
Greed is Still Good: Maximizing Monotone BP Functions

A. Proof of Lemma 3.1
Lemma A.1. (usul, 2016) There exists an instance of a BP
maximization problem that can not be approximately solved
to any positive factor in polynomial time.

Proof. We consider the BP problem with ground set n and
a cardinality constraint |X| ≤ k = n/2. Let R ⊆ V be
an arbitrary set with |R| = k. Let f = 0 and g′(X) =
max(|X| − k, 0) so that g′(X) = 0 for all |X| = k. g′(X)
is clearly supermodular.

Let g(X) = g′(X) for all X 6= R but g(R) = 0.5. We
notice that for X ⊂ V and v /∈ X , g(v|X) = 0 if |X| ≤
k − 2, g(v|X) = 0 or 0.5 if |X| = k − 1, g(v|X) = 0.5 or
1 if |X| = k, and g(v|X) = 1 if |X| ≥ k+ 1. Immediately,
we have for all X ⊂ Y ⊂ V and v /∈ Y , g(v|X) ≤ g(v|Y).
Therefore, g(X) is also supermodular.

Next, we use a proof technique similar to (Svitkina & Fleis-
cher, 2011). Note that g′(X) = g(X) if and only if X 6= R.
So for any algorithm maximizing g(X), before it evaluates
g(R), all function evaluations are the same with maximizing
g′(X). Additionally, since g′(X) = max(|X| − k, 0), it is
permutation symmetric. Therefore, the algorithm can only
do random search to find R. If the algorithm acquires a
polynomial number O(nm) of sets of size k, the probability
of finding R is O(nm)

(nk)
≤ O(nm)

(n/k)k = O(nm)
2n/2 ≤ O(2−n/2+εn)

for all ε > 0. Therefore, no polynomial time algorithm
can distinguish g and g′ with probability greater than
1−O(2−n/2+εn) and will return 0 in almost all cases.

Hence, we have max|X|≤k f(X) + g(X) = 0.5 > 0 so no
polynomial algorithm can do better than max|X|≤k f(X) +
g′(X) = 0 with high probability, or has any positive guar-
antee.

B. Proof of Lemma 3.2
Lemma B.1. There exists a monotonic non-decreasing set
function h that is not BP decomposable.

Proof. Let h(X) = min(max(|X|, 1), 3) − 1. This func-
tion is monotonic, and we wish to show it is not BP decom-
posable. Let A ⊂ B be subsets of V with |A| = 1 and
|B| = 3. Let v ∈ V \ B. We calculate that h(v|∅) = 0,
h(v|A) = 1, h(v|B) = 0. So h(v|∅) + h(v|B) < h(v|A).

Assume h(X) = f(X) + g(X) where f is submod-
ular, g is supermodular and both are monotonic non-
decreasing. We have f(v|∅) + f(v|B) ≥ f(v|∅) ≥ f(v|A)
and g(v|∅) + g(v|B) ≥ g(v|B) ≥ g(v|A). Therefore
h(v|∅) + h(v|B) ≥ h(v|A) by summing the two inequali-
ties, which is a contradiction. We thus have that h is not BP
decomposable.

C. Key Theorem Regarding Curvature
In this section, we state and then prove the following impor-
tant theorem that holds for any chain of sets, not just those
produced by the greedy algorithm.
Lemma C.1. For any chain of solutions ∅ = S0 ⊂ S1 ⊂
. . . ⊂ Sk, where |Si| = i, the following holds for all i =
0 . . . k − 1,

h(X∗) ≤κf
∑

j:sj∈Si\X∗
aj +

∑
j:sj∈Si∩X∗

aj

+ h(X∗ \ Si|Si) (10)

where {si} = Si \ Si−1, ai = h(si|Si−1) and X∗ is the
optimal set.

Proof. For any i = 0, . . . , k − 1, we focus on the term
h(X∗ ∪ Si).

According to basic set operations,

h(X∗ ∪ Si) = h(Si) + h(X∗|Si) (11)

=
∑

j:sj∈Si\X∗
aj +

∑
j:sj∈Si∩X∗

aj

+ h(X∗ \ Si|Si). (12)

We can also express h(X∗ ∪ Si) the other way around,
h(X∗ ∪ Si) = h(X∗) + h(Si \ X∗|X∗). Since we
already have an order of element in Si, we can ex-
pand h(Si \ X∗|X∗). When adding sj to the context
Sj−1 ∪ X∗ we do not need add elements that are not
in Si \ X∗ since h(sj |X∗ ∪ Sj−1) = 0 if sj ∈ X∗.
Thus, using Lemma C.2 (i), we get h(X∗ ∪ Si) =
h(X∗) +

∑
j:sj∈Si\X∗ h(sj |X∗ ∪ Sj−1) ≥ h(X∗) + (1−

κf)
∑
j:sj∈Si\X∗ h(sj |Sj−1).

Therefore, we have inequalities on both sides of h(X∗ ∪Si)
and we can join them together to get:

h(X∗) + (1− κf)
∑

j:sj∈Si\X∗
aj

≤ κf
∑

j:sj∈Si\X∗
aj +

∑
j:sj∈Si∩X∗

aj + h(X∗ \ Si|Si),

(13)

or

h(X∗) ≤ κf
∑

j:sj∈Si\X∗
aj

+
∑

j:sj∈Si∩X∗
aj + h(X∗ \ Si|Si). (14)

Greed is Still Good: Maximizing Monotone BP Functions

We begin with the following four-part lemma,

Lemma C.2. For a BP function h(X) = f(X)+g(X), we
have

(i) h(v|Y) ≥ (1 − κf)h(v|X) for all X ⊆ Y ⊂ V and
v /∈ Y

(ii) h(v|Y) ≤ 1
1−κg h(v|X) for all X ⊆ Y ⊂ V and

v /∈ Y

(iii) h(X|Y) ≥ (1− κf)
∑
v∈X\Y h(v|Y) for all X,Y ⊆

V

(iv) h(X|Y) ≤ 1
1−κg

∑
v∈X\Y h(v|Y) for all X,Y ⊆ V

Proof. (i) κf = 1 − minv∈V f(v|V \{v})
f(v) , therefore,

f(v|V \ {v}) ≥ (1− κf)f(v) for all v.

So we have f(v|Y) ≥ f(v|V \{v}) ≥ (1−κf)f(v) ≥
(1 − κf)f(v|X) and g(v|Y) ≥ g(v|X) ≥ (1 −
κf)g(v|X) for all X ⊆ Y ⊂ V and v /∈ Y . Therefore,
h(v|Y) ≥ (1 − κf)h(v|X) for all X ⊂ Y ⊆ V and
v /∈ Y .

(ii) κg = 1 − minv∈V g(v)
g(v|V \{v}) , therefore, g(v|V \

{v}) ≤ 1
1−κg g(v) for all v.

