
Stronger Generalization Bounds for Deep Nets via a Compression Approach

A. Supplementary Discussions for Sections 2 and 3
In this section we elaborate on some of the discussions in Sections 2 and 3 and give proofs of the various statements.

A.1. Generalization Bounds from Compression

We will first prove Theorem 2.1, which gives generalization guarantees for the compressed function.

Proof. (Theorem 2.1) For each A ∈ A, the training loss L̂0(gA) is just the average of m i.i.d. Bernoulli random variables
with expectation equal to L0(gA). Therefore by Chernoff bound we have

Pr[L0(gA)− L̂0(gA) ≥ τ ] ≤ exp(−2τ2m).

Therefore, suppose we choose τ =

(√
q log r
m

)
, with probability at least 1−exp(−2q log r) we have L0(gA) ≤ L̂0(gA)+τ .

There are only rq different A ∈ A, hence by union bound, with probability at least 1− exp(−q log r), for all A ∈ A we
have

L0(gA) ≤ L̂0(gA) +

(√
q log r

m

)
.

Next, since f is (γ, S)-compressible with respect to g, there exists A ∈ A such that for x ∈ S and any y we have

|f(x)[y]− gA(x)[y]| ≤ γ.

For these training examples, as long as the original function f has margin at least γ, the new function gA classifies the
example correctly. Therefore

L̂0(gA) ≤ L̂γ(f).

Combining these two steps, we immediately get the result.

Using the same approach, we can also prove the following Corollaries that allow the compression to fail with some
probability

Corollary A.1. In the setting of Theorem 2.1, if the compression works for 1− ζ fraction of the training sample, then with
high probability

L0(gA) ≤ L̂γ(f) + ζ +O

(√
q log r

m

)
.

Proof. The proof is using the same approach, except in this case we have

L̂0(gA) ≤ L̂γ(f) + ζ.

A.2. Example 1: Compress a Vector

This section gives detailed calculations supporting the first example in Section 2.

Lemma 4. Algorithm 2 Vector-Compress(γ, c) returns a vector ĉ such that for any fixed u (independent of choice of ĉ),
with probability at least 1 − η, |ĉ>u − c>u| ≤ γ. The vector ĉ has at most O((log h)/ηγ2) non-zero entries with high
probability.

Proof. By the construction in Algorithm 2, it is easy to check that for all i, E[ĉi] = ci. Also, Var[ĉ] = 2pi(1 − pi) c
2
i

p2i
≤

2c2i
pi
≤ ηγ2.

Therefore, for any vector u that is independent with the choice of ĉ, we have E[ĉ>u] = c>u and Var[ĉ>u] ≤ ‖u‖2/4 ≤ ηγ2.
Therefore by Chebyshev’s inequality we know Pr[|ĉ>u− c>u| ≥ γ] ≤ η.
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Algorithm 2 Vector-Compress(γ, c)

Require: vector c with ‖c‖ ≤ 1, η.
Ensure: vector ĉ s.t. for any fixed vector ‖u‖ ≤ 1, with probability at least 1 − η, |c>u − ĉ>u| ≤ γ. Vector ĉ has
O((log h)/ηγ2) nonzero entries.
for i = 1 to d do

Let zi = 1 with probability pi =
2c2i
ηγ2 (and 0 otherwise)

Let ĉi = zici/pi.
end for
Return ĉ

On the other hand, the expected number of non-zero entries in ĉ is
∑d
i=1 pi = 2/ηγ2. By Chernoff bound we know with

high probability the number of non-zero entries is at most O((log h)/ηγ2).

Next we handle the discretization:
Lemma 5. Let c̃ = Vector-Compress(γ/2, c). For each coordinate i, let ĉi = 0 if |c̃i| ≥ 2ηγ

√
h, otherwise let ĉi be the

rounding of c̃i to the nearest multiple of γ/2
√
h. For any fixed u with probability at least 1− η, |ĉ>u− c>u| ≤ γ.

Proof. Let c′ be a truncated version of c: c′i = ci if |ci| ≥ γ/4
√
h, and c′i = 0 otherwise. It is easy to check that ‖c′ − c‖ ≤

γ/4. By Algorithm 2, we observe that c̃ = Vector-Compress(γ/2, c′) (|c̃i| ≥ 2ηγ
√
h if and only if |ci| ≤ γ/4

√
h). Finally,

by the rounding we know ‖ĉ− c̃‖ ≤ γ/4. Combining these three terms, we know with probability at least 1− η,

|ĉ>u− c>u| ≤ |ĉ>u− c̃>u|+ |c̃>u− (c′)>u|+ |(c′)>u− c>u|
≤ γ/4 + γ/2 + γ/4 = γ.

Combining the above two lemmas, we know there is a compression algorithm with O((log h)/ηγ2) discrete parameters that
works with probability at least 1− η. Applying Corollary A.1 we get
Lemma 6. For any number of sample m, there is an efficient algorithm to generate a compressed vector ĉ, such that

L(ĉ) ≤ Õ((1/γ2m)1/3).

Proof. We will choose η = (1/γ2m)1/3. By Lemma 4 and Lemma 5, we know there is a compression algorithm that works
with probability 1− η, and has at most Õ((log h)/ηγ2) parameters. By Corollary A.1, we know

L(ĉ) ≤ Õ(η +
√

1/ηγ2m) ≤ Õ((1/γ2m)1/3).

Note that the rate we have here is not optimal as it depends on m1/3 instead of
√
m. This is mostly due to Lemma 4 cannot

give a high probability bound (indeed if we consider all the basis vectors as the test vectors u, Vector-Compress is always
going to fail on some of them).

Compression with helper string To fix this problem we use a different algorithm that uses a helper string, see Algorithm 3

Note that in Algorithm 3, the parameters for the output are the zi’s. The vectors vi’s are sampled independently, and hence
can be considered to be in the helper string.
Lemma 7. For any fixed vector u, Algorithm 3 Vector-Project(c, γ) produces a vector ĉ such that with probability at least
1− η, we have |ĉ>u− c>u| ≤ γ.

Proof. This is in fact a well-known corollary of Johnson-Lindenstrauss Lemma. Observe that

ĉ>u =
1

k

k∑
i=1

〈vi, c〉〈vi, u〉.
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Algorithm 3 Vector-Project(γ, c)

Require: vector c with ‖c‖ ≤ 1, η.
Ensure: vector ĉ s.t. for any fixed vector ‖u‖ ≤ 1, with probability at least 1− η, |c>u− ĉ>u| ≤ γ.

