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Abstract

We analyze the performance of the greedy algo-
rithm, and also a discrete semi-gradient based al-
gorithm, for maximizing the sum of a suBmodular
and suPermodular (BP) function (both of which
are non-negative monotone non-decreasing) un-
der two types of constraints, either a cardinality
constraint or p > 1 matroid independence con-
straints. These problems occur naturally in several
real-world applications in data science, machine
learning, and artificial intelligence. The problems
are ordinarily inapproximable to any factor. Using
the curvature ~ ¢ of the submodular term, and in-
troducing 9 for the supermodular term (a natural
dual curvature for supermodular functions), how-
ever, both of which are computable in linear time,
we show that BP maximization can be efficiently
approximated by both the greedy and the semi-
gradient based algorithm. The algorithms yield
multiplicative guarantees of # [1— e (=r)ns]

% for the two types of constraints

respectively. For pure monotone supermodular
constrained maximization, these yield 1 — 9 and
(1 — r9)/p for the two types of constraints re-
spectively. We also analyze the hardness of BP
maximization and show that our guarantees match
hardness by a constant factor and by O(In(p)) re-
spectively. Computational experiments are also
provided supporting our analysis.

and

1. Introduction

The Greedy algorithm (Bednorz, 2008; Cormen, 2009) is a
technique in combinatorial optimization that makes a locally
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optimal choice at each stage in the hope of finding a good
global solution. It is one of the simplest, most widely ap-
plied, and most successful algorithms in practice (Kempner
et al., 2008; Zhang et al., 2000; Karp & Kung, 2000; Ruiz
& Stiitzle, 2007; Wolsey, 1982). Due to its simplicity, and
low time and memory complexities, it is used empirically
even when no guarantees are known to exist although, being
inherently myopic, the greedy algorithm’s final solution can
be arbitrarily far from the optimum solution (Bang-Jensen
et al., 2004).

On the other hand, there are results going back many years
showing where the greedy algorithm is, or almost is, optimal,
including Huffman coding (Huffman, 1952), linear program-
ming (Dunstan & Welsh, 1973; Dietrich & Hoffman, 2003),
minimum spanning trees (Kruskal, 1956; Prim, 1957), par-
tially ordered sets (Faigle, 1979; Dietrich & Hoffman, 2003),
matroids (Edmonds, 1971; Dress & Wenzel, 1990), gree-
doids (Korte et al., 2012), and so on, perhaps culminating in
the association between the greedy algorithm and submod-
ular functions (Edmonds, 1970; Nemhauser et al., 1978a;
Conforti & Cornuejols, 1984; Fujishige, 2005).

Submodular functions have recently shown utility for a
number of machine learning and data science applications
such as information gathering (Krause et al., 2006), doc-
ument summarization (Lin et al., 2009; Lin & Bilmes,
2011a), image segmentation (Kohli et al., 2009; Jegelka
& Bilmes, 2011), and string alignment (Lin & Bilmes,
2011b), since such functions are natural for modeling con-
cepts such as diversity, information, and dispersion. De-
fined over an underlying ground set V, a set function
f :2Y — Ris said to be submodular when for all sub-
sets X, Y CV, f(X)+ fY) > f(XUY)+ f(XNY).
Defining f({v}|X) = f({v} U X) — f(X) as the gain
of adding the item v in the context of X C V, an equiv-
alent characterization of submodularity is via diminishing
returns: f({v}|X) > f({v}|Y),forany X CY C V
and v € V' \'Y. A set function f is monotonically non-
decreasing if f({v}|S) > Oforallv € V' \ S and it is
normalized if f(()) = 0. In addition to being useful utility
models, submodular functions also have amiable optimiza-
tion properties — many submodular optimization problems
(both maximization (Wolsey, 1982) and minimization (Cun-
ningham, 1985)) admit polynomial time approximation or
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exact algorithms. Most relevant presently, the greedy algo-
rithm has a good constant-factor approximation guarantee,
e.g., the classic 1 — 1/e and 1/(p + 1) guarantees for sub-
modular maximization under a cardinality constraint or p
matroid constraints (Nemhauser et al., 1978b; Fisher et al.,
1978).

