when minimizing LN (·). More specifi-
cally, we are interested in the dependence of this behavior
on N , and in particular, in the possibility of increasing N
leading to acceleration. Notice that for any N ≥ 2 we have:

LN (W1, ...,WN ) = L1(WNWN−1· · ·W1) (3)

and so the sole difference between the training loss of a
depth-N network and that of a depth-1 network (classic lin-
ear model) lies in the replacement of a matrix parameter by
a product of N matrices. This implies that if increasing N
can indeed accelerate convergence, it is not an outcome of
any phenomenon other than favorable properties of depth-
induced overparameterization for optimization.

5. Implicit Dynamics of Gradient Descent
In this section we present a new result for linear neural
networks, tying the dynamics of gradient descent on LN (·) –
the training loss corresponding to a depth-N network, to
those on L1(·) – training loss of a depth-1 network (classic
linear model). Specifically, we show that gradient descent
on LN (·), a complicated and seemingly pointless overpa-
rameterization, can be directly rewritten as a particular pre-
conditioning scheme over gradient descent on L1(·).

When applied to LN (·), gradient descent takes on the fol-
lowing form:

W
(t+1)
j ← [ (1− ηλ)W

(t)
j − η

∂LN

∂Wj
(W

(t)
1 , . . . ,W

(t)
N ) (4)

, j = 1. . .N

η > 0 here is a learning rate, and λ ≥ 0 is an optional
weight decay coefficient. For simplicity, we regard both η
and λ as fixed (no dependence on t). Define the underlying
end-to-end weight matrix:

We := WNWN−1 · · ·W1 (5)

Given that LN (W1, . . . ,WN ) = L1(We) (Equation 3), we
view We as an optimized weight matrix for L1(·), whose
dynamics are governed by Equation 4. Our interest then
boils down to the study of these dynamics for different
choices of N . For N = 1 they are (trivially) equivalent to
standard gradient descent over L1(·). We will characterize
the dynamics for N ≥ 2.

To be able to derive, in our general setting, an explicit update
rule for the end-to-end weight matrix We (Equation 5), we
introduce an assumption by which the learning rate is small,
i.e. η2 ≈ 0. Formally, this amounts to translating Equation 4
to the following set of differential equations:

Ẇj(t) = −ηλWj(t)− η
∂LN

∂Wj
(W1(t), . . . ,WN (t)) (6)

, j = 1. . .N

where t is now a continuous time index, and Ẇj(t) stands
for the derivative of Wj with respect to time. The use of
differential equations, for both theoretical analysis and al-
gorithm design, has a long and rich history in optimization
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research (see Helmke & Moore (2012) for an overview).
When step sizes (learning rates) are taken to be small, tra-
jectories of discrete optimization algorithms converge to
smooth curves modeled by continuous-time differential
equations, paving way to the well-established theory of
the latter (cf. Boyce et al. (1969)). This approach has led
to numerous interesting findings, including recent results in
the context of acceleration methods (e.g. Su et al. (2014);
Wibisono et al. (2016)).

With the continuous formulation in place, we turn to express
the dynamics of the end-to-end matrix We:

Theorem 1. Assume the weight matrices W1. . .WN follow
the dynamics of continuous gradient descent (Equation 6).
Assume also that their initial values (time t0) satisfy, for
j = 1. . .N − 1:

W>j+1(t0)Wj+1(t0) = Wj(t0)W>j (t0) (7)

Then, the end-to-end weight matrix We (Equation 5) is
governed by the following differential equation:

Ẇe(t) = −ηλN ·We(t) (8)

−η
∑N

j=1

[
We(t)W

>
e (t)

] j−1
N ·

dL1

dW (We(t)) ·
[
W>e (t)We(t)

]N−j
N

where [·]
j−1
N and [·]

N−j
N , j = 1 . . . N , are fractional power

operators defined over positive semidefinite matrices.

Proof. (sketch – full details in Appendix A.1) If λ= 0
(no weight decay) then one can easily show that
W>j+1(t)Ẇj+1(t) = Ẇj(t)W

>
j (t) throughout optimization.