Let k = 16 log(1/η)/γ2

Sample k random Gaussian vectors v1, ..., vk ∼ N (0, I).
Compute zi = 〈vi, c〉
(Optional): Round zi to the closes multiple of γ/2

√
hk.

Return ĉ = 1
k

∑k
i=1 zivi

The expectation E[〈vi, c〉〈vi, u〉] = E[c>viv
>
i u] = c>E[viv

>
i ]u = c>u. The variance is bounded by O(1/k) ≤

O(γ/
√

log n). Standard concentration bounds show that

Pr[|ĉ>u− c>u| > γ/2] ≤ exp(−γ2k/16) ≤ η.

The discretization is easy to check as with high probability the matrix V with columns vi’s have spectral norm at most 2
√
h,

so the vector before and after discretization can only change by γ/2.

Lemma 8. For any number of sample m, there is an efficient algorithm with helper string to generate a compressed vector
ĉ, such that

L(ĉ) ≤ Õ(
√

1/γ2m).

Proof. We will choose η = 1/m. By Lemma 7, we know there is a compression algorithm that works with probability
1− η, and has at most O((log 1/η)/γ2) parameters. By Corollary A.1, we know

L(ĉ) ≤ Õ(η +
√

1/γ2m) ≤ Õ(
√

1/γ2m).

A.3. Proof for Generalization Bound in (Neyshabur et al., 2017a)

We gave a compression in Lemma 1, the discretization in this case is trivial just by rounding the weights to nearest multiples
of ‖A‖F /h2. The following lemma from (Neyshabur et al., 2017a) (based on a simple induction of the noise) shows how
the noises from different layers add up.

Lemma 9. Let fA be a d-layer network with weights A = {A1, . . . , Ad}. Then for any input x, weights A and Â, if for any
layer i, ‖Ai − Âi‖ ≤ 1

d‖Ai‖, then we have:

‖fA(x)− fÂ(x)‖ ≤ e‖x‖
(

d∏
i=1

‖Ai‖2
)

d∑
i=1

‖Ai − Âi‖2
‖Ai‖2

Compressing each layer i with δ = δ = γ(e‖x‖d∏d
i=1 ‖Ai‖2)−1 ensures |fA(x) − fÂ(x)| ≤ γ. Since each Âi has

rank ‖Ai‖2F
δ2‖Ai‖22

, the total number of paremeters of the compressed network will be 2e2d2h‖x‖2∏d
i=1 ‖Ai‖22

∑d
i=1

‖Ai‖2F
‖Ai‖22

.
Therefore we can apply Theorem 2.1 to get the generalization bound.

A.4. Further Discussion on Interlayer Smoothness

In order to understand the above condition, we can look at a single layer case where j = i+ 1:

‖M i,i+1(xi + η)− J i,i+1
xi (xi + η)‖

= ‖Ai+1φ(xi + η)−Ai+1(φ′(xi)� (xi + η))‖

= ‖Ai+1ν‖ ≤ ‖η‖‖A
i+1φ(xi)‖

ρδ‖xi‖



Stronger Generalization Bounds for Deep Nets via a Compression Approach

where � is the entrywise product operator and ν = (φ′(xi + η)−φ′(xi))� (xi + η). Since the activation function is ReLU,
φ′(xi + η) and φ′(xi)) disagree whenever the perturbation has the opposite sign and higher absolute value compare to the
input and hence ‖ν‖ ≤ ‖η‖. Let us first see what happens if the perturbation ν is adversarially aligned to the weights:

‖M i,i+1(xi + η)− J i,i+1
xi (xi + η)‖

= ‖Ai+1ν‖ ≤ ‖Ai+1‖‖η‖

=
‖η‖‖Ai+1φ(xi)‖

‖xi‖ · ‖A
i+1‖‖xi‖

‖Ai+1φ(xi)‖

≤ ‖η‖‖A
i+1φ(xi)‖
‖xi‖ · ‖Ai+1‖‖xi‖

µi+1‖Ai+1‖F ‖φ(xi)‖

≤ ‖η‖‖A
i+1φ(xi)‖
‖xi‖ · c‖Ai+1‖

µi+1‖Ai+1‖F

=
‖η‖‖Ai+1φ(xi)‖

‖xi‖ · c

µi+1ri+1

where ri+1 is the stable rank of layer i + 1. Therefore the interlayer smoothness from layer i to layer i + 1 is at least
ρδ = µi+1ri+1/c. However, the noise generated from Algorithm 1 has similar properties to Gaussian noise (see Lemma 2).
If ν behaves similar to Gaussian noise, then ‖Ai+1ν‖ ≈ ‖Ai+1‖F ‖ν‖/

√
hi and therefore ρδ is as high as

√
hiµi+1/c.

Since the layer cushion of networks trained on real data is much more than that of networks with random weights, ρδ is
greater than one in this case. Another observation is that in practice, the noise is well-distributed and only a small portion of
activations change from active to inactive and vice versa. Therefore, we can expect ‖ν‖ to be smaller than ‖η‖ which further
improves the interlayer smoothness. This appeared in Neyshabur et al. (2017b) that showed for one layer we can even use
‖η‖1.5‖xj‖
ρδ‖xi‖ as the RHS of interlayer smoothness. Our current proof requires 1/ρδ to be of order 1/d, this requirement can be

removed (with ρδ appear in sample complexity) if we make the stronger assumption that the RHS is a lower order term in
‖η‖.

B. Complete Proofs for Section 4
B.1. Conditions

We discussed and verified several conditions in Section 3. Here, we formally state these conditions:

Condition B.1. Let S be the training set.

1. Layer cushion (µi): For any layer i, we define the layer cushion µi as the largest number such that for any x ∈ S:

µi‖Ai‖F ‖φ(xi−1)‖ ≤ ‖Aiφ(xi−1)‖

2. Interlayer cushion (µi,j): For any two layers i ≤ j, we define interlayer cushion µi,j as the largest number such that
for any x ∈ S:

µi,j‖J i,jxi ‖F ‖xi‖ ≤ ‖J
i,j
xi x

i‖

Furthermore, we define minimal interlayer cushion µi→ = mini≤j≤d µi,j = min{1/
√
hi,mini<j≤d µi,j}.

3. Activation contraction (c): The activation contaction c is defined as the smallest number such that for any layer i and
any x ∈ S,

‖xi‖ ≤ c‖φ(xi)‖

4. Interlayer smoothness (ρδ): Interlayer smoothness is defined the largest number such that with probability 1− δ over
noise η for any two layers i < j any x ∈ S:

‖M i,j(xi + η)− J i,jxi (xi + η)‖ ≤ ‖η‖‖x
j‖

ρδ‖xi‖
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B.2. Proofs

Proof. (of Lemma 2) For any fixed vectors u, v, we have

u>Âv =
1

k

k∑
k′=1

u>Zk′v =
1

k
〈A,Mk′〉〈uv>,Mk′〉.