Certain subset selection problems in data science are not
purely submodular, however. For example, when choos-
ing a subset of training data in a machine learning system
(Wei et al., 2015), there might be not only redundancies
but also complementarities amongst certain subsets of el-
ements, where the full collective utility of these elements
is seen only when utilized together. Submodular functions
can only diminish, rather than enhance, the utility of a data
item in the presence of other data items. Supermodular set
functions can model such phenomena, and are widely uti-
lized in economics and social sciences, where the notion of
complementary (Topkis, 2011) is naturally needed, but are
studied and utilized less frequently in machine learning. A
set function g(X) is said to be supermodular if —g(X) is
submodular.

In this paper, we advance the state of the art in understand-
ing when the greedy (and the semigradient) algorithm offers
a guarantee, in particular for approximating the constrained
maximization of an objective that may be decomposed into
the sum of a submodular and a supermodular function (ap-
plications are given in Section 1.1). That is, we consider the
following problem

Problem 1. max hMX):=f(X)+g9(X), @

where C C 2V is a family of feasible sets, f and g
are normalized (f()) = 0), monotonic non-decreasing
(f({s}1S) > 0forany s € V and S C V) submodular and
supermodular functions respectively! and hence are non-
negative. We call this problem suBmodular-suPermodular
(BP) maximization, and f + g a BP function, and we say
h admits a BP decomposition if 3f, g suchthat h = f + g
where f and g are defined as above. In the paper, the set
C may correspond either to a cardinality constraint (i.e.,
C ={ACV|]|A| <k} for some k > 0), or alternatively,
a more general case where C is defined as the intersection
of p matroids. Hence, we may have C = {X CV | X €
i NIy N ---NZ,}, where Z; is the set of independent
sets for the ith matroid M; = (V,Z;). A matroid general-
izes the concept of independence in vector spaces, and is a
pair (V,Z) where V is the ground set and Z is a family of
subsets of V' that are independent with the following three
properties: (1) ) € Z; (2) Y € T implies X € Z for all
X CY CV;and 3)if X,Y € 7 and |X| > |Y], then
there exists v € X \ Y such that Y U {v} € Z. Matroids

"Throughout, f & g are assumed monotonic non-decreasing
submodular/supermodular functions respectively.

are often used as combinatorial constraints, where a feasible
set of an optimization problem must be independent in all p
matroids.

The performance of the greedy algorithm for some spe-
cial cases of BP maximization has been studied before.
For example, when g(X) is modular, the problem reduces
to submodular maximization where, if f and g are also
monotone, the greedy algorithm is guaranteed to obtain
an 1 — 1/e approximate solution under a cardinality con-
straint (Nemhauser et al., 1978b) and 1/p+1 for p ma-
troids (Fisher et al., 1978; Conforti & Cornuejols, 1984).
The greedy algorithm often does much better than this in
practice. Correspondingly, the bounds can be significantly
improved if we also make further assumptions on the sub-
modular function. One such assumption is the (total) curva-
% W — the greedy
algorithm has a %f( 1—e " )anda Kf1+p guarantee (Con-
forti & Cornuejols, 1984) for a cardinality and for p matroid
constraints, respectively. Curvature is also attractive since
it is linear time computable with only oracle function ac-

cess. Liu et al. (2017) shows that xf can be replaced by

f({v}A\{v})
F({vh

for a single matroid M = (V,Z), a quantity defined only

on the independent sets of the matroid, thereby improving
the bounds further. In the present paper, however, we uti-
lize the traditional definition of curvature. The current best
guarantee is 1 — k¢ /e for a cardinality constraint using mod-
ifications of the continuous greedy algorithm (Sviridenko
et al., 2015) and ﬁ for multiple matroid constraints based
on a local search algorithm (Lee et al., 2010). In another
relevant result, Sarpatwar et al. (2017) gives a bound of
(1—e~ ")/, 1) for submodular maximization with a sin-
gle knapsack and the intersection of p matroid constraints.

ture, defined as Ky = 1 — min, ¢

a similar quantity, i.e., b = 1 — minycaer

When ¢(X) is not modular, the problem is much harder
and is NP-hard to approximate to any factor (Lemma 3.1).
In our paper, we show that bounds are obtainable if we
make analogous further assumptions on the supermodu-
lar function g. That is, we introduce a natural curvature
notion to monotone non-decreasing nonnegative supermod-
ular functions, defining the supermodular curvature as
K = Kgvy—g(\x) = 1 — minyey g(vg%. We note
that 9 is distinct from the steepness (II’ev, 2001; Sviridenko
et al., 2015) of a nonincreasing supermodular function (see
Section 3.1). The function g(V') — g(V'\ X)) is a normalized
monotonic non-decreasing submodular function, known as
the submodular function dual to the supermodular function
g (Fujishige, 2005). Supermodular curvature is a natural
dual to submodular curvature and, like submodular curva-
ture, is computationally feasible to compute, requiring only
linear time in the oracle model, unlike other measures of
non-submodularity (Section 1.2). Hence, given a BP decom-
position of h = f + g, it is possible, as we show below, to
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bound hardness
cardinality é [1 — e_(l_”g)”f] 1—-r9+¢€
. —wY In
p matroid m (1 - w9)0(ZE)