Taking the transpose of this equation and adding to itself,
followed by integration over time, imply that the differ-
ence between W>j+1(t)Wj+1(t) and Wj(t)W

>
j (t) is con-

stant. This difference is zero at initialization (Equation 7),
thus will remain zero throughout, i.e.:

W>j+1(t)Wj+1(t) = Wj(t)W
>
j (t) , ∀t ≥ t0 (9)

A slightly more delicate treatment shows that this is true
even if λ > 0, i.e. with weight decay included.

Equation 9 implies alignment of the (left and right) sin-
gular spaces of Wj(t) and Wj+1(t), simplifying the prod-
uct Wj+1(t)Wj(t). Successive application of this simpli-
fication allows a clean computation for the product of all
layers (that is, We), leading to the explicit form presented
in theorem statement (Equation 8).

Translating the continuous dynamics of Equation 8 back to
discrete time, we obtain the sought-after update rule for the
end-to-end weight matrix:

W (t+1)
e ← [ (1− ηλN)W (t)

e (10)

−η
∑N

j=1

[
W (t)
e (W (t)

e )>
] j−1
N ·

dL1

dW (W (t)
e ) ·

[
(W (t)

e )>W (t)
e

]N−j
N

This update rule relies on two assumptions: first, that the

learning rate η is small enough for discrete updates to ap-
proximate continuous ones; and second, that weights are
initialized on par with Equation 7, which will approximately
be the case if initialization values are close enough to zero.
It is customary in deep learning for both learning rate and
weight initializations to be small, but nonetheless above
assumptions are only met to a certain extent. We support
their applicability by showing empirically (Section 8) that
the end-to-end update rule (Equation 10) indeed provides
an accurate description for the dynamics of We.

A close look at Equation 10 reveals that the dynamics of the
end-to-end weight matrix We are similar to gradient descent
over L1(·) – training loss corresponding to a depth-1 net-
work (classic linear model). The only difference (besides the
scaling by N of the weight decay coefficient λ) is that the
gradient dL

1

dW (We) is subject to a transformation before be-
ing used. Namely, for j = 1. . .N , it is multiplied from the
left by [WeW

>
e ]

j−1
N and from the right by [W>e We]

N−j
N , fol-

lowed by summation over j. Clearly, when N = 1 (depth-1
network) this transformation reduces to identity, and as ex-
pected, We precisely adheres to gradient descent over L1(·).
When N ≥ 2 the dynamics of We are less interpretable. We
arrange it as a vector to gain more insight:

Claim 1. For an arbitrary matrix A, denote by vec(A) its
arrangement as a vector in column-first order. Then, the
end-to-end update rule in Equation 10 can be written as:

vec(W (t+1)
e )← [ (1− ηλN) · vec(W (t)

e ) (11)

−η · P
W

(t)
e
vec

(
dL1

dW (W (t)
e )
)

where P
W

(t)
e

is a positive semidefinite preconditioning ma-

trix that depends on W (t)
e . Namely, if we denote the sin-

gular values of W (t)
e ∈ Rk,d by σ1 . . . σmax{k,d} ∈ R≥0

(by definition σr = 0 if r > min{k, d}), and correspond-
ing left and right singular vectors by u1 . . .uk ∈ Rk and
v1 . . .vd ∈ Rd respectively, the eigenvectors of P

W
(t)
e

are:

vec(urv
>
r′) , r = 1 . . . k , r′ = 1 . . . d

with corresponding eigenvalues:∑N

j=1
σ

2N−jN
r σ

2 j−1
N

r′ , r = 1 . . . k , r′ = 1 . . . d

Proof. The result readily follows from the properties of the
Kronecker product – see Appendix A.2 for details.