So we have g(v|Y) ≤ g(v|V \ {v}) ≤ 1
1−κg g(v) ≤

1
1−κg g(v|X) and f(v|Y) ≤ f(v|X) ≤ 1

1−κg f(v|X)
for all X ⊆ Y ⊂ V and v /∈ Y . Therefore, h(v|Y) ≤

1
1−κg h(v|X) for all X ⊂ Y ⊆ V and v /∈ Y .

(iii) Let X \ Y be {v1, . . . , vm}, h(X|Y) =∑
i=1,2,...,m h(vi|Y ∪ {v1} ∪ {v2} ∪ . . . ∪

{vi−1}) ≥ (1 − κf)
∑
i=1,2,...,m h(vi|Y) =

(1− κf)
∑
v∈X\Y h(v|Y), according to (i).

(iv) Let X \ Y be {v1, . . . , vm}, h(X|Y) =∑
i=1,2,...,m h(vi|Y ∪ {v1} ∪ {v2} ∪ . . .∪ {vi−1}) ≤
1

1−κg
∑
i=1,2,...,m h(vi|Y) = 1

1−κg
∑
v∈X\Y h(v|Y),

according to (ii).

D. Proof of Lemma 3.5
Lemma D.1. GREEDMAX is guaranteed to obtain a solu-
tion X̂ such that

h(X̂) ≥ 1
κf

[
1−

(
1− (1− κg)κf

k

)k]
h(X∗) (5)

where X∗ ∈ argmax|X|≤k h(X), h(X) = f(X) + g(X),
κf is the curvature of submodular f and κg is the curvature
of supermodular g.

Proof. According to Lemma C.1, for all i = 0, . . . , k − 1,

h(X∗) ≤κf
∑

j:sj∈Si\X∗
aj

+
∑

j:sj∈Si∩X∗
aj + h(X∗ \ Si|Si) (15)

Since GREEDMAX is choosing the feasible element with the
largest gain, we have h(v|Si) ≤ h(si+1|Si) for all feasible
v ∈ X∗. In fact, all elements in X∗ \ Sj are feasible since
we are considering a cardinality constraint and |Sj | ≤ k−1.
Also, |X∗ \ Sj | = |X∗| − |X∗ ∩ Sj | = k− |X∗ ∩ Sj |, and
therefore from Lemma C.1 and Lemma C.2(iv), we have
that:

h(X∗) ≤κf
∑

j:sj∈Si\X∗
aj +

∑
j:sj∈Si∩X∗

aj

+ k − |X∗ ∩ Si|
1− κg ai+1 (16)

Next, we use a nested lemma, Lemma D.2, to get Equa-
tion (5).

Lemma D.2. Given any chain of solutions ∅ = S0 ⊂ S1 ⊂
. . . ⊂ Sk such that |Si| = i, if the following holds for all
i = 0 . . . k − 1:

h(X∗) ≤α
∑

j:sj∈Si\X∗
aj +

∑
j:sj∈Si∩X∗

aj

+ k − |X∗ ∩ Si|
1− β ai+1 (17)

where 0 ≤ α, β ≤ 1 and si = Si \ Si−1, and ai =
h(si|Si−1), then we have

h(Sk) ≥ 1
α

[
1−

(
1− (1− β)α

k

)k]
h(X∗). (18)

Proof. Assume β < 1 as otherwise the bound is immediate.
This lemma aims to show one inequality (Equation (18))
based on k other inequalities (Equation (17)) with k vari-
ables a1, . . . , ak. In the inequalities, sj ∈ Sk ∩ X∗ and
sj ∈ Sk \ X∗ are not treated identically. We will, in
fact, correspondingly treat the indices of the elements in
Sk ∩ X∗ as parameters. Recall, Sk = {s1, s2, . . . , sk} is
an ordered set and Sk has index set {1, 2, . . . , k} = [k].
Let B = {b1, . . . , bp} ⊆ [k] be the set of indices of
Sk ∩X∗ where bi’s are in increasing order (so bi < bi+1)
and p = |Sk ∩X∗|. Thus, i ∈ B means si ∈ Sk ∩X∗, and
i ∈ [k] \B means si ∈ Sk \X∗.

Our next step is to view this problem as a set of parame-
terized (by B) linear programming problems. Each linear

Greed is Still Good: Maximizing Monotone BP Functions

programming problem is characterized as finding:

T (B) = T (b1, b2, . . . , bp) = min
a1,a2,...,ak

k∑
i=1

ai (19)

subject to

h(X∗) ≤ α
∑

j∈[i−1]\Bi−1

aj +
∑

j∈Bi−1

aj + k − |Bi−1|
1− β ai,

(20)

for i = 1, . . . , k,where Bi = {b ∈ B|b ≤ i}. In this
LP problem, a1, . . . , ak are non-negative variables, and
k, α, β and h(X∗) are fixed values. Different indices
B = {b1, b2, . . . , bp} define different LP problems, and our
immediate goal is to show that T (∅) ≤ T (b1, b2, . . . , bp)
for all b1, b2, . . . , bp and p ≥ 0. In the below, we will use
Υ(B, a, i) to refer to the right hand side of Equation (20)
for a given set B, vector a, and index i = 1, . . . , k, and
hence Equation (20) becomes h(X∗) ≤ Υ(B, a, i) for
i = 1, . . . , k. Note that Υ(B, a, i) is linear in a with non-
negative coefficients.

First, we show that there exists an optimal solution3

a1, a2, . . . , ak s.t. for all r ≤ k− 1 with r ∈ B, ar ≤ ar+1.
Let ra be the largest r s.t. r ≤ k− 1, r ∈ B and ar > ar+1;
if such an r does not exist, let ra = 0. Our goal here
is equivalent to showing, for any feasible solution {ai}ki=1
with ra > 0, we can create another feasible solution {a′i}

k
i=1

with ra′ = 0 and the objective
∑k
i=1 a

′
i ≤

∑k
i=1 ai. We do

this iteratively, by in each step showing that for any feasible
solution {ai}ki=1 with ra > 0, we can create another feasi-
ble solution {a′i}

k
i=1 with ra′ ≤ ra − 1 and with objective

having
∑k
i=1 a

′
i ≤

∑k
i=1 ai. Repeating this argument leads

ultimately to ra′ = 0.

Let r = ra for notational simplicity. Consider the rth and
(r + 1)th inequalities:

h(X∗) ≤ α
∑

j≤[r−1]\Br−1

aj +
∑

j∈Br−1

aj + k − |Br−1|
1− β ar

(21)

and

h(X∗) ≤ α
∑

j≤[r−1]\Br−1

aj +
∑

j∈Br−1

aj + ar (22)

+ k − |Br−1| − 1
1− β ar+1. (23)

Since ar > ar+1 and β < 1, k−|Br−1|
1−β ar >

k−|Br−1|−1
1−β ar+1 + ar and thus the r.h.s. of Eq. (21) is al-

ways strictly larger than the r.h.s. of Eq. (23).

3Optimal in this case means for the LP, distinct from the optimal
BP maximization solution X∗.