Table 1. Lower bounds for GREEDMAX (Alg. 1)/SEMIGRAD
(Alg. 2) and BP maximization hardness.

derive practical and useful quality assurances based on the
curvature of each component of the decomposition.

We examine two algorithms, GREEDMAX (Alg. 1) and
SEMIGRAD (Alg. 2) and show that, despite the two algo-
rithms being different, both of them have a worst case guar-
antee of # [1—e~(=%)"s] for a cardinality constraint

(Theorem 3.6) and % for p matroid constraints
(Theorem 3.7). If k9 = 0 (i.e., g is modular), the bounds
reduce to #(1 —e ") and ﬁ, which recover the afore-
mentioned bounds. If k9 = 1 (i.e., g is fully curved) the
bounds are 0 since, in general, the problem is NP-hard to
approximate (Lemma 3.1). For pure monotone supermod-
ular function maximization, the bounds yield 1 — x9 and
(1 — k9)/p respectively. We also show that no polynomial
algorithm can do better than 1 — k9 + e or (1 — /@9)0(1‘17”)
for cardinality or multiple matroid constraints respectively
unless P=NP. Therefore, no polynomial algorithm can beat
GREEDMAX by a factor of 215 or O(In(p)) for the two
constraints unless P=NP.

1.1. Applications

Problem 1 naturally applies to a number of machine learning
and data science applications.

Summarization with Complementarity Submodular
functions are an expressive set of models for summarization
tasks where they capture how data elements are mutually
redundant. In some cases, however, certain subsets might
be usefully chosen together, i.e., when their elements have a
complementary relationship. For example, when choosing
a subset of training data samples for supervised machine
learning system (Wei et al., 2015), nearby points on oppo-
site sides of a decision boundary would be more useful to
characterize this boundary if chosen together. Also, for the
problem of document summarization (Lin & Bilmes, 2011a;
2012), where a subset of sentences is chosen to represent
a document, there are some cases where a single sentence
makes sense only in the context of other sentences, an in-
stance of complementarity. In such cases, it is reasonable
to allow these relationships to be expressed via a monotone
supermodular function. One such complementarity family
takes g to be a weighted sum of monotone convex func-
tions composed with non-negative modular functions, as in
g(A) = >, wihi(m;(A)). A still more expressive family
includes the “deep supermodular functions” (Bilmes & Bai,

2017) which consist of multiple nested layers of such trans-
formations. A natural formulation of the summarization-
with-complementary problem is to maximize an objective
that is the weighted sum of a monotone submodular utility
function and one of the above complementarity functions.
Hence, such a formulation is an instance of Problem 1. In
either case, the supermodular curvature is easy to compute,
and for many instances is less than unity leading to a quality
assurance based on the results of this paper.

Generalized Bipartite Matching Submodularity has
been used to generalize bipartite matching. For example, a
generalized bipartite matching (Lin & Bilmes, 2011b) pro-
cedure starts with a non-negative weighted bipartite graph
(V,U, E), where V is a set of left vertices, U is a set of right
vertices, ' C V x U is a set of edges, and h : 2E _, Ryisa
score function on the edges. Note that a matching constraint
is an intersection of two partition matroid constraints, so a
matching can be generalized to the intersection of multiple
matroid constraints. Word alignment between two sentences
of different languages (Melamed, 2000) can be viewed as
a matching problem, where each word pair is associated
with a score reflecting the desirability of aligning that pair,
and an alignment is formed as the highest scored match-
ing under some constraints. Lin & Bilmes (2011b) uses
a submodular objective functions that can represent com-
plex interactions among alignment decisions. Also in (Bai
et al., 2016), similar bipartite matching generalizations are
used for the task of peptide identification in tandem mass
spectrometry. By utilizing a BP function in Problem 1, our
approach can extend this to allow also for complementarity
to be represented amongst sets of matched vertices.