This is exactly the same as the case of Johnson-Lindenstrauss transformation. By standard concentration inequalities we
know

Pr

[∣∣∣∣∣1k
k∑

k′=1

〈A,Mk′〉〈uv>,Mk′〉 − 〈A, uv>〉
∣∣∣∣∣ ≥ ε‖A‖F ‖uv>‖F

]
≤ exp(−kε2).

Therefore for the choice of k we know

Pr
[
|u>Âv − u>Av‖ ≥ ε‖A‖F ‖u‖‖v‖

]
≤ η.

Now for any pair of matrix/vector (U, x) ∈ G, let ui be the i-th row of U , by union bound we know with probability at
least 1 − δ for all ui we have |u>i ∆v‖ ≤ ε‖A‖F ‖ui‖‖v‖. Since ‖U∆x‖2 =

∑n
i=1(u>i ∆x)2 and ‖U‖2F =

∑n
i=1 ‖ui‖2,

we immediately get ‖U∆x‖ ≥ ε‖A‖F ‖U‖F ‖x‖.

Proof. (of Lemma 3) We will prove this by induction. For any layer i ≥ 0, let x̂ji be the output at layer j if the weights
A1, . . . , Ai in the first i layers are replaced with Ã1, . . . , Ãi. The induction hypothesis is then the following:

Consider any layer i ≥ 0 and any 0 < ε ≤ 1. The following is true with probability 1− iδ
2d over Ã1, . . . , Ãi for any j ≥ i:

‖x̂ji − xj‖ ≤ (i/d)ε‖xj‖.

For the base case i = 0, since we are not perturbing the input, the inequality is trivial. Now assuming that the induction
hypothesis is true for i−1, we consider what happens at layer i. Let Âi be the result of Algorithm 1 on Ai with εi = εµiµi→

4cd

and η = δ
6d2h2m . We can now apply Lemma 2 on the set G = {(J i,jxi , xi)|x ∈ S, j ≥ i} which has size at most dm. Let

∆i = Âi −Ai, for any j ≥ i we have

‖x̂ji − xj‖ = ‖(x̂ji − x̂ji−1) + (x̂ji−1 − xj)‖ ≤ ‖(x̂ji − x̂ji−1)‖+ ‖x̂ji−1 − xj‖.
The second term can be bounded by (i− 1)ε‖xj‖/d by induction hypothesis. Therefore, in order to prove the induction, it is
enough to show that the first term is bounded by ε/d. We decompose the error into two error terms one of which corresponds
to the error propagation through the network if activation were fixed and the other one is the error caused by change in the
activations:

‖(x̂ji − x̂ji−1)‖ = ‖M i,j(Âiφ(x̂i−1))−M i,j(Aiφ(x̂i−1))‖
= ‖M i,j(Âiφ(x̂i−1))−M i,j(Aiφ(x̂i−1)) + J i,jxi (∆iφ(x̂i−1))− J i,jxi (∆iφ(x̂i−1))‖
≤ ‖J i,jxi (∆iφ(x̂i−1))‖+ ‖M i,j(Âiφ(x̂i−1))−M i,j(Aiφ(x̂i−1))− J i,jxi (∆iφ(x̂i−1))‖

The first term can be bounded as follows:

‖J i,jxi ∆iφ(x̂i−1)‖
≤ (εµiµi→/6cd)‖J i,jxi ‖‖Ai‖F ‖φ(x̂i−1)‖ Lemma 2

≤ (εµiµi→/6cd)‖J i,jxi ‖‖Ai‖F ‖x̂i−1‖ Lipschitzness of the activation function

≤ (εµiµi→/3cd)‖J i,jxi ‖‖Ai‖F ‖xi−1‖ Induction hypothesis

≤ (εµiµi→/3d)‖J i,jxi ‖‖Ai‖‖φ(xi−1)‖ Activation Contraction

≤ (εµi→/3d)‖J i,jxi ‖‖Aiφ(xi−1)‖ Layer Cushion

= (εµi→/3d)‖J i,jxi ‖‖xi‖ xi = Aiφ(xi−1)

≤ (ε/3d)‖xj‖ Interlayer Cushion



Stronger Generalization Bounds for Deep Nets via a Compression Approach

The second term can be bounded as:

‖M i,j(Âiφ(x̂i−1))−M i,j(Aiφ(x̂i−1))− J i,jxi (∆iφ(x̂i−1))‖
= ‖(M i,j − J i,jxi )(Âiφ(x̂i−1))− (M i,j − J i,jxi )(Aiφ(x̂i−1))‖
= ‖(M i,j − J i,jxi )(Âiφ(x̂i−1))‖+ ‖(M i,j − J i,jxi )(Aiφ(x̂i−1)‖.

Both terms can be bounded using interlayer smoothness condition of the network. First, notice that Aiφ(x̂i−1) = x̂ii−1.
Therefore by induction hypothesis ‖Aiφ(x̂i−1)− xi‖ ≤ (a− 1)ε‖xi‖/d ≤ ε‖xi‖. Now by interlayer smoothness property,
‖(M i,j − J i,jxi )(Aiφ(x̂i−1)‖ ≤ ‖x

b‖ε
ρδ
≤ (ε/3d)‖xj‖. On the other hand, we also know Âiφ(x̂i−1) = x̂ii−1 + ∆iφ(x̂i−1),

therefore ‖Âiφ(x̂i−1)− xi‖ ≤ ‖Aiφ(x̂i−1)− xi‖+ ‖∆iφ(x̂i−1)‖ ≤ (i− 1)ε/d+ ε/3d ≤ ε, so again we have ‖(M i,j −
J i,jxi )(Âiφ(x̂i−1))‖ ≤ (ε/3d)‖xj‖. Putting everything together completes the induction.

Lemma 10. For any fully connected network fA with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any margin γ > 0, fA
can be compressed (with respect to a random string) to another fully connected network fÃ such that for any x ∈ S,
L̂0(fÂ) ≤ L̂γ(fA) and the number of parameters in fÃ is at most:

Õ

(
c2d2 maxx∈S ‖fA(x)‖22

γ2

d∑
i=1

1

µ2
iµ

2
i→

)

where µi, µi→, c and ρδ are layer cushion, interlayer cushion, activation contraction and interlayer smoothness defined in
Definitions 4,5,6 and 7 respectively.