Claim 1 implies that in the end-to-end update rule of Equa-
tion 10, the transformation applied to the gradient dL

1

dW (We)
is essentially a preconditioning, whose eigendirections
and eigenvalues depend on the singular value decompo-
sition of We. The eigendirections are the rank-1 matri-
ces urv

>
r′ , where ur and vr′ are left and right (respec-

tively) singular vectors of We. The eigenvalue of urv>r′
is
∑N
j=1 σ

2(N−j)/N
r σ

2(j−1)/N
r′ , where σr and σr′ are the

singular values of We corresponding to ur and vr′ (respec-
tively). When N ≥ 2, an increase in σr or σr′ leads to
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an increase in the eigenvalue corresponding to the eigendi-
rection urv

>
r′ . Qualitatively, this implies that the precondi-

tioning favors directions that correspond to singular vectors
whose presence in We is stronger. We conclude that the
effect of overparameterization, i.e. of replacing a classic lin-
ear model (depth-1 network) by a depth-N linear network,
boils down to modifying gradient descent by promoting
movement along directions that fall in line with the current
location in parameter space. A-priori, such a preference may
seem peculiar – why should an optimization algorithm be
sensitive to its location in parameter space? Indeed, we gen-
erally expect sensible algorithms to be translation invariant,
i.e. be oblivious to parameter value. However, if one takes
into account the common practice in deep learning of ini-
tializing weights near zero, the location in parameter space
can also be regarded as the overall movement made by the
algorithm. We thus interpret our findings as indicating that
overparameterization promotes movement along directions
already taken by the optimization, and therefore can be seen
as a form of acceleration. This intuitive interpretation will
become more concrete in the subsection that follows.

A final point to make, is that the end-to-end update rule
(Equation 10 or 11), which obviously depends on N – num-
ber of layers in the deep linear network, does not depend on
the hidden widths n1 . . . nN−1 (see Section 4). This implies
that from an optimization perspective, overparameterizing
using wide or narrow networks has the same effect – it is
only the depth that matters. Consequently, the acceleration
of overparameterization can be attained at a minimal compu-
tational price, as we demonstrate empirically in Section 8.

5.1. Single Output Case
To facilitate a straightforward presentation of our findings,
we hereinafter focus on the special case where the optimized
models have a single output, i.e. where k = 1. This corre-
sponds, for example, to a binary (two-class) classification
problem, or to the prediction of a numeric scalar property
(regression). It admits a particularly simple form for the
end-to-end update rule of Equation 10:
Claim 2. Assume k = 1, i.e. We ∈ R1,d. Then, the end-to-
end update rule in Equation 10 can be written as follows:
W (t+1)
e ← [ (1− ηλN) ·W (t)

e (12)

−η‖W (t)
e ‖

2− 2
N

2 ·
(
dL1

dW (W (t)
e )+

(N − 1) · Pr
W

(t)
e

{
dL1

dW (W (t)
e )
})

where ‖·‖2−
2
N

2 stands for Euclidean norm raised to the
power of 2− 2

N , and PrW {·}, W ∈ R1,d, is defined to be
the projection operator onto the direction of W :

PrW : R1,d → R1,d (13)

PrW {V } :=

{
W
‖W‖2

V > · W
‖W‖2

, W 6= 0

0 , W = 0

Proof. The result follows from the definition of a fractional
power operator over matrices – see Appendix A.3.

Claim 2 implies that in the single output case, the effect
of overparameterization (replacing classic linear model by
depth-N linear network) on gradient descent is twofold:
first, it leads to an adaptive learning rate schedule, by in-
troducing the multiplicative factor ‖We‖2−2/N

2 ; and second,
it amplifies (by N ) the projection of the gradient on the
direction of We. Recall that we view We not only as the
optimized parameter, but also as the overall movement made
in optimization (initialization is assumed to be near zero).
Accordingly, the adaptive learning rate schedule can be seen
as gaining confidence (increasing step sizes) when optimiza-
tion moves farther away from initialization, and the gradient
projection amplification can be thought of as a certain type
of momentum that favors movement along the azimuth taken
so far. These effects bear potential to accelerate convergence,
as we illustrate qualitatively in Section 7, and demonstrate
empirically in Section 8.

6. Overparametrization Effects Cannot Be
Attained via Regularization

Adding a regularizer to the objective is a standard approach
for improving optimization (though lately the term regular-
ization is typically associated with generalization). For ex-
ample, AdaGrad was originally invented to compete with the
best regularizer from a particular family. The next theorem
shows (for single output case) that the effects of overparame-
terization cannot be attained by adding a regularization term
to the original training loss, or via any similar modification.
This is not obvious a-priori, as unlike many acceleration
methods that explicitly maintain memory of past gradients,
updates under overparametrization are by definition the gra-
dients of something. The assumptions in the theorem are
minimal and also necessary, as one must rule-out the trivial
counter-example of a constant training loss.