Therefore, Eq. (21) is not tight and it is possible to decrease
ar a little bit. Let {a′i} be another set of solutions with
a′i = ai for all i = 1, 2, . . . , r − 1; a′r = ar − ε; a′i =
ai + ε/(k − |Br|) for i = r + 1, r + 2, . . . , k and ε =[
1− 1−β

k−|Br−1|

]
[ar − ar+1]. It is easy to see that ε > 0

since |Br−1| ≤ r − 1 ≤ k − 2.

Below, we show that a′r ≤ a′r+1. First, we notice∑k
i=1 a

′
i ≤

∑k
i=1 ai since |Br| ≤ r and −ε + k−r

k−|Br|ε ≤
0. Next, we want to show that a′1, a

′
2, . . . , a

′
k is still

feasible. As mentioned above, define Υ(B, a, i) =
α
∑
j∈[i−1]\Bi−1

aj +
∑
j∈Bi−1

aj + k−|Bi−1|
1−β ai.

We examine if h(X∗) ≤ Υ(B, a′, i) or not for each i.

1. For i = 1, 2, . . . , r − 1, Υ(B, a′, i) = Υ(B, a, i) ≥
h(X∗).

2. For i = r, Υ(B, a′, r) − Υ(B, a, r + 1) =
k−|Br−1|

1−β [ar − ε] − ar − k−|Br−1|−1
1−β ar+1 ≥

k−|Br−1|
1−β [ar − ar+1] + ar+1 − ar −

k−|Br−1|
1−β ε =

[
k−|Br−1|

1−β − 1
]

[ar − ar+1] −
k−|Br−1|

1−β

[
1− 1−β

k−|Br−1|

]
[ar − ar+1] = 0. So

Υ(B, a′, r) ≥ Υ(B, a, r + 1) ≥ h(X∗).

3. For i = r + 1, r + 2, . . . , k, we compare
Υ(B, a′, i) with Υ(B, a, i). Note that Υ(B, a, i) =
α
∑
j∈[i−1]\Bi−1

aj +
∑
j∈Bi−1

aj + k−|Bi−1|
1−β ai and

it has three terms, that we consider individually.

(a) The first term is not decreasing since a′i < ai only
if i = r, but r /∈ [i − 1] \ Bi−1. The increment
therefore is at least 0.

(b) ar appears in the second term once, and when
changing to a′r, will decreases the value by
ε. However, a′j = aj + ε/(k − |Br|) for all
j = r + 1, r + 2, . . . , k. Immediately, we
notice the number of such aj in the second
term is

∑
j∈Bi−1,j≥r+1 1 =

∑
j∈Bi−1,j /∈Br 1 =

|Bi−1| − |Br|. So the increment of the second
term is |Bi−1|−|Br|

k−|Br| ε− ε.

(c) The third term is increased by k−|Bi−1|
(1−β)(k−|Br|)ε ≥

k−|Bi−1|
k−|Br| ε.

So overall, the increment is greater than or equal
to |Bi−1|−|Br|

k−|Br| ε − ε + k−|Bi−1|
k−|Br| ε ≥ 0, which means

Υ(B, a′, i) ≥ Υ(B, a, i) = h(X∗).

Therefore, {a′i}
k
i=1 still satisfies all the constraints

but
∑k
i=1 a

′
k ≤

∑k
i=1 ak. Note that r =

ra = max({r′ ∈ B|r′ ≤ k − 1, ar′ > ar′+1}) by defini-
tion. And we have a′i = ai + ε

k−|Br| for i = r + 1, r +

Greed is Still Good: Maximizing Monotone BP Functions

2, . . . , k. Therefore, a′r′ ≤ a′r′+1 for any r′ ∈ B∩[r+1, k−
1]. Next we calculate a′r−a′r+1 = ar−ar+1−ε− ε

k−|Br| =[
1−

(
1 + 1

k−|Br|

)(
1− 1−β

k−|Br−1|

)]
(ar − ar+1) ≤ 0.

Therefore, a′r′ ≤ a′r′+1 for all r′ ∈ B ∩ [r, k − 1] which
implies ra′ ≤ ra − 1.

By repeating the above steps, we can get a feasible solution
{a′′} s.t. ra′′ = 0 and

∑k
i=1 a

′′
k ≤

∑k
i=1 ak. Therefore,

from any optimal solution {ai}ki=1, we can also create an-
other optimal solution {a′′i } s.t. for all r ∈ B and r ≤ k−1,
we have a′′r ≤ a′′r+1. W.l.o.g, we henceforth consider only
the optimal solutions {ai}ki=1 with ra = 0.

Second, we assume r ∈ B but r + 1 /∈ B for some r ≤
k − 1. We can create B′ = B ∪ {r + 1} \ {r} and show
for all {ai}ki=1 that satisfies the constraints of B, {ai}ki=1
will also still satisfy the constraints of B′ by showing that
Υ(B′, a, i) ≥ Υ(B, a, i) for i = 1, . . . , k. We consider
each i in turn.

1. For i = 1, 2, . . . , r, Υ(B, a, i) = Υ(B′, a, i).

2. If i = r + 1, we notice ar moves from the sec-
ond term to the first, and the third term is changed
from k−|Br|

1−β ar+1 to k−|B′r|
1−β ar+1 and |B′r| = |Br| − 1.

So the overall value is increased by Υ(B′, a, i) −
Υ(B, a, i) = 1

1−βar+1 − (1 − α)ar ≥ 0 since
ar ≤ ar+1.

3. For i = r+2, r+3, . . . , k, we notice that the third term
does not change but ar moves from the second term
to the first and ar+1 moves from the first term to the
second. Thus, the value is increased by Υ(B′, a, i)−
Υ(B, a, i) = (1−α)(ar+1−ar) ≥ 0 since ar ≤ ar+1.

Since Υ(B′, a, i) ≥ Υ(B, a, i) for i = 1, . . . , k, we have
that T (B′) ≤ T (B). Therefore, if we see two indexes in
B differ by at least 2, we can increase the first index by 1.
Repeating this process, we get

T (B) ≥ T (k − p+ 1, k − p+ 2, . . . , k). (24)

Third, if {ai}ki=1 satisfies the constraints for B = {k− p+
1, k − p+ 2, . . . , k}and ak−p+1 ≤ . . . ≤ ak, then {ai}ki=1
also must satisfy the constraints for B′ = {k − p+ 2, k −
p + 3, . . . , k}. We show that Υ(B′, a, i) ≥ Υ(B, a, i) for
i = 1, . . . , k and again consider each i in turn.

1. For i = 1, 2, . . . , k − p+ 1, Υ(B′, a, i) = Υ(B, a, i).

2. For i = k− p+ 2, k− p+ 3, . . . , k, the change of the
value is Υ(B′, a, i)−Υ(B, a, i) = (α− 1)ak−p+1 +

1
1−βai. We notice that ai ≥ ak−p+1 since k−p+1, k−
p + 2, . . . , i − 1 ∈ B. Thus, we have Υ(B′, a, i) −
Υ(B, a, i) ≥ 0 and correspondingly T (B) ≥ T (B′).