Proof. (of Lemma 10) If γ2 > 2 maxx∈S ‖fA(x)‖22, for any pair (x, y) in the training set we have |fA(x)[y] −
maxi 6=y fA(x)[j]|2 ≤ 2 maxx∈S ‖fA(x)‖22 ≤ γ which means the output margin cannot be greater than γ and there-
fore L̂γ(fA) = 1 which proves the statement. If γ2 ≤ 2 maxx∈S ‖fA(x)‖22, by setting ε2 = γ2/2 maxx∈S ‖fA(x)‖22 in
Lemma 3, we know that for any x ∈ S, ‖fA(x)−fÃ(x)‖2 ≤ γ/

√
2. For any (x, y), if the margin loss on the right hand side

is one then the inequality holds. Otherwise, the output margin in fÃ is greater than γ which means in order for classification
loss of fA to be one, we neet to have ‖fA(x)− fÃ(x)‖2 > γ/

√
2 which is not possible and that completes the proof.

Proof. (of Theorem 4.1) We show the generalization by bounding the covering number of the network with weights Ã. We
already demonstrated that the original network with weights A can be approximated with another network with weights
Ã and less number of parameters. In order to get a covering number, we need to find out the required accuracy for each
parameter in the second network to cover the original network. We start by bounding the norm of the weights Ãi.

Because of positive homogeneity of ReLU activations, we can assume without loss of generality that the network is balanced,
i.e for any i 6= j, ‖Ai‖F = ‖Aj‖F = β (otherwise, one could rebalance the network before approximation and cushion in
invariant to this rebalancing). Therefore, for any x ∈ S we have:

βd =

d∏
i=1

‖Ai‖ ≤ c‖x1‖
‖x‖µ1

d∏
i=2

‖Ai‖ ≤ c2‖x2‖
‖x‖µ1µ2

d∏
i=2

‖Ai‖ ≤ cd‖fA(x)‖
‖x‖∏d

i=1 µi

By Lemma 3, ‖Ãi‖F ≤ β(1 + 1/d). We know that Ãi = 1
k

∑k
k′=1〈Ai,Mk′〉Mk′ where 〈Ai,Mk′〉 are the parameters.

Therefore, if Âi correspond to the weights after approximating each parameter in Ãi with accuracy ν, we have: ‖Âi−Ãi‖F ≤√
khν ≤ √qhν where q is the total number of parameters. Now by Lemma 9, we get:

|`γ(fÃ(x), y)− `γ(fÂ(x), y)| ≤ 2e

γ
‖x‖

(
d∏
i=1

‖Ãi‖
)

d∑
i=1

‖Ãi − Âi‖
‖Ãi‖

<
e2

γ
‖x‖βd−1

d∑
i=1

‖Ãi − Âi‖F

≤ e2cd‖fA(x)‖∑d
i=1 ‖Ãi − Âi‖F

γβ
∏d
i=1 µi

≤ qhν

β
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where the last inequality is because by Lemma 10, e
2d‖fA(x)‖
γβ

∏d
i=1 µi

<
√
q. Since the absolute value of each parameter in layer i

is at most βh, the logarithm of number of choices for each parameter in order to get ε-cover is log(qh2/ε) ≤ 2 log(qh/ε)
which results in the covering number 2q log(kh/ε). Bounding the Rademacher complexity by Dudley entropy integral
completes the proof.

C. Convolutional Neural Networks
In this section we give a compression algorithm for convolutional neural networks, and prove Theorem 5.1.

We start by developing some notations to work with convolutions and product of tensors. For simplicity of notation, for
any k′ ≤ k, we define a product operator ×k′ that given a kth-order tensor Y and a k′ order tensor Z with a matching
dimensionality to the last k′-dimensions of Y , vectorizes the last k′ dimensions of each tensor and returns a k − k′th order
tensor as follows:

(Y ×k′ Z)i1,...,ik−k′ = 〈Yi1,...,ik−k′ , Z〉 = 〈vec(Yi1,...,ik−k′ ), vec(Z)〉

Let X ∈ Rh×n1×n2 be an n× n image where h is the number of features for each pixel. We denote the κ× κ sub-image
of X starting from pixel (i, j) by X(i,j),κ ∈ Rh×κ×κ. Let A ∈ Rh′×h×κ×κ be a convolutional weight tensor. Now the
convolution operator with stride s can be defined as follows:

(A ∗s X)i,j = A×3 X(s(i−1)+1,s(j−1)+1),κ ∀1 ≤ i ≤ bn1 − κ
s
c, 1 ≤ i ≤ bn2 − κ

s
c

where n′1 = bn1−κ
s c, n′2 = bn2−κ

s c and A ∗s X ∈ Rh′×n′1 ×n′2 .

As we discussed in Section 5, we will actually have a different set of weights at each convolution location. Let Â(i,j) ∈
Rh′×h×κ×κ(i ∈ [n′1], j ∈ [n′2]) be a set of weights for each location, we use the notation Â ∗s X to denote

((Â ∗s X)i,j) = Â(i,j) ×3 X(s(i−1)+1,s(j−1)+1),κ ∀1 ≤ i ≤ bn1 − κ
s
c, 1 ≤ i ≤ bn2 − κ

s
c.

The Â(i,j)’s will be generated by Algorithm 4 and are p-wise independent.

Let κi be the filter size and si be the stride in layer i of the convolutional network. Then for any i > 1, xi+1 = φ(Ai ∗si xi).
Furthermore, since the activation functions are ReLU, we have xj = M ij(xi) = J ijxi ×3 x

i.

In the rest of this section, we will first describe the compression algorithm Matrix-Project-Conv (Algorithm 4) and show that
the output of this algorithm behaves similar to Gaussian noise (similar to Lemma 2). Then we will follow the same strategy
as the feed-forward case and give the full proof.

C.1. p-wise Independent Compression

Algorithm 4 Matrix-Project-Conv(A, ε, η, n′1 × n′2)

Require: Convolution Tensor A ∈ Rh′×h×κ×κ, error parameter ε, η.
Ensure: Generate n′1 × n′2 different tensors Â(i,j)((i, j) ∈ [n′1]× [n′2]) that satisfies Lemma 13

Let k = Qdκ/se2 log2 1/η
ε2 for a large enough universal constant Q.

Let p = log(1/η)
Sample a uniformly random subspace S of h′ × h× κ× κ of dimension k × p
for each (i, j) ∈ [n′1]× [n′2] do

Sample k matrices M1,M2, ...,Mk ∈ N (0, 1)h
′×h×κ×κ with random i.i.d. entries.

for k′ = 1 to k do
Let M ′k′ =

√
hh′κ2/kp · ProjS(Mk′).