1.2. Approach, and Related Studies

An arbitrary set function can always be expressed as a differ-
ence of submodular (DS) functions (Narasimhan & Bilmes,
2005; Iyer & Bilmes, 2012a;c). Although finding such a
decomposition itself can be hard (Iyer & Bilmes, 2012a),
the decomposition allows for additional optimization strate-
gies based on discrete semi-gradients (Equation (2)) that do
not offer guarantees, even in the unconstrained case (Iyer &
Bilmes, 2012a). Our problem is a special case of constrained
DS optimization since a negative submodular function is
supermodular. Our problem also asks for a BP decomposi-
tion of h which is not always possible even for monotone
functions (Lemma 3.2). Constrainedly optimizing an arbi-
trary monotonic non-decreasing set function is impossible
in polynomial time and not even approximable to any posi-
tive factor (Lemma 3.1). In general, there are two ways to
approach such a problem: one is to offer polynomial time
heuristics without any theoretical guarantee (and hence pos-
sibly performing arbitrarily poorly in worst case); another is
to analyze (using possibly exponential time itself, e.g., see
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below starting with the submodularity ratio) the set function
in order to provide theoretical guarantees. In our framework,
as we will see, the BP decomposition not only allows for ad-
ditional optimization strategies as does a DS decomposition,
but also, given additional information about the curvature
of the two components (computable easily in linear time),
allows us to show how the set function can be approximately
maximized in polynomial time with guarantees. With a cur-
vature analysis, not only the greedy algorithm but also a
semi-gradient optimization strategy (Alg. 2) attains a guar-
antee even in the constrained setting. We also argued, in
Section 1.1, that BP functions, even considering their loss of
expressivity relative to DS functions, are still quite natural
in applications.

Algorithm 1: GREEDMAX for BP maximization
Input: f, g and constraint set C.
QOutput: An approximation solution X.
Initialize: Xy < 0,i < Oand R+ V
while v € Rs.t. X; Uv € Cdo
v € argmax,e g x,uvec f (01 X5) + g(v]X5).
Xit1 < X;Uv, R+ R\ v.
i3+ 1
end while
Return X «+ X;.

R A A

Submodularity ratio and curvature Bian et al. (2017)
offered a bound based on both the submodularity ratio
and a newly introduced form of generalized curvature.
The submodularity ratio (Das & Kempe, 2011) of a non-
negative set function h is defined as the largest scalar y
.t D eons PMw|S) = Yh(Q|S), V2, S C V and is equal
to one if and only if h is submodular. It is often de-

. zeS h(z|L)
fined as yyx(h) = minpcy sisi<k,snL=0 =Sery—

for U € Vand 1 < k < |V, and then v = 7y, v |(h).
The generalized curvature (Bian et al., 2017) of a non-
negative set function h is defined as the smallest scalar « s.t.
h(#|S\{i}uQ) > (1—a)h(i|S\{i}),VQ,S C V,i € S\Q.
(Bian et al., 2017) offers a lower bound of X (1 — e=*7) for
the greedy algorithm. Computing this bound is not computa-
tionally feasible in general because both the submodularity
ratio and the generalized curvature are information theoreti-
cally hard to compute under the oracle model, as we show
in Section K.2. This is unlike curvatures x ¢, <9 which are
both computable in linear time given only oracle access to
both f and g. We make further comparisons between the
pair k¢, k9 with the submodularity ratio in Section K.

Approximately submodular functions A function £/ is
said to be e-approximately submodular if there exists a
submodular function f such that (1 —€)f(S5) < h(S) <
(14 €)f(S) for all subsets S. Horel & Singer (2016) show

that the greedy algorithm achieves a (1 — 1/e — O(9)) ap-
proximation ratio when € = %. Furthermore, this bound is
tight: given a 1/k'~#-approximately submodular function,
the greedy algorithm no longer provides a constant factor

approximation guarantee.

Elemental Curvature and Total Primal Curvature
Wang et al. (2016) analyze the approximation ratio of the
greedy algorithm on maximizing non-submodular func-

tions under cardinality constraints. Their bound is 1 —
k

N -1
(1 - (Zf;ll a’) ) based on the elemental curvature

with @ = maxgcx,i jex %‘US{)]}), and o is the i™ power

of . Smith & Thai (2017) generalize this definition to the
total primal curvature.