Repeating this process, therefore, we have that

T (B) ≥ T (∅) (25)

Next, we calculate T (∅). For B = ∅ and any feasible
(for Equation (20)) a1, a2, . . . , ak, let Ti be the partial sum
Ti =

∑i
j=1 aj for i = 0, . . . , k with T0 = 0. We get, for

i = 1, . . . , k that h(X∗) ≤ Υ(∅, a, i) which takes the form

h(X∗) ≤ α
∑

j∈[i−1]

aj + k

1− β ai, (26)

which is the same as

h(X∗) ≤ αTi−1 + k

1− β (Ti − Ti−1), (27)

and also, after multiplying both sides by (1−β)/k and then
adding (1/α)h(X∗) to both sides, the same as

1
α
h(X∗)− Ti ≤

(
1− (1− β)α

k

)(
1
α
h(X∗)− Ti−1

)
.

(28)

(29)

We then repeatedly apply all k inequalities from i =
k, . . . , 1, to get

1
α
h(X∗)− Tk ≤

(
1− (1− β)α

k

)k (1
α
h(X∗)− T0)

)
(30)

yielding

Tk ≥
1
α

[
1−

(
1− (1− β)α

k

)k]
h(X∗).

(31)

Let γ = 1
α

[
1−

(
1− (1−β)α

k

)k]
. So, for B = ∅ and any

feasible a1, a2, . . . , ak, we have
∑k
j=1 aj = Tk ≥ γh(X∗).

Therefore T (∅) = mina1,a2,...,ak

∑k
i=1 ai ≥ γh(X∗).

Recall that T (B) ≥ T (∅) for all B. We thus have, with
ai = h(si|{s1, . . . , si−1}) (which are also feasible for
Equation (20) with B again the indices of Sk ∩X∗, which
follows from Equation 16), h(Sk) =

∑k
i ai ≥ T (B) ≥

T (∅) ≥ γh(X∗).

Lemma D.2 yields Equation (5) which shows the result for
Lemma 3.5.

Greed is Still Good: Maximizing Monotone BP Functions

E. Weaker bound in the cardinality
constrained case

The bound in Equation (6) is one of the major contribu-
tions of this paper. Another bound can be achieved using a
surrogate objective h′(X) = f(X) +

∑
v∈X g(v), similar

to an approach used in (Iyer et al., 2013a). We have that
h′(X) ≤ h(X) thanks to the supermodularity of g, and
we can apply GREEDMAX directly to h′, the solution of
which has a guarantee w.r.t. the original objective h. The
proof of this bound is quite a bit simpler, so we first offer it
here immediately. On the other hand, we also show that the
bound obtained by this method is worse than Equation (6)
for all 0 < κf , κ

g < 1, sometimes appreciably.

Lemma E.1. Weak bound in cardinality constrained
case. GREEDMAX maximizing h′(X) = f(X) +∑
v∈X g(v) is guaranteed to obtain a solution X̂ such that

h(X̂) ≥ 1− κg

κf

[
1− e−κf

]
h(X∗) (32)

where X∗ ∈ argmax|X|≤k h(X), h(X) = f(X) + g(X),
κf is the curvature of submodular f and κg is the curvature
of supermodular g.

Proof. According to lemma C.2 (iv), (1 − κg)h(X) ≤
h′(X) for all X ⊆ V . Also we have h′(X) ≤ h(X).
And h′ is a monotone submodular function with κh′ =
1−minv∈V h′(v|V \{v})

h′(v) = 1−minv∈V f(v|V \{v})+g(v)
f(v)+g(v) ≤

1 − minv∈V f(v|V \{v})
f(v) = κf since 0 ≤ f(v|V \ {v}) ≤

f(v).

Using the traditional curvature bound for submodular max-
imization (Conforti & Cornuejols, 1984), the greedy algo-
rithm to maximize h′ provides a solution X̂ s.t. h′(X̂) ≥

1
κh′

[1− e−κh′]h′(X∗) where X∗ ∈ argmax|X|≤k h(X).
Thus, we have

h(X̂) ≥ h′(X̂) ≥ 1
κh′

[
1− e−κh′

]
h′(X∗) (33)

≥ 1
κf

[
1− e−κf

]
h′(X∗) (34)

≥ 1− κg

κf

[
1− e−κf

]
h(X∗) (35)

Next, we show that this bound is almost everywhere worse
than Equation (6).

Lemma E.2. 1
κf

[
1− e−(1−κg)κf

]
≥ 1−κg

κf
[1− e−κf] for

all 0 ≤ κf , κ
g ≤ 1 where equality holds if and only if

κf = 0 or κg = 0 or κg = 1. For simplicity, dividing
by 0 is defined using limits, e.g., 1

κf

[
1− e−(1−κg)κf

]
=

lim
κf→0+

1
κf

[
1− e−(1−κg)κf

]
= 1− κg when κf = 0.

Proof. Let φ(κf , κg) = 1
κf

[
1− e−(1−κg)κf

]
and ψ(κf , κg) = 1−κg

κf
[1− e−κf]. Specifically,

φ(0, κg) = lim
κf→0+

φ(κf , κg) = 1 − κg and

ψ(0, κg) = lim
κf→0+

ψ(κf , κg) = 1 − κg. So if κf = 0,

φ(κf , κg) = ψ(κf , κg).

When 0 < κf ≤ 1, we notice that φ(κf , κg) = ψ(κf , κg)
when κg = 0 or κg = 1. When 0 < κg < 1, we have
φ(κf , κg) > ψ(κf , κg) since φ(κf , κg) is a strictly concave
function in κg and ψ(κf , κg) is linear in κg .

A simple computation shows the maximum ratio of these
two bounds is 1/(1 − e−1) ≈ 1.5820 when κf = 1 and
κg → 1. As another example, with κf = 1 and κg =
ln(e− 1) ≈ 0.541, the ratio is ≈ 1.2688.

F. Proof of Theorem 3.7
Theorem F.1. Theoretical guarantee in the p matroids
case. GREEDMAX is guaranteed to obtain a solution X̂
such that

h(X̂) ≥ 1− κg

(1− κg)κf + p
h(X∗) (7)

where X∗ ∈ argmaxX∈M1∩...∩Mp
h(X), h(X) =

f(X) + g(X), κf is the curvature of submodular f and
κg is the curvature of supermodular g.

Proof. The greedy procedure produces a chain of solutions
S0, S1, . . . , Sk such that |Si| = i, Si ⊂ Si+1, where k is
the iteration after which any addition to Sk is infeasible in
at least one matroid, and hence4 |X̂| = k. Immediately, we
notice all Si and X∗ are independent sets for all p matroids.