Let Zk′ = 〈A,M ′k′〉M ′k′ .
end for
Let Â(i,j) = 1

k

∑k
k′=1 Zk′

end for
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The weights in convolutional neural networks have inherent correlation due to the architecture, as the weights are shared
across different locations. However, in order to randomly compress the weight tensors, we need to break this correlation and
try to introduce independent perturbations at every location. The procedure is described as Algorithm 4.

The goal of Algorithm 4 is to generate different compressed filters Âi,j such that the total number of parameters is small,
and at the same time Âi,j’s behave very similarly to applying Algorithm 1 A for each location independently. We formalize
these two properties in the following two lemmas:

Lemma 11. Given a helper string that contains all of the M ′ matrices used in Algorithm 4, then it is possible to compute
all of Â(i,j)’s based on ProjS(A). Since S is a kp dimensional subspace ProjS(A) has kp parameters.

Proof. By Algorithm 4 we know Â(i,j)’s are average of the Z matrices, and Zk′ = 〈A,M ′k′〉M ′k′ . Since M ′k′ ∈ S , we know
〈A,M ′k′〉 = 〈ProjS(A),M ′k′〉. Hence Zk′ = 〈ProjS(A),M ′k′〉M ′k′ only depends on ProjS(A) and M ′k′ .

Lemma 12. The random matrices Â(i,j)’s generated by Algorithm 4 are p-wise independent. Moreover, for any Â(i,j), the
marginal distribution of the M ′ matrices are i.i.d. Gaussian with variance 1 in every direction.

Proof. Take any subset of p random matrices Â(i1,j1), ..., Â(ip,jp) generated by Algorithm 4. We are going to consider the
joint distribution of all the M ′ matrices used in generating these Â’s (k × p of them) and the subspace S.

Consider the following procedure: generate k × p random matrices M ′1,M
′
2...,M

′
kp from N(0, 1)h

′×h×κ×κ, and let S be
the span of these kp vectors. By symmetry of Gaussian vectors, we know S is a uniform random subspace of dimension kp.

Now we sample from the same distribution in a different order: first sample a uniform random subspace S of dimension kp,
then sample kp random Gaussian matrices within this subspace (which can be done by sample a Gaussian in the entire space
and then project to this subspace). This is exactly the procedure described in Algorithm 4.

Therefore, the M ′ matrices used in generating these Â’s are independent, as a result the Â(i,j)’s are also independent. The
equivalence also shows that the marginal distributions of M ′ are i.i.d. spherical Gaussians. (Note that the reason this is
limited to p-wise independence is that if we look at more than kp random matrices from the subspace S, they do not have
the same distribution as Gaussian random matrices; the latter would span a subspace of dimension higher than kp.)

Although the Â(i,j)’s are only p-wise independent, when p = log 1/η we can show that they behave similarly to fully
independent random filters. We defer the technical concentration bounds to the end of this section (Section C.3).

Using this compression, we will prove that the noise generated at each layer behaves similar to a random vector. In particular
it does not correlate with any fixed tensor, as long as the norms of the tensor is well-distributed:

Definition 10. Let U ∈ Rh′×n′1×n′2×nu , we say U is β well-distributed if for any i, j ∈ [n′1] × [n′2], ‖U:,j,k,:‖F ≤
β√
n′1n

′
2

‖U‖F .

Intuitively, U is well-distributed if no spacial location of U has a norm that is significantly larger than the average. Now we
are ready to show the noise generated by this procedure behaves very similar to a random Gaussian (this is a generalization
of Lemma 2):

Lemma 13. For any 0 < δ, ε ≤ 1, et G = {(U i, V i)}mi=1 be a set of matrix/vector pairs of size m where
U ∈ Rh′×n′1×n′2×nu3 and V ∈ Rh×n1×n2 , let Â(i,j) ∈ Rh×h′ be the output of Algorithm 4 with η = δ/n and
∆(i,j) = Â(i,j) −A. Suppose all of U ’s are β-well-distributed. With probability at least 1− δ we have for any (U, V ) ∈ G,
‖U ×3 (∆ ∗s V )‖ ≤ εβ√

n′1n
′
2

‖A‖F ‖U‖F ‖V ‖F .

Proof. We will first expand out U ×3 (∆ ∗s V ):

U ×3 (∆ ∗s V ) =

n′1∑
i=1

n′2∑
j=1

(U:,i,j,: ⊗ V(s(i−1)+1,s(j−1)+1),κ)×4 (Â(i,j) −A).

3U can have more than 4-orders, here we vectorize all the remaining directions in U as it does not change the proof.
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In this expression, (U:,i,j,: ⊗ V(s(i−1)+1,s(j−1)+1),κ) generates a 5-th order tensor (2 from U and 3 from V ), the order of
dimensions is that V takes coordinates number 3,4,5 (with dimensions h× κ× κ), the first dimension of U takes the 2nd
coordinate and the 4-th dimension ofU takes the 1st coordinate. The result of (U:,i,j,:⊗V(s(i−1)+1,s(j−1)+1),κ)×4(Â(i,j)−A)
is a vector of dimension nu (because the first 4 dimensions are removed in the inner-product).

Now let us look at the terms in this sum, let Xi,j = (U:,i,j,: ⊗ V(s(i−1)+1,s(j−1)+1),κ) ×4 Â(i,j). Let M ′1, ...,M
′
k be the

random matrices used when computing Â(i,j) (for simplicity we omit the indices for i, j), then we have

Xi,j =
1

k

k∑
l=1

[(U:,i,j,: ⊗ V(s(i−1)+1,s(j−1)+1),κ)×4 M
′
l ]〈A,M ′l 〉.

Since the marginal distribution of M ′l is a spherical Gaussian, it’s easy to check that E[Xi,j ] = (U:,i,j,: ⊗
V(s(i−1)+1,s(j−1)+1),κ) ×4 A. Also, the first term [(U:,i,j,: ⊗ V(s(i−1)+1,s(j−1)+1),κ) ×4 M

′
l ] is a Gaussian random

vector whose expected squared norm is ‖U:,i,j,:‖2F ‖V(s(i−1)+1,s(j−1)+1),κ‖2F ; the second term 〈A,M ′l 〉 is a Gaussian
random variable with variance ‖A‖2F . By the relationship between Gaussians and subexponential random variables, there
exists a universal constant Q′ such that [(U:,i,j,: ⊗ V(s(i−1)+1,s(j−1)+1),κ) ×4 M

′
l ]〈A,M ′l 〉 is a vector whose norm is

Q′‖U:,i,j,:‖F ‖V(s(i−1)+1,s(j−1)+1),κ‖F ‖A‖F -subexponential. The average of k independent copies lead to a random vector
Xi,j whose norm is σi,j-subexponential, where σi,j = Q′√

k
‖U:,i,j,:‖F ‖V(s(i−1)+1,s(j−1)+1),κ‖F ‖A‖F 4.