Theorem 2. Assume dL1

dW does not vanish at W = 0, and is
continuous on some neighborhood around this point. For a
given N ∈ N, N > 2,1 define:

F (W ) := (14)

‖W‖2−
2
N

2 ·
(
dL1

dW (W ) + (N−1) · PrW
{
dL1

dW (W )
})

where PrW {·} is the projection given in Equation 13. Then,
there exists no function (of W ) whose gradient field is F (·).
Proof. (sketch – full details in Appendix A.4) The proof
uses the fundamental theorem for line integrals, which states
that the integral of ∇g for any differentiable function g
amounts to 0 along every closed curve.
Overparametrization changes gradient descent’s behavior:
instead of following the original gradient dL

1

dW , it follows
some other direction F (·) (see Equations 12 and 14) that

1 For the result to hold with N = 2, additional assump-
tions on L1(·) are required; otherwise any non-zero linear func-
tion L1(W ) = WU> serves as a counter-example – it leads to a
vector field F (·) that is the gradient of W 7→ ‖W‖2 ·WU>.
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Figure 1. Curve Γr,R over which line integral is non-zero.

is a function of the original gradient as well as the current
point W . We think of this change as a transformation that
maps one vector field φ(·) to another – Fφ(·):

Fφ(W ) ={
‖W‖2−

2
N

(
φ(W )+(N−1)

〈
φ(W ), W

‖W‖

〉
W
‖W‖

)
,W 6=0

0 ,W=0

Notice that for φ = dL1

dW , we get exactly the vector field
F (·) defined in theorem statement. The mapping φ 7→ Fφ
is linear. Moreover, because of the linearity of line integrals,
for any curve Γ, the functional φ 7→

∫
Γ
Fφ – a mapping of

vector fields to scalars, is linear as well.

We show that F (·) contradicts the fundamental theorem for
line integrals. To do so, we construct a closed curve Γ=Γr,R
for which the linear functional φ 7→

∮
Γ
Fφ does not van-

ish at φ=dL1

dW . Let e := dL1

dW (W=0)/‖dL
1

dW (W=0)‖, which
is well-defined since by assumption dL1

dW (W=0) 6= 0. For
r < Rwe define Γr,R := Γ1

r,R → Γ2
r,R → Γ3

r,R → Γ4
r,R

as illustrated in Figure 1. With the definition of Γr,R

in place, we decompose dL1

dW into a constant vector field
κ≡ dL1

dW (W=0) plus a residual ξ. We explicitly compute
the line integrals along Γ1

r,R . . .Γ
4
r,R for Fκ, and derive

bounds for Fξ. This, along with the linearity of the func-
tional φ 7→

∫
Γ
Fφ, provides a lower bound on the line inte-

gral of F (·) over Γr,R. We show the lower bound is positive
as r,R→ 0, thus F (·) indeed contradicts the fundamental
theorem for line integrals.

7. Illustration of Acceleration
To this end, we showed that overparameterization (use of
depth-N linear network in place of classic linear model)
induces on gradient descent a particular preconditioning
scheme (Equation 10 in general and 12 in the single output
case), which can be interpreted as introducing some forms
of momentum and adaptive learning rate. We now illus-
trate qualitatively, on a very simple hypothetical learning
problem, the potential of these to accelerate optimization.

Consider the task of linear regression, assigning to vectors
in R2 labels in R. Suppose that our training set consists
of two points in R2 × R: ([1, 0]>, y1) and ([0, 1]>, y2).
Assume also that the loss function of interest is `p, p ∈ 2N:
`p(ŷ, y) = 1

p (ŷ − y)p. Denoting the learned parameter by
w = [w1, w2]>, the overall training loss can be written as:2

2 We omit the averaging constant 1
2

for conciseness.