For j = 0, . . . , k and l = 1, . . . , p, there exist at least
max(|X∗| − j, 0) elements v ∈ X∗ \ Sj s.t. v /∈ Sj and
Sj + v ∈ I(Ml), which follows from the third property
in the matroid definition. Therefore, for j = 0, . . . , k − 1,
l = 1, . . . , p, there are at most j elements of X∗ that can
not be added to Sj .

We next consider the intersection of all p matroids. For
j = 0, . . . , k, since in each matroid, there are at most j
elements of X∗ that cannot be added to Sj , the total possi-
ble number of elements for which there exists at least one
matroid preventing us from adding to Sj is jp (the case that
the p sets of at most j elements are disjoint). In other words,
there are at least max(|X∗| − pj, 0) different v ∈ |X∗| s.t.
v /∈ Sj , Sj ∪ {v} ∈ M1 ∩ . . . ∩Mp.

4There should be no confusion here that the k we refer to in
this section is not any cardinality constraint, but rather the size of
the greedy solution.

Greed is Still Good: Maximizing Monotone BP Functions

We claim |X∗| ≤ pk as otherwise, by setting j = k above,
there are still feasible elements in X∗ \ Sk in the context
of Sk, which indicates that GREEDMAX has not ended at
iteration k. Therefore, we are at liberty to create pk − |X∗|
dummy elements, that are always feasible (i.e., independent
in all matroids) and that have h(v|X) = 0 for all X ⊂ V
for each dummy v. We add these dummy elements to X∗

and henceforth assume, w.l.o.g., that |X∗| = pk.

We next form an ordered k-partition of X∗ = X0 ∪X1 ∪
. . . ∪ Xk−1. We show below that it is possible to form
this partition so that it has the following properties for j =
0, . . . , k − 1:

1. |Xj | = p;

2. for all v ∈ Xj , we have v /∈ Sj and Sj ∪ {v} ∈
M1 ∩ . . . ∩Mp (i.e., v can be added to Sj);

3. and for all j s.t. sj+1 ∈ X∗ ∩ Sk, we have sj+1 ∈ Xj .

Immediately, we notice that property 3 is compatible with
property 2.

We construct this partition in an order reverse from that of
the greedy procedure, that is we createXj from j = k−1 to
0. Recall that, at each step with index j = k−1, k−2, . . . , 0,
there are at least |X∗| − pj = p(k − j) elements in X∗ can
be added to Sj .

When j = k − 1, there are at least p candidate elements5 in
X∗ and we choose p of them to form Xk−1. The element
sk can be added to Sk−1 because the greedy algorithm only
adds feasible elements and hence, if also sk ∈ X∗, then sk
can be one of the elements in Xk−1. Thus, abiding property
3 above, we place sk ∈ Xk−1.

Continuing, for j = k − 2, k − 3, . . . , 0, there are at least p
candidate elements in X∗ \ [Xk−1 ∪Xk−2 ∪ . . . ∪Xj+1]
since |Xk−1 ∪ Xk−2 ∪ . . . ∪ Xj+1| = p(k − j − 1)
and we choose p of them for Xj . Moreover, if sj+1 ∈
X∗, we notice sj+1 may be one of those candidate ele-
ments because of the greedy properties and since sj+1 /∈
[Xk−1 ∪Xk−2 ∪ . . . ∪Xj+1] (this follows because sj+1 ∈
Sj′ for any j′ ≥ j + 1, so sj+1 is not a candidate element
at step j′ = k − 2, . . . , j + 1). Similar to what was done in
step k − 1, we again choose p candidate elements to form
Xj , and, if sj+1 ∈ X∗, we place sj+1 ∈ Xj .

We then arrive at partition X∗ = X0 ∪ X1 ∪ . . . ∪ Xk−1
with the aforementioned three properties.

Next, we order the elements in X∗ = {x1, . . . , xpk} where{
xjp+1, xjp+2, . . . , x(j+1)p

}
= Xj for j = 0, 1, . . . , k −

1. According to greedy, we have h(xjp+t|Sj) ≤
h(sj+1|Sj) = aj+1 for t = 1, . . . , p. Recall that ai is

5Elements that can be added at the given step.

defined to be h(si|Si−1). Moreover, if xjp+t ∈ X∗ ∩ Sk,
we have xjp+t = sj+1.

According to Lemma C.1 above,

h(X∗) ≤ κf
∑

j:sj∈Sk\X∗
aj

+
∑

j:sj∈Sk∩X∗
aj + h(X∗ \ Sk|Sk) (36)

= κf
∑

j:sj∈Sk\X∗
aj +

∑
j:sj∈Sk∩X∗

h(sj |Sj−1)

+
pk∑
i=1

h(xi|Sk ∪ {x1} . . . ∪ {xi−1})1{xi∈X∗\Sk}

(37)

≤ κf
∑

j:sj∈Sk\X∗
aj + 1

1− κg
∑

j:sj∈Sk∩X∗
h(sj |Sj−1)

+ 1
1− κg

k−1∑
j=0

p∑
t=1

h(xjp+t|Sj)1{xjp+t∈X∗\Sk}

(38)

= κf
∑

j:sj∈Sk\X∗
aj

+ 1
1− κg

[∑
j:sj∈Sk∩X∗

h(sj |Sj−1)

+
k−1∑
j=0

p∑
t=1

h(xjp+t|Sj)

−
k−1∑
j=0

p∑
t=1

h(xjp+t|Sj)1{xjp+t∈X∗∩Sk}

]
(39)

= κf
∑

j:sj∈Sk\X∗
aj

+ 1
1− κg

[∑
j:sj∈Sk∩X∗

h(sj |Sj−1)

+
k−1∑
j=0

p∑
t=1

h(xjp+t|Sj)

−
∑

j:sj∈Sk∩X∗
h(sj |Sj−1)

]
(40)

≤ κf
∑

j:sj∈Sk\X∗
aj + 1

1− κg
k−1∑
j=0

p∑
t=1

aj+1 (41)

≤
[
κf + p

1− κg

] k−1∑
j=0

aj+1 (42)

=
[
κf + p

1− κg

]
h(X̂) (43)

Greed is Still Good: Maximizing Monotone BP Functions

where 1{condition} equals 1 if the condition is met and is 0
otherwise. Line 37 to 38 hold because of Lemma C.2 (ii). As
for Line 39 to 40, we notice xjp+t = sj+1 if xjp+t ∈ X∗ ∩
Sk. Line 40 to line 41 follows via the greedy procedure.

Therefore, we have our result which is

h(X̂) ≥ 1− κg

(1− κg)κf + p
h(X∗). (44)

G. Proof of Theorem 3.8
Theorem G.1. SEMIGRAD initialized with the empty set
is guaranteed to obtain a solution X̂ for the cardinality
constrained case such that

h(X̂) ≥ 1
κf

[
1− e−(1−κg)κf

]
h(X∗) (8)

where X∗ ∈ argmax|X|≤k h(X), h(X) = f(X) + g(X),
& κf (resp. κg) is the curvature of f (resp. g).