By Lemma 12 we know Xi,j’s are p-wise independent. Now we can apply Corollary C.2 to the sum of Xi,j’s. Let

σ =
√∑n′1

i=1

∑n′2
j=1 σ

2
i,j , then we know

Pr[‖U ×3 (∆ ∗s V )‖ ≥ 12σp] ≤ 2−p = η = δ/m.

Union bound over all (U, V ) pairs, we know with probability at least 1 − δ, we have ‖U ×3 (∆ ∗s V )‖ ≤ 12σp for all
(U, V ).

Finally, we will try to relate 12σp with εβ√
n′1n

′
2

‖A‖F ‖U‖F ‖V ‖F .

σ =

√√√√√ n′1∑
i=1

n′2∑
j=1

σ2
i,j

=

√√√√√ n′1∑
i=1

n′2∑
j=1

(Q′)2

k
‖U:,i,j,:‖2F ‖V(s(i−1)+1,s(j−1)+1),κ‖2F ‖A‖2F

=
Q′√
k
‖A‖F

√√√√√ n′1∑
i=1

n′2∑
j=1

‖U:,i,j,:‖2F ‖V(s(i−1)+1,s(j−1)+1),κ‖2F

≤ Q′β√
n′1n

′
2

√
k
‖A‖F ‖U‖F

√√√√√ n′1∑
i=1

n′2∑
j=1

‖V(s(i−1)+1,s(j−1)+1),κ‖2F

≤ Q′βdκ/se√
n′1n

′
2

√
k
‖A‖F ‖U‖F ‖V ‖F .

Here the first inequality is by the assumption that all U ’s are β-well-distributed. The second inequality is true because each
entry in V appears in at most dκ/se2 entries of V(s(i−1)+1,s(j−1)+1),κ. Therefore, when k is set to 144(Q′)2dκ/se2p2/ε2 =

O( dκ/se
2 log2 1/η
ε2 ), we have 12σp ≤ εβ√

n′1n
′
2

‖A‖F ‖U‖F ‖V ‖F as desired.

4Notice that here this average over k independent copies actually has a better tail than a subexponential random variable. However for
simplicity we are not trying to optimize the dependencies on log factors here.
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C.2. Generalization Bounds for Convolutional Neural Networks

Next we will use Algorithm 4 to compress the neural network and prove generalization bounds. Similar to the feed-forward
case, our first step is to show bound the perturbation of the output based on the noise introduced at each layer. This is
captured by the following lemma (generalization of Lemma 3)

Lemma 14. For any convolutional neural network fA with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any error 0 < ε ≤ 1,
Algorithm 4 generates weights Ãi(a,b) for each layer i and each convolution location (a, b) with Õ

(
c2d2β2

ε2 ·∑d
i=1

dκi/sie2
µ2
iµ

2
i→

)
total parameters such that with proability 1− δ/2 over the generated weights Ã(i,j), for any x ∈ S:

‖fA(x)− fÃ(x)‖ ≤ ε‖fA(x)‖.

where µi, µi→, c, ρδ and β are layer cushion, interlayer cushion, activation contraction, interlayer smoothness and
well-distributedness of Jacobian defined in Definitions 4,8,6, 7 and 9 respectively.

Proof. We will prove this by induction. For any layer i ≥ 0, let x̂ji be the output at layer j if the weights A1, . . . , Ai in the
first i layers are replaced with {Ã1

(a,b)}, . . . , {Ãi(a,b)}. The induction hypothesis is then the following:

Consider any layer i ≥ 0 and any 0 < ε ≤ 1. The following is true with probability 1− iδ
2d over Ã1, . . . , Ãi for any j ≥ i:

‖x̂ji − xj‖ ≤ (i/d)ε‖xj‖.

(Note that although x is now a 3-tensor, we still use ‖x‖ to denote ‖x‖F as we never use any other norm of x.)

For the base case i = 0, since we are not perturbing the input, the inequality is trivial. Now assuming that the induction
hypothesis is true for i−1, we consider what happens at layer i. Let Ãi be the result of Algorithm 1 on Ai with εi = εµiµi→

4cdβ

and η = δ
6d2h2m . We can now apply Lemma 2 on the set G = {(J i,jxi , xi)|x ∈ S, j ≥ i} which has size at most dm. Let

∆i
(a,b) = Ãi(a,b) −Ai ((a, b) ∈ [ni1]× [ni2]), for any j ≥ i we have

‖x̂ji − xj‖ = ‖(x̂ji − x̂ji−1) + (x̂ji−1 − xj)‖ ≤ ‖(x̂ji − x̂ji−1)‖+ ‖x̂ji−1 − xj‖.

The second term can be bounded by (i− 1)ε‖xj‖/d by induction hypothesis. Therefore, in order to prove the induction, it is
enough to show that the first term is bounded by ε/d. We decompose the error into two error terms one of which corresponds
to the error propagation through the network if activation were fixed and the other one is the error caused by change in the
activations:

‖(x̂ji − x̂ji−1)‖ = ‖M i,j(Ãi ∗s φ(x̂i−1))−M i,j(Ai ∗s φ(x̂i−1))‖
= ‖M i,j(Ãi ∗s φ(x̂i−1))−M i,j(Ai ∗s φ(x̂i−1)) + J i,jxi ×3 (∆i ∗s φ(x̂i−1))− J i,jxi ×3 (∆i ∗s φ(x̂i−1))‖
≤ ‖J i,jxi ×3 (∆i ∗s φ(x̂i−1))‖+ ‖M i,j(Ãi ∗s φ(x̂i−1))−M i,j(Ai ∗s φ(x̂i−1))− J i,jxi ×3 (∆i ∗s φ(x̂i−1))‖
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The first term can be bounded as follows:

‖J i,jxi ×3 (∆i ∗s φ(x̂i−1))‖

≤ (εµiµi→/6cd) · 1√
ni1n

i
2

‖J i,jxi ‖F ‖Ai‖F ‖φ(x̂i−1)‖ Lemma 13

≤ (εµiµi→/6cd) · 1√
ni1n

i
2

‖J i,jxi ‖F ‖Ai‖F ‖x̂i−1‖ Lipschitzness of the activation function

≤ (εµiµi→/3cd) · 1√
ni1n

i
2

‖J i,jxi ‖F ‖Ai‖F ‖xi−1‖ Induction hypothesis

≤ (εµiµi→/3d) · 1√
ni1n

i
2

‖J i,jxi ‖F ‖Ai‖‖φ(xi−1)‖ Activation Contraction

≤ (εµi→/3d) · 1√
ni1n

i
2

‖J i,jxi ‖F ‖Ai ∗s φ(xi−1)‖ Layer Cushion

= (εµi→/3d) · 1√
ni1n

i
2

‖J i,jxi ‖F ‖xi‖ xi = Ai ∗s φ(xi−1)

≤ (ε/3d)‖xj‖ Interlayer Cushion

The second term can be bounded as:

‖M i,j(Ãi ∗s φ(x̂i−1))−M i,j(Ai ∗s φ(x̂i−1))− J i,jxi ×3 (∆i ∗s φ(x̂i−1))‖
= ‖(M i,j − J i,jxi )×3 (Ãi ∗s φ(x̂i−1))− (M i,j − J i,jxi )×3 (Ai ∗s φ(x̂i−1))‖
= ‖(M i,j − J i,jxi )×3 (Ãi ∗s φ(x̂i−1))‖+ ‖(M i,j − J i,jxi )×3 (Ai ∗s φ(x̂i−1)‖.

Both terms can be bounded using interlayer smoothness condition of the network. First, notice that Ai ∗s φ(x̂i−1) = x̂ii−1.
Therefore by induction hypothesis ‖Ai ∗s φ(x̂i−1) − xi‖ ≤ (i − 1)ε‖xi‖/d ≤ ε‖xi‖. Now by interlayer smoothness
property, ‖(M i,j − J i,jxi )×3 (Ai ∗s φ(x̂i−1)‖ ≤ ‖x

j‖ε
ρδ
≤ (ε/3d)‖xj‖. On the other hand, we also know Ãi ∗s φ(x̂i−1) =

x̂ii−1+∆i∗sφ(x̂i−1), therefore ‖Ãi∗sφ(x̂i−1)−xi‖ ≤ ‖Ai∗sφ(x̂i−1)−xi‖+‖∆i∗sφ(x̂i−1)‖ ≤ (i−1)ε/d+ε/3d ≤ ε, so
again we have ‖(M i,j−J i,jxi )×3 (Ãi ∗sφ(x̂i−1))‖ ≤ (ε/3d)‖xj‖. Putting everything together completes the induction.

Now we are ready to prove Theorem 5.1

Proof. We show the generalization by bounding the covering number of the network with weights Ã. We already demon-
strated that the original network with weights A can be approximated with another network with weights Ã and less number
of parameters. In order to get a covering number, we need to find out the required accuracy for each parameter in the second
network to cover the original network. We start by bounding the norm of the weights Ãi.

Because of positive homogeneity of ReLU activations, we can assume without loss of generality that the network is balanced,
i.e for any i 6= j, ‖Ai‖F = ‖Aj‖F = τ (otherwise, one could rebalance the network before approximation and cushion in
invariant to this rebalancing). Therefore, for any x ∈ S we have:

τd =

d∏
i=1

‖Ai‖F ≤
c‖x1‖
‖x‖µ1

d∏
i=2

‖Ai‖F ≤
c2‖x2‖
‖x‖µ1µ2

d∏
i=2

‖Ai‖F ≤
cd‖fA(x)‖
‖x‖∏d

i=1 µi

By Lemma 14 and Lemma 11, we know ProjSA
i are the parameter. Therefore, if Âi correspond to the weights after

approximating each parameter in Ãi with accuracy ν, we have: ‖Âi − Ãi‖F ≤
√
khν ≤ √qhν where q is the total number

of parameters. Now by Lemma 9, we get:
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|`γ(fÃ(x), y)− `γ(fÂ(x), y)| ≤ 2e

γ
‖x‖

(
d∏
i=1

‖Ãi‖
)

d∑
i=1

‖Ãi − Âi‖
‖Ãi‖

<
e2

γ
‖x‖τd−1

d∑
i=1

‖Ãi − Âi‖F

≤ e2cd‖fA(x)‖∑d
i=1 ‖Ãi − Âi‖F

γτ
∏d
i=1 µi

≤ qhν

τ

where the last inequality is because by Lemma 10, e
2d‖fA(x)‖
γτ

∏d
i=1 µi

<
√
q. Since the absolute value of each parameter in layer i

is at most τh, the logarithm of number of choices for each parameter in order to get ε-cover is log(qh2/ε) ≤ 2 log(qh/ε)
which results in the covering number 2q log(kh/ε). Bounding the Rademacher complexity by Dudley entropy integral
completes the proof.

Similar to the discussions at the end of Section 4, we can use distance to initialization and remove outliers. More concretely,
we can get the following corollary

Corollary C.1. For any convolutional neural network fA with ρδ ≥ 3d,any probability 0 < δ ≤ 1 and any margin γ,
Algorithm 4 generates weights Ã for the network fÃ such that with probability 1− δ over the training set and fÃ:

L0(fÃ) ≤ L̂γ(fA) + ζ + Õ


√√√√c2d2 maxx∈S ‖fA(x)‖22

∑d
i=1

β2(dκi/sie)2
µ2
iµ

2
i→

γ2m


where µi, µi→, c and ρδ are layer cushion, interlayer cushion, activation contraction and interlayer smoothness defined in
Definitions 4,8,6 and 7 respectively and measured on a 1− ζ fraction of the training set S.

C.3. Concentration Inequalities for Sum of p-wise Independent Variables

In this section we prove a technical lemma that shows the sum of p-wise independent subexponential random variables have
strong concentration properties. Previously similar results were known for Bernoulli random variables (Pelekis and Ramon,
2015), the approach we take here is very similar.

Definition 11. A random variable X is σ-subexponential if for all k > 0, E[|X − E[X]|k] ≤ σkkk.

The following lemma will imply concentration

Lemma 15. Let X1, X2, ..., Xn be random variables where Xi is σi-subexponential. Let σ2 =
∑n
i=1 σ

2
i , X =

∑n
i=1Xi.

If Xi’s are p-wise independent
E[(X − E[X])p] ≤ (3σ)p · (2p)p.

In particular, for all t > 1,
Pr[|X − E[X]| ≥ 6σpt] ≤ 1/tp.

Proof. Let Yi = Xi − E[Xi] and Y = X − E[X], we will compute E[Y p].

E[Y p] =
∑

a,ai∈N ,
∑
ai=p

p!∏n
i=1 ai!