Algorithm 2: SEMIGRAD for BP maximization

Input: f, g, constraint set C and an initial set X
Output: An approximation solution X.
Initialize: ¢ + 0.
repeat

pick a semigradient g; at X; of g

Xis1 € argmaxyee £(X) + gi(X)

// %*Approximately solved by

Alg 1
7. i+—1+1
until we have converged (X; = X;_1)
9: Return X « X;

A A S i e

®

Supermodular Degree Feige and et al. (Feige & Izsak,
2013) introduce a parameter, the supermodular degree,
for solving the welfare maximization problem. Feldman
and et al. (Feldman & Izsak, 2014b;a) use this concept
to analyze monotone set function maximization under a
p-extendable system constraint with guarantees. A super-
modular degree of one element © € V by a set func-
tion h is defined as the cardinality of the set D} (u) =
{v e V|Iscvh(u|S+v) > h(u|lS)}, containing all ele-
ments whose existence in a set might increase the marginal
contribution of uw. The supermodular degree of h is
D" = maxyuev |D; (u)|. A set system (V,Z) is called
p-extendable (Feldman & Izsak, 2014b;a) if for every two
subsets 7' C S € 7 and element u ¢ T for which TUu € Z,
there exists a subset Y C S \ T of cardinality at most
p for which S\ Y + « € Z, which is a generalization
of the intersection of p matroids. They offer a greedy al-
gorithm for maximizing a monotonic non-decreasing set
function h subject to a p-extendable system with an guar-

1 . . . .
antee of ST D1 and time complexity polynomial in

n and 2% (Feldman & Izsak, 2014b;a), where n = V1.
But again, D,f can not be calculated in polynomial time
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in general unlike our curvatures. Moreover, if we consider
a simple supermodular function g(X) = | X|'*® where «
is a small positive number. Then D}’ = n — 1 since all
elements have supermodular interactions. Therefore, the
time complexity of their algorithm is polynomial in 27!

and their bound is on +1 , while our algorithm requires at

most n? quires with a performance guarantee of 1-log(n)r?
where k9 = 1 — m When « is small, our
bound is around n times better than theirs; e.g., n = 10,
=5, v = 0.05, ours is around —; while theirs is 2.
Discussion The above results are both useful and com-
plementary with our analyses below for BP-decomposable
functions, thus broadening our understanding of settings
where the greedy and semi-gradient algorithms offer a guar-
antee. We say our analysis is complementary in a sense the
following example demonstrates. Should a given function A
have a BP decomposition i = f 4+ g, then it is easy, given
oracle access to both f and g, to compute curvatures and es-
tablish bounds. On the other hand, if we do not know h’s BP
decomposition, or if h does not admit a BP decomposition
(Lemma 3.2), then we would need to resort, for example, to
the submodularity ratio and generalized curvature bounds
of Bian et al. (2017).

2. Approximation Algorithms for BP
Maximization

GREEDMAX (Alg. 1) The simplest and most well known
algorithm for approximate constrained non-monotone sub-
modular maximization is the greedy algorithm (Nemhauser
et al., 1978b). We show that this also works boundedly well
for BP maximization when the functions are not both fully
curved (ky < 1,9 < 1). At each step, a feasible element
with the highest gain with respect to the current set is cho-
sen and added to the set. Finally, if no more elements are
feasible, the algorithm returns the greedy set.

SEMIGRAD (Alg. 2) Akin to convex functions, super-
modular functions have tight modular lower bounds. These
bounds are related to the subdifferential 9,(Y") of the super-
modular set function g at a set Y C V, which is defined
(Fujishige, 2005)? as:

9y(Y) = {y e R" : g(X) —y(X) = g(Y) —y(Y)

forall X CV} 2)
It is possible, moreover, to provide specific semigradi-
ents (Iyer & Bilmes, 2012b; Iyer et al., 2013b) that define

?(Fujishige, 2005) defines the subdifferential of a submodular
set function. The subdifferential definition for a supermodular set
function takes the same form, although instances of supermodu-
lar subdifferentials (e.g., Eq. (3)-(4)) take a form different than
instances of submodular subdifferentials.

the following two modular lower bounds:

myx1(Y) £ g(X) =Y gGIX\)+>_ g(i0), 3
jEX\Y JEVA\X

mgx2(Y) £ 9(X) =Y gGIV\)+D_ g(iIX). @
JEX\Y JEY\X

Then 7’719’)()1(Y')7 mg’X72(Y) < g(Y),VY - V and
mg x.1(X) = my x,2(X) = g(X). Removing constants
yields normalized non-negative (since g is monotone) mod-
ular functions for g; in Alg. 2.