L(w1, w2) = 1
p (w1 − y1)p + 1

p (w2 − y2)p

With fixed learning rate η > 0 (weight decay omitted for
simplicity), gradient descent over L(·) gives:

w
(t+1)
i ← [ w(t)

i − η(w
(t)
i − yi)

p−1 , i = 1, 2

Changing variables per ∆i = wi − yi, we have:

∆
(t+1)
i ←[ ∆(t)

i

(
1− η(∆

(t)
i )p−2

)
, i = 1, 2 (15)

Assuming the original weights w1 and w2 are initialized
near zero, ∆1 and ∆2 start off at −y1 and −y2 respectively,
and will eventually reach the optimum ∆∗1 = ∆∗2 = 0 if the
learning rate is small enough to prevent divergence:

η < 2

yp−2
i

, i = 1, 2

Suppose now that the problem is ill-conditioned, in the
sense that y1�y2. If p = 2 this has no effect on the bound
for η.3 If p > 2 the learning rate is determined by y1, lead-
ing ∆2 to converge very slowly. In a sense, ∆2 will suffer
from the fact that there is no “communication” between
the coordinates (this will actually be the case not just with
gradient descent, but with most algorithms typically used in
large-scale settings – AdaGrad, Adam, etc.).

Now consider the scenario where we optimize L(·) via over-
parameterization, i.e. with the update rule in Equation 12
(single output). In this case the coordinates are coupled,
and as ∆1 gets small (w1 gets close to y1), the learning
rate is effectively scaled by y2− 2

N
1 (in addition to a scal-

ing by N in coordinate 1 only), allowing (if y1>1) faster
convergence of ∆2. We thus have the luxury of temporar-
ily slowing down ∆2 to ensure that ∆1 does not diverge,
with the latter speeding up the former as it reaches safe
grounds. In Appendix B we consider a special case and
formalize this intuition, deriving a concrete bound for the
acceleration of overparameterization.

8. Experiments
Our analysis (Section 5) suggests that overparameteriza-
tion – replacement of a classic linear model by a deep linear
network, induces on gradient descent a certain precondition-
ing scheme. We qualitatively argued (Section 7) that in some
cases, this preconditioning may accelerate convergence. In
this section we put these claims to the test, through a se-
ries of empirical evaluations based on TensorFlow toolbox
(Abadi et al. (2016)). For conciseness, many of the details
behind our implementation are deferred to Appendix C.

We begin by evaluating our analytically-derived precondi-
tioning scheme – the end-to-end update rule in Equation 10.
Our objective in this experiment is to ensure that our analy-
sis, continuous in nature and based on a particular assump-
tion on weight initialization (Equation 7), is indeed appli-
cable to practical scenarios. We focus on the single output

3 Optimal learning rate for gradient descent on quadratic objec-
tive does not depend on current parameter value (cf. Goh (2017)).
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Figure 2. (to be viewed in color) Gradient descent optimization
of deep linear networks (depths 2, 3) vs. the analytically-derived
equivalent preconditioning schemes (over single layer model;
Equation 12). Both plots show training objective (left – `2 loss;
right – `4 loss) per iteration, on a numeric regression dataset from
UCI Machine Learning Repository (details in text). Notice the
emulation of preconditioning schemes. Notice also the negligible
effect of network width – for a given depth, setting size of hidden
layers to 1 (scalars) or 100 yielded similar convergence (on par
with our analysis).

case, where the update-rule takes on a particularly simple
(and efficiently implementable) form – Equation 12. The
dataset chosen was UCI Machine Learning Repository’s
“Gas Sensor Array Drift at Different Concentrations” (Ver-
gara et al., 2012; Rodriguez-Lujan et al., 2014). Specifi-
cally, we used the dataset’s “Ethanol” problem – a scalar
regression task with 2565 examples, each comprising 128
features (one of the largest numeric regression tasks in the
repository). As training objectives, we tried both `2 and `4
losses. Figure 2 shows convergence (training objective per
iteration) of gradient descent optimizing depth-2 and depth-
3 linear networks, against optimization of a single layer
model using the respective preconditioning schemes (Equa-
tion 12 with N = 2, 3). As can be seen, the preconditioning
schemes reliably emulate deep network optimization, sug-
gesting that, at least in some cases, our analysis indeed
captures practical dynamics.