Proof. If SEMIGRAD is initialized by empty set, we need
to calculate the semigradient of g at ∅. By definition, we
have

mg,∅,1(Y) = mg,∅,2(Y) =
∑
v∈Y

g(j) (45)

So in the first step of SEMIGRAD, we are optimizing
h′(X) = f(X) + mg(X) = f(X) +

∑
v∈X g(v) by

GREEDMAX. We will focus elusively on this step as later
iterations can only improve the objective value.

According to Lemma C.1, we have

h(X∗) ≤κf
∑

j:sj∈Si\X∗
h(sj |Sj−1)

+
∑

j:sj∈Si∩X∗
h(sj |Sj−1) + h(X∗ \ Sj |Sj)

(46)

Since GREEDMAX is choosing the feasible element with
the largest gain, in the semigradient approximation we have
h′(v|Si) ≤ h′(si+1|Si) instead of h(v|Si) ≤ h(si+1|Si).

We get:

h(X∗ \ Sj |Sj)
= f(X∗ \ Sj |Sj) + g(X∗ \ Sj |Sj) (47)

≤
∑

v∈X∗\Sj

f(v|Sj) + 1
1− κg

∑
v∈X∗\Sj

g(v) (48)

≤ 1
1− κg

∑
v∈X∗\Sj

h′(v|Sj) (49)

≤ 1
1− κg

∑
v∈X∗\Sj

h′(sj+1|Sj) (50)

= 1
1− κg

∑
v∈X∗\Sj

f(sj+1|Sj) + g(sj+1) (51)

≤ 1
1− κg

∑
v∈X∗\Sj

f(sj+1|Sj) + g(sj+1|Sj) (52)

= |X
∗ \ Sj |

1− κg h(sj+1|Sj) (53)

And hence,

h(X∗) ≤ κf
∑

j:sj∈Si\X∗
ai +

∑
j:sj∈Si∩X∗

ai

+ k − |X∗ ∩ Si|
1− κg si+1. (54)

We can then use Lemma D.2 to h to finish the proof.

H. Proof of Theorem 3.9
Theorem H.1. SEMIGRAD initialized with the empty set
is guaranteed to obtain a solution X̂ , feasible for the p
matroid constraints, such that

h(X̂) ≥ 1− κg

(1− κg)κf + p
h(X∗) (9)

where X∗ ∈ argmaxX∈M1∩...∩Mp
h(X), h = f + g, &

κf (resp. κg) is the curvature of f (resp. g).

Proof. If SEMIGRAD is initialized by empty set, we need
to calculate the semigradient of g at ∅. By definition, we
have

mg,∅,1(Y) = mg,∅,2(Y) =
∑
v∈Y

g(j) (55)

So in the first step of SEMIGRAD, we are optimizing
h′(X) = f(X) + mg(X) = f(X) +

∑
v∈X g(v) by

GREEDMAX. We will focus on this step.

Greed is Still Good: Maximizing Monotone BP Functions

According to Lemma C.1, we have

h(X∗) ≤κf
∑

j:sj∈Si\X∗
h(sj |Sj−1)

+
∑

j:sj∈Si∩X∗
h(sj |Sj−1) + h(X∗ \ Sj |Sj)

(56)

We then follow the proofs of Theorems 3.7 and 3.8. The
only difference is that in Theorem 3.7 we have h(v|Si) ≤
h(si+1|Si) for all feasible v, but in this proof, we have
h′(v|Si) ≤ h′(si+1|Si), which does not affect the proof as
shown in the proof of Theorem 3.8.

I. Proof of Theorem 4.1
Lemma I.1. (lemma 4.1 from (Svitkina & Fleischer, 2011))
LetR be a random subset of V of size α = x

√
n

5 , let β = x2

5 ,
and let x be any parameter satisfying x2 = ω(lnn) and
such that α and β are integer. Let f1(X) = min(|X|, α)
and f2(X) = min(β + |X ∩ R̄|, |X|, α). Any algorithm
that makes a polynomial number of oracle queries has prob-
ability n−ω(1) of distinguishing the functions f1 and f2.

Theorem I.2. Hardness for cardinality constrained case.
For all 0 ≤ β ≤ 1, there exists an instance of a BP function
h = f + g with supermodular curvature κg = β such that
no poly-time algorithm solving Problem 1 with a cardinality
constraint can achieve an approximation factor better than
1− κg + ε, for any ε > 0.

Proof. κg = α = 0 is trivial since no algorithm can do
better than 1.

The case when κg = 1 can be proven using the example in
Lemma 3.1. g(X) = max{|X| − k, 0}, except for a special
set R where g(R) = 0.5 and |R| = k.

For the other case, we prove this result using the hard-
ness construction from (Goemans et al., 2009; Svitkina &
Fleischer, 2011). The intuition is to construct two super-
modular functions, g and g′ both with curvature κg which
are indistinguishable6 with high probability in polynomi-
ally many function queries. Therefore, any polynomial
time algorithm to maximize g(X) can not find X̂ ⊆ V
with |X̂| ≤ k s.t. g(X̂) > maxX≤k g′(X); otherwise we
will have g(X̂) > maxX≤k g′(X) ≥ g′(X̂) which con-
tradicts the indistinguishability. In this case, the approxi-
mate ratio g(X̂)

OPT ≤
OPT′
OPT where OPT = maxX≤k g(X) and

OPT′ = maxX≤k g′(X). The guarantee, by definition, is
the best case approximate ratio and, thus no greater than
OPT′
OPT . If any polynomial algorithm has a guarantee greater

6Indistinguishable means for all sets X that the algorithm eval-
uates, g(X) = g′(X).

than OPT′
OPT , then it contradicts the information theoretic hard-

ness. This is meaningful if OPT′ < OPT.

Let g(X) = |X| − βmin{γ + |X ∩ R̄|, |X|, α} and
g′(X) = |X| − βmin{|X|, α} , where R ⊆ V is a random
set of cardinality α. Let α = x

√
n/5 and γ = x2/5 and

let x be any parameter satisfying x2 = ω(lnn) s.t. γ < α
are positive integers and α ≤ n

2 − 1.7 g and g′ are modular
minus submodular functions, which implies supermodular-
ity. Monotonicity follows from g(v|X), g′(v|X) ≥ 0. Also,
OPT = α− βγ > OPT′ = α(1− β).

Next, we calculate the supermodular curvature. g(∅) =
g′(∅) = 0. g(v) = g′(v) = 1 − β for all v ∈ V since
α, γ ≥ 1. g(V \ {v}) = g′(V \ {v}) = n − 1 − βα and
g(V) = g′(V) = n − βα for all v ∈ V since α ≤ n

2 − 1.
Therefore, κg = 1 − minv∈V g(v)

g(v|V−v) = β. κg
′ = 1 −

minv∈V g′(v)
g′(v|V−v) = β. So g and g′ are monotone non-

decreasing supermodular functions with curvature β. Let
f(X) = 0 for all X and h(X) = f(X) + g(X) = g(X) is
the objective BP function.