E[

n∏
i=1

Y aii ] =
∑

a,ai∈N,
∑
ai=p

p!∏n
i=1 ai!

n∏
i=1

E[Y aii ]

Here the last step is because Yi’s are p-wise independent. Now, notice that E[Yi] = 0. Therefore, as long as one of the ai’s
is equal to 1, we have

∏n
i=1 E[Y aii ] = 0. All the remaining terms are terms with ai’s either equal to 0 or at least 2. Let A be

the set of such a’s, then we have

E[Y p] =
∑
a∈A

p!∏n
i=1 ai!

n∏
i=1

E[Y aii ] ≤ (2p)p
∑
a∈A

n∏
i=1

σaii .
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By Claim 1 below, we know this expectation is bounded by pp(3σ)p. The second part of the lemma follows immediately
from Markov’s inequality.

Claim 1. Let An,p be the set of vectors a ∈ Nn where ai = 0 or ai ≥ 2,
∑n
i=1 ai = p. For any n, p ≥ 0 and for any

σ1, ..., σn > 0, we have ∑
a∈An,p

n∏
i=1

σaii ≤ (9

n∑
i=1

σ2
i )p/2.

Proof. We do induction on n. When n ≤ 1 this is clearly correct. Let F (n, p) =
∑
a∈An,p

∏n
i=1 σ

ai
i , then we have

F (n, p) = F (n− 1, p) +

p∑
a=2

F (n− 1, p− a)σan.

Suppose the claim is true for all n < z, let σ′ =
√∑z−1

i=1 σ
2
i , when n = z we have

F (z, p) = F (z − 1, p) +

p∑
a=2

F (n− 1, p− a)σan

≤ (3σ′)p +

p∑
a=2

(3σ′)p−aσan.

When σn ≤ 2σ′, we know
∑p
a=2(3σ′)p−aσan ≤ 3(3σ′)p−2σ2

n, hence by Binomial expansion we have

(9(σ′)2 + 9σ2
n)p/2 ≥ (3σ′)p + (3σ′)p−2 · 9σ2

n ≥ F (z, p).

On the other hand, if σn ≥ 2σ′, then we know all the terms in the summation
∑p
a=2(3σ′)p−aσan and (3σ′)p are bounded by

(1.5σn)p, therefore

(9(σ′)2 + 9σ2
n)p/2 ≥ (3σn)p ≥ (p− 1)(2σn)p ≥ F (z, p).

In both cases we prove F (z, p) ≤ (9
∑n
i=1 σ

2
i )p/2, which finishes the induction.

We also remark that Lemma 15 can be generalized to vectors

Corollary C.2. Let X1, X2, ..., Xn be random vectors where ‖Xi‖ is σi-subexponential. Let σ2 =
∑n
i=1 σ

2
i , X =∑n

i=1Xi. If Xi’s are p-wise independent, for any even p

E[‖X − E[X]‖p] ≤ (3σ)p · (2p)p.

In particular, for all t > 1,

Pr[‖X − E[X]‖ ≥ 6σpt] ≤ 1/tp.

Proof. The proof is exactly the same as the proof of Lemma 15. When Xi’s are vectors we get exactly the same terms,
except the terms have pair-wise inner-products. However, the inner-products 〈Xi, Xj〉 ≤ ‖Xi‖‖Xj‖ so we only need to
argue about the same inequality for ‖Xi‖’s.
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D. Extended experiment
D.1. Verification of conditions

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
layer cushion i

layer 1

random
trained

0.10 0.15 0.20 0.25 0.30 0.35 0.40
layer cushion i

layer 2

random
trained

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
layer cushion i

layer 3

random
trained

0.10 0.15 0.20 0.25 0.30
layer cushion i

layer 4

random
trained

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
layer cushion i

layer 5

random
trained

0.06 0.08 0.10 0.12 0.14 0.16 0.18
layer cushion i

layer 6

random
trained

0.06 0.08 0.10 0.12 0.14 0.16 0.18
layer cushion i

layer 7

random
trained

0.05 0.10 0.15 0.20 0.25 0.30
layer cushion i

layer 8

random
trained

0.1 0.2 0.3 0.4 0.5
layer cushion i

layer 9

random
trained

0.1 0.2 0.3 0.4 0.5 0.6
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Figure A.1. Verification of layer cushion condition on the VGG-19 net
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Figure A.2. Verification of interlayer cushion condition on the VGG-19 net
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Figure A.3. Verification of activation contraction condition on the VGG-19 net
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D.1.1. VERIFICATION OF INTERLAYER SMOOTHNESS CONDITION

0.0 0.1 0.2 0.3 0.4
interlayer smoothness 1/

layer 1 -> layer 19

random
trained

0.0 0.1 0.2 0.3 0.4 0.5 0.6
interlayer smoothness 1/

layer 2 -> layer 19

random
trained

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
interlayer smoothness 1/

layer 3 -> layer 19

random
trained

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Figure A.4. Verification of interlayer smoothness condition on the VGG-19 net
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Figure A.5. Verification of well-distributedness of Jacobian condition on convolutional layers of the VGG-19 net. The histograms are
generated by estimating the Frobenius norm of the Jacobians of the maps from certain layers to the final layer, restricted on randomly
sampled pixels of the input feature maps. Since the well-distributedness parameter β is defined to be the largest over all the pixels, β
should be read off from the upper tails of the histograms. Note for almost all layers, β ≈ 1.
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D.2. Effect of training on corrupted dataset
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Figure A.6. Distribution of layer cushion of AlexNets trained on normal CIFAR-10 and corrupted CIFAR-10.
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Figure A.7. Distribution of activation contraction of AlexNets trained on normal CIFAR-10 and corrupted CIFAR-10.

D.3. Comparing neural net generalization bounds

In Figure 3, we compare the following simplified generalization bounds:

• `1,∞ : B
2

γ2

∏d
i=1 ||Ai||1,∞ (Bartlett and Mendelson, 2002)

• Frobenius: B
2

γ2

∏d
i=1 ||Ai||2F (Neyshabur et al., 2015b; Golowich et al., 2017)

• spec `1,2: B
2

γ2

∏d
i=1 ||Ai||22

∑d
i=1

||Ai||21,2
||Ai||22

(Bartlett et al., 2017; Golowich et al., 2017)

• spec-fro: B
2

γ2

∏d
i=1 ||Ai||22

∑d
i=1 hi

||Ai||2F
||Ai||22

(Neyshabur et al., 2017a)

• ours: B
2

γ2 maxx∈S ||f(x)||22
∑d
i=1

β2c2i dκ/se
2

µ2
iµ

2
i→

We further report the number of parameters as a simplified approximation of VC-dimension.