Alongside the validity of the end-to-end update rule, Fig-
ure 2 also demonstrates the negligible effect of network
width on convergence, in accordance with our analysis (see
Section 5). Specifically, it shows that in the evaluated set-
ting, hidden layers of size 1 (scalars) suffice in order for the
essence of overparameterization to fully emerge. Unless oth-
erwise indicated, all results reported hereinafter are based
on this configuration, i.e. on scalar hidden layers. The com-
putational toll associated with overparameterization will
thus be virtually non-existent.

As a final observation on Figure 2, notice that it exhibits
faster convergence with a deeper network. This however
does not serve as evidence in favor of acceleration by depth,
as we did not set learning rates optimally per model (simply
used the common choice of 10−3). To conduct a fair compar-
ison between the networks, and more importantly, between
them and a classic single layer model, multiple learning
rates were tried, and the one giving fastest convergence was
taken on a per-model basis. Figure 3 shows the results of
this experiment. As can be seen, convergence of deeper
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Figure 3. (to be viewed in color) Gradient descent optimization
of single layer model vs. linear networks of depth 2 and 3. Setup
is identical to that of Figure 2, except that here learning rates were
chosen via grid search, individually per model (see Appendix C).
Notice that with `2 loss, depth (slightly) hinders optimization,
whereas with `4 loss it leads to significant acceleration (on par
with our qualitative analysis in Section 7).

networks is (slightly) slower in the case of `2 loss. This
falls in line with the findings of Saxe et al. (2013). In stark
contrast, and on par with our qualitative analysis in Sec-
tion 7, is the fact that with `4 loss adding depth significantly
accelerated convergence. To the best of our knowledge, this
provides first empirical evidence to the fact that depth, even
without any gain in expressiveness, and despite introducing
non-convexity to a formerly convex problem, can lead to
favorable optimization.

In light of the speedup observed with `4 loss, it is natu-
ral to ask how the implicit acceleration of depth compares
against explicit methods for acceleration and adaptive learn-
ing. Figure 4-left shows convergence of a depth-3 network
(optimized with gradient descent) against that of a single
layer model optimized with AdaGrad (Duchi et al., 2011)
and AdaDelta (Zeiler, 2012). The displayed curves cor-
respond to optimal learning rates, chosen individually via
grid search. Quite surprisingly, we find that in this spe-
cific setting, overparameterizing, thereby turning a convex
problem non-convex, is a more effective optimization strat-
egy than carefully designed algorithms tailored for convex
problems. We note that this was not observed with all al-
gorithms – for example Adam (Kingma & Ba, 2014) was
considerably faster than overparameterization. However,
when introducing overparameterization simultaneously with
Adam (a setting we did not theoretically analyze), further
acceleration is attained – see Figure 4-right. This suggests
that at least in some cases, not only plain gradient descent
benefits from depth, but also more elaborate algorithms
commonly employed in state of the art applications.

An immediate question arises at this point. If depth indeed
accelerates convergence, why not add as many layers as one
can computationally afford? The reason, which is actually
apparent in our analysis, is the so-called vanishing gradient
problem. When training a very deep network (large N ),
while initializing weights to be small, the end-to-end ma-
trix We (Equation 5) is extremely close to zero, severely
attenuating gradients in the preconditioning scheme (Equa-
tion 10). A possible approach for alleviating this issue is to
initialize weights to be larger, yet small enough such that the
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Figure 4. (to be viewed in color) Left: Gradient descent optimiza-
tion of depth-3 linear network vs. AdaGrad and AdaDelta over
single layer model. Setup is identical to that of Figure 3-right.
Notice that the implicit acceleration of overparameterization out-
performs both AdaGrad and AdaDelta (former is actually slower
than plain gradient descent). Right: Adam optimization of single
layer model vs. Adam over linear networks of depth 2 and 3. Same
setup, but with learning rates set per Adam’s default in TensorFlow.
Notice that depth improves speed, suggesting that the acceleration
of overparameterization may be somewhat orthogonal to explicit
acceleration methods.