Any algorithm that uses a polynomial number of queries can
distinguish g and g′ with probability only n−ω(1) according
to lemma I.1 (Svitkina & Fleischer, 2011). More precisely,
g(X) > g′(X)8 if and only if γ + |X ∩ R̄| < |X| and
γ + |X ∩ R̄| < α. It is equivalent with asking |X ∩R| > γ
and |X∩R̄| < α−γ. Moreover, Pr(g(X) 6= g′(X)), where
randomness is over random subsets R ⊆ V of size α, is
maximized when |X| = α (Svitkina & Fleischer, 2011). In
this case, the two conditions become identical, and since
|X| = |X ∩ R̄| + |X ∩ R|, the condition g(X) > g′(X)
happens when only |X ∩R| > γ. Intuitively, E|X ∩R| =
α2

n = γ
5 where R is a random set (of arbitrary size) and X

is an arbitrary but fixed set of size α. So |X ∩R| is located
in small interval around γ

5 and is hardly ever be larger than
γ for large n according to the law of large numbers. While
this is only the intuition, a similar reasoning in (Svitkina &
Fleischer, 2011) offers more details.

Therefore, the output X̂ of any polynomial algorithm must
satisfies g(X̂) ≤ maxX≤k g′(X) since, otherwise the
algorithm actually distinguishes the two function at X̂ ,
g(X̂) > maxX≤k g′(X) ≥ g′(X̂). The approximate ra-

tio g(X̂)
OPT ≤

OPT′
OPT = α−κgα

α−κgγ = (1 − κg) 1
1−κg

√
ω(logn)

n

≤

1− κg + ε. Therefore, the guarantee of any polynomial al-
gorithm, that, by definition, the best case approximate ratio,
is no greater than 1− κg + ε for any ε > 0 since, otherwise
contradicts the information theoretic hardness.

7These examples and the specific parameters like 5 are adopted
from (Svitkina & Fleischer, 2011).

8Note that g(X) ≥ g′(X) for all X ⊆ V for any α and γ.

Greed is Still Good: Maximizing Monotone BP Functions

J. Proof of Theorem 4.2
Theorem J.1. Hardness for p matroids constraint case.
For all 0 ≤ β ≤ 1, there exists an instance of a BP function
h = f + g with supermodular curvature κg = β such that
no poly-time algorithm can achieve an approximation factor
better than (1− κg)O(ln p

p) unless P=NP.

Proof. Consider the p-set problem (Hazan et al., 2006), let
R be the maximum disjoint sets of these p sets. No polyno-
mial algorithm can find a larger number of disjoint sets than
O(ln p

p)|R| (Hazan et al., 2006). Let k = O(ln p
p)|R|. So no

polynomial algorithm can find a feasible set with size larger
than k unless P=NP.

Let h(X) = (1 − β)|X| + βmax{|X| − k, 0}. It is easy
to check that h is a BP function with f = 0 and g = h with
κg = β.

Therefore, the output X̂ of any polynomial algorithm that
maximizes h under the p-set constraint (expressible via the
intersection of p matroids) must satisfy that |X| ≤ k and,
therefore, h(X̂) ≤ (1 − β)k unless P=NP. But h(X∗) ≥
h(R) = (1− β)|R|+ β(|R| − k) = |R| − βk.

Thus, the approximate ratio

h(X̂)
h(X∗) ≤

(1− β)k
|R| − βk

≤
(1− β)O(ln p

p)
1− βO(ln p

p)

≤
(1− β)O(ln p

p)
1
2

= (1− κg)O(ln p
p

). (57)

since the denominator 1 − βO(ln p
p) ≥ 1

2 asymptotically

and 2O(ln p
p) = O(ln p

p).

K. Submodularity Ratio and Generalized
Curvature

In this section, we compare the pair κf , κg of curvatures
with the submodularity ratio (Das & Kempe, 2011; Bian
et al., 2017). We also show that both the generalized curva-
ture introduced in (Bian et al., 2017) and the submodularity
ratio (Das & Kempe, 2011) appear to be hard to compute in
general under the oracle model. Lastly, we compare the pair
κf , κ

g with another notion of curvature introduced in (Sviri-
denko et al., 2013), showing a simple inequality relationship
in general and a correspondence when h = g.

K.1. Submodularity ratio

The submodularity ratio is defined as

γU,k(h) = min
L⊆U,S:|S|≤k,S∩L=∅

∑
x∈S h(x|L)
h(S|L) (58)

with U ⊆ V and 1 ≤ k ≤ |V | = n, and typically we
consider γV,n. We can establish a simple lower bound of the
submodularity ratio based on the supermodular curvature as
follows.

Lemma K.1. γV,n(h) ≥ 1− κg when h = f + g.

Proof. For all L ⊆ V and S ∩ L = ∅, we have∑
x∈S

h(x|L)
h(S|L) ≥ 1− κg which follows from Lemma C.2(iv)

Thus, γV,n(h) ≥ 1− κg .

The function h is submodular if and only if γV,n = 1 so
one might hope that given a BP function h = f + g, that
as γV,n(h) → 1, correspondingly κg → 0. This is not the
case, however, as can be seen by considering the following
example.

Let a be an element of V and define the function g(A) =
|A∩ (V \ {a})|+ ε|A∩ (V \ {a})||A∩ {a} |, where ε > 0
is a very small number. Immediately, we have that g being
supermodular and monotone. Also note, if a /∈ A then
g(A) = |A|; if a ∈ A then g(A) = (|A| − 1)(1 + ε).

First, we calculate the supermodular curvature κg . We have
that g(a) = 0 and also g(a|V \{a}) = ε(n−1). Therefore,
the function is fully curved, κg = 1.

Next, we calculate the submodularity ratio γV,n =

minL,S⊂V,S∩L=∅

∑
v∈S

g(v|L)
g(S|L) . When |S| = 1,∑

v∈S
g(v|L)

g(S|L) = 1. When |S| ≥ 2, we have the following 3
cases (recall that S ∩ L = ∅ so there is no forth case):

• a ∈ S. g(S|L) = g(S ∪ L) − g(L) = (|S| + |L| −
1)(1 + ε)− |L| is very close to |S| − 1 for very small
ε.
∑
v∈S g(v|L) = ε|L|+ |S| − 1, which is also very

close to |S| − 1 for small ε. So
∑

v∈S
g(v|L)

g(S|L) ≈ 1 for
small ε.

• a ∈ L. g(S|L) = g(S ∪ L) − g(L) = |S|(1 + ε).∑
v∈S g(v|L) = |S|(1 + ε). So

∑
v∈S

g(v|L)
g(S|L) = 1

• a /∈ S ∪ L. g(S|L) = |S| and
∑
v∈S g(v|L) = |S|.

Therefore,
∑

v∈S
g(v|L)

g(S|L) = 1.