end-to-end matrix does not “explode”. The choice of iden-
tity (or near identity) initialization leads to what is known
as linear residual networks (Hardt & Ma, 2016), akin to the
successful residual networks architecture (He et al., 2015)
commonly employed in deep learning. Notice that identity
initialization satisfies the condition in Equation 7, rendering
the end-to-end update rule (Equation 10) applicable. Fig-
ure 5-left shows convergence, under gradient descent, of
a single layer model against deeper networks than those
evaluated before – depths 4 and 8. As can be seen, with
standard, near-zero initialization, the depth-4 network starts
making visible progress only after about 65K iterations,
whereas the depth-8 network seems stuck even after 100K
iterations. In contrast, under identity initialization, both net-
works immediately make progress, and again depth serves
as an implicit accelerator.

As a final sanity test, we evaluate the effect of overparam-
eterization on optimization in a non-idealized (yet simple)
deep learning setting. Specifically, we experiment with the
convolutional network tutorial for MNIST built into Ten-
sorFlow,4 which includes convolution, pooling and dense
layers, ReLU non-linearities, stochastic gradient descent
with momentum, and dropout (Srivastava et al., 2014). We
introduced overparameterization by simply placing two ma-
trices in succession instead of the matrix in each dense layer.
Here, as opposed to previous experiments, widths of the
newly formed hidden layers were not set to 1, but rather to
the minimal values that do not deteriorate expressiveness
(see Appendix C). Overall, with an addition of roughly 15%
in number of parameters, optimization has accelerated con-
siderably – see Figure 5-right. The displayed results were
obtained with the hyperparameter settings hardcoded into
the tutorial. We have tried alternative settings (varying
learning rates and standard deviations of initializations – see

4 https://github.com/tensorflow/models/
tree/master/tutorials/image/mnist
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Figure 5. (to be viewed in color) Left: Gradient descent optimiza-
tion of single layer model vs. linear networks deeper than before
(depths 4, 8). For deep networks, both near-zero and near-identity
initializations were evaluated. Setup identical to that of Figure 3-
right. Notice that deep networks suffer from vanishing gradients
under near-zero initialization, while near-identity (“residual”) ini-
tialization eliminates the problem. Right: Stochastic gradient
descent optimization in TensorFlow’s convolutional network tu-
torial for MNIST. Plot shows batch loss per iteration, in original
setting vs. overparameterized one (depth-2 linear networks in place
of dense layers).

Appendix C), and in all cases observed an outcome similar
to that in Figure 5-right – overparameterization led to sig-
nificant speedup. Nevertheless, as reported above for linear
networks, it is likely that for non-linear networks the effect
of depth on optimization is mixed – some settings accelerate
by it, while others do not. Comprehensive characteriza-
tion of the cases in which depth accelerates optimization
warrants much further study. We hope our work will spur
interest in this avenue of research.

9. Conclusion
Through theory and experiments, we demonstrated that over-
parameterizing a neural network by increasing its depth can
accelerate optimization, even on very simple problems.

Our analysis of linear neural networks, the subject of vari-
ous recent studies, yielded a new result: for these models,
overparameterization by depth can be understood as a pre-
conditioning scheme with a closed form description (Theo-
rem 1 and the claims thereafter). The preconditioning may
be interpreted as a combination between certain forms of
adaptive learning rate and momentum. Given that it depends
on network depth but not on width, acceleration by overpa-
rameterization can be attained at a minimal computational
price, as we demonstrate empirically in Section 8.

Clearly, complete theoretical analysis for non-linear net-
works will be challenging. Empirically however, we showed
that the trivial idea of replacing an internal weight matrix by
a product of two can significantly accelerate optimization,
with absolutely no effect on expressiveness (Figure 5-right).

The fact that gradient descent over classic convex problems
such as linear regression with `p loss, p > 2, can accelerate
from transitioning to a non-convex overparameterized objec-
tive, does not coincide with conventional wisdom, and pro-
vides food for thought. Can this effect be rigorously quanti-
fied, similarly to analyses of explicit acceleration methods
such as momentum or adaptive regularization (AdaGrad)?

https://github.com/tensorflow/models/tree/master/tutorials/image/mnist
https://github.com/tensorflow/models/tree/master/tutorials/image/mnist
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