In all cases,
∑

v∈S
g(v|L)

g(S|L) is either 1 or very close to 1 for
small ε, so γV,n has only 1 as an upper bound. That is,
we have an example function that is purely supermodular
and fully curved (κg = 1) for all non-zero values of ε, but
the submodularity ratio can be arbitrarily close to 1. If
we consider a weighted sum of a submodular function and
this supermodular function, the submodularity ratio is again
arbitrarily close to 1. Therefore, there does not seem to be

Greed is Still Good: Maximizing Monotone BP Functions

an immediately accessible strong relationship between the
supermodular curvature and the submodularity ratio.

K.2. Hardness of Generalized Curvature and
Submodularity Ratio

The generalized curvature Bian et al. (2017) of a non-
negative function h is the smallest scalar α s.t.

h(v|S \ {v} ∪ Ω) ≥ (1− α)h(v|S \ {v}) (59)

for all S,Ω ⊆ V and v ∈ S \ Ω and this is used, in concert
with the submodularity ratio, to produce bounds such as
1
α (1− e−αγ) for the greedy algorithm. Unfortunately, the
generalized curvature is hard to compute under the oracle
model. We have the following.

Lemma K.2. There exists an instance of a non-negative
function h whose generalized curvature can not be calcu-
lated in polynomial time, when we have only oracle access
to the function.

Proof. We consider a non-negative function h′ : 2V → R
with ground set size equals n (n is even number). Let
h′(X) = |X| for all X ⊆ V . Let R ⊆ V be an arbitrary
set with |R| = n

2 . Define another set function h : 2V → R,
h(X) = h′(X) for all X ⊆ V and X 6= R; h(R) = n

2 − 1.

First, we can easily calculate the generalized curvature of h′

and h. We have that αh′ = 0 since h′ is a non-decreasing
modular function. For h, let S ∪ Ω = R, S ∩ Ω = ∅,
|S|, |Ω| ≥ 1 and v ∈ S, we have h(v|S \ {v} ∪Ω) = 0 and
h(v|S \ {v}) = 1. Therefore α = 1 is the smallest scalar
s.t. h(v|S \ {v} ∪ Ω) ≥ (1 − α)h(v|S \ {v}). So, as a
conclusion of this part, the generalized curvature of the two
functions are not the same.

Next we use a proof technique similar to (Svitkina & Fleis-
cher, 2011). Note that h′(X) = h(X) if and only ifX 6= R.
So for any algorithm trying to calculate αh, before it eval-
uates h(R), all function evaluations are the same with cal-
culating αh′ . Additionally, since h(X) = |X|, it is per-
mutation symmetric. Therefore, the algorithm can only do
random search to find R. If the algorithm acquires a poly-
nomial number O(nm) of sets of size n

2 , the probability of
finding R is O(nm)

(nn
2
) ≤ O(nm)

(n/n2)
n
2

= O(nm)
2n/2 ≤ O(2−n/2+εn)

for all ε > 0.

Therefore, no algorithm can be guaranteed to distinguish h
and h′ in polynomial time. Since the generalized curvature
of h and h′ are different, neither of them can be calculated
in polynomial time.

Likewise, the submodularity ratio is unfortunately also hard
to compute exactly, in the oracle model.

Lemma K.3. There exists an instance of a non-negative
function h whose submodularity ratio (Equation (58)) can
not be calculated in polynomial time under only oracle
access to that function.

Proof. We consider a non-negative function h′ : 2V → R
with ground set size n (where n is an even number). Let
h′(X) = |X| for all X ⊆ V . Let R ⊆ V be an arbitrary
set with |R| = n

2 . Define another set function h : 2V → R,
h(X) = h′(X) for all X ⊆ V and X 6= R and h(R) =
n
2 − 1.

We can easily calculate the submodularity ratio of both h′

and h as follows. We have that γV,n(h′) = 1 since h′ is
a non-decreasing modular (and thus submodular) function.
For h, choose an element v1 ∈ R and another element
v2 ∈ V \ R, and let L = R \ {v1} and S = {v1, v2}. We

have
∑

v∈S
h(v|L)

h(S|L) = h(R)+h(R\{v1}∪{v2})−2h(R\{v1})
h(R∪{v2})−h(R\{v1}) =

1
2 and thus γV,n(h) = minL,S⊆V,S∩L=∅

∑
v∈S

h(v|L)
h(S|L) ≤ 1

2 .
Therefore, the submodularity ratio of the two functions are
not the same. Given the submodularity ratio of the two
functions, we would be able to tell them apart.

Next we use a proof technique similar to (Svitkina & Fleis-
cher, 2011). We have that h′(X) = h(X) if and only ifX 6=
R. So for any algorithm trying to calculate γV,n(h), before
it evaluates h(R), all function evaluations are the same with
calculating γV,n(h′). Additionally, since h(X) = |X| is
permutation symmetric, the algorithm can only do a random
search to find R. If the algorithm queries a polynomial num-
ber O(nm) of sets of size n

2 , the probability of finding R is
O(nm)
(nn

2
) ≤

O(nm)
(n/n2)

n
2

= O(nm)
2n/2 ≤ O(2−n/2+εn) for all ε > 0.

Therefore, no algorithm can guarantee to distinguish h and
h′ in polynomial time. Since the submodularity ratio of h
and h′ are different, this means that neither of them can be
calculated in polynomial time.

K.3. Comparison to Sviridenko et al. (2013)’s
curvature

Sviridenko et al. (2013) (in their Section 8) define a notion
of curvature as follows:

1− c = min
j

min
A,B⊆V \j

h(j|A)
h(j|B) (60)

We can establish a simple upper bound on c based on sub-
modular and supermodular curvature. We calculate h(j|A)

h(j|B)
given h = f + g and κf and κg. First, f(j|B) ≤ f(j) ≤

1
1−κf f(j|A) which follows from Lemma C.2 (i). Thus
f(j|A)
f(j|B) ≥ 1− κf . Next, g(j|A) ≥ g(j) ≥ (1− κg)g(j|B)

Greed is Still Good: Maximizing Monotone BP Functions

which follows from Lemma C.2 (ii). Thus, g(j|A)
g(j|B) ≥ 1−κg .

Therefore,

h(j|A)
h(j|B) = f(j|A) + g(j|A)

f(j|B) + g(j|B) (61)

=≥ (1− κf)f(j|B) + (1− κg)g(j|B)
f(j|B) + g(j|B) (62)

≥ min(1− κf , 1− κg)(f(j|B) + g(j|B))
f(j|B) + g(j|B)

(63)

≥ min(1− κf , 1− κg) (64)

Thus we have 1 − c ≥ min(1 − κf , 1 − κg), or c ≤
max(κf , κg).

Note that for purely supermodular functions, κf = 0 and,
considering Equation (60), we have c = κg . This coincides
with the 1 − κg bound and hardness for monotone super-
modular functions — compare Theorem 8.1 of Sviridenko
et al. (2013) with the present paper’s item 3 in Section 3.2.1
and Theorem 4.1.