Having formally defined the modular lower bound of g,
we are ready to discuss how to apply this machinery to
BP maximization. SEMIGRAD consists of two stages. In
the first stage, it is initialized by an arbitrary set (e.g., (),
V, or the solution of GREEDMAX). In the second stage,
SEMIGRAD replaces g by its modular lower bound, and
solves the resulting problem using GREEDYMAX. The
algorithm repeatedly updates the set and calculates an
updated modular lower bound until convergence.

Since SEMIGRAD does no worse than the arbitrary initial
set, we may start with the solution of GREEDMAX and
show that SEMIGRAD is always no worse than GREEDMAX.
Interestingly, we obtain the same bounds for SEMIGRAD
even if we start with the empty set (Theorems 3.8 and 3.9)
despite that they may behave quite differently empirically
and yield different solutions (Section 5).

3. Analysis of Approximation Algorithms for
BP Maximization

We next analyze the performance of two algorithms GREED-
MAX (Alg. 1) and SemiGrad(Alg. 2) under a cardinality
constraint and under p matroid constraints. First, we claim
that BP maximization is hard and can not be approximately
solved to any factor in polynomial time in general.

Lemma 3.1. (usul, 2016) There exists an instance of a BP
maximization problem that can not be approximately solved
to any positive factor in polynomial time.

Proof. For completeness, Appendix A offers a detailed
proof based on (usul, 2016). O

It is also important to realize that not all monotone functions
are BP-decomposable, as the following demonstrates.

Lemma 3.2. There exists a monotonic non-decreasing set
Sfunction h that is not BP decomposable.

Proof. See Appendix B. [
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3.1. Supermodular Curvature

Although BP maximization is therefore not possible in
general, we show next that we can get worst-case lower
bounds using curvature whenever the functions in question
indeed have limited curvature.

The (total) curvature of a submodular function f is defined
as ky = 1 — minyey W (Conforti & Cornuejols,
1984). Note that 0 < ky < 1since 0 < f(v|V \ {v}) <
f(v) and if ky = 0 then f is modular. We observed that
for any monotonically non-decreasing supermodular func-
tion g(X), the dual submodular function (Fujishige, 2005)
g(V) — g(V'\ X) is always monotonically non-decreasing
and submodular. Hence, the definition of submodular cur-
vature can be naturally extended to supermodular functions
g:

Definition 3.3. The supermodular curvature of a non-
negative monotone nondecreasing supermodular function is

defined as k9 = Ky(v)y_g(v\x) = 1 — min,ey %,

For clarity of notation, we use a superscript for supermod-
ular curvature and a subscript for submodular curvature,
which also indicates the duality between the two. In fact,
for supermodular curvature, we can recover the submodular
curvature.

Corollary 3.3.1. rf = rf(V)=fF(VAX)

The dual form also implies similar properties, e.g., we have
that 0 < k9 < 1 and if k9 = 0 then g is modular. In both
cases, a form of curvature indicates the degree of submodu-
larity or supermodularity. If x; = 1 (or k9 = 1), we say that
f (or g) is fully curved. Intuitively, a submodular function is
very (or fully) curved if there is a context B and element v
at which the gain is close to (or equal to) zero (f(v|B) = 0),
whereas a supermodular function is very (or fully) curved if
there is an element v whose valuation is close to (or equal
to) zero (g(v) = 0). We can calculate both submodular and
supermodular curvature easily in linear time. Hence, given
a BP decomposition of h = f + g, we can easily calculate
both curvatures, and the corresponding bounds, with only
oracle access to f and g.

Proposition 3.4. Calculating ky or k9 requires at most
2|V| + 1 oracle queries of f or g.

The steepness (II’ev, 2001; Sviridenko et al., 2015) of a
monotone nonincreasing supermodular function ¢’ is de-
fined as s = 1 — min,cy %. Here, the numerator
and denominator are both negative and g need not be nor-
malized. Steepness has a similar mathematical form to the
submodular curvature of a nondecreasing submodular func-
tion f,ie., Ky = 1 — minyey %, but is distinct
from the supermodular curvature. Steepness may be used
to offer a bound for the minimization of such nonincreasing

supermodular functions (Sviridenko et al., 2015), whereas
we in the present work are interested in maximizing nonde-
creasing BP (and, hence, which also includes supermodular)
functions.

3.2. Theoretical Guarantees for GREEDMAX
3.2.1. CARDINALITY CONSTRAINTS

In this section, we provide a lower bound for GREEDY max-
imization of a BP function under a cardinality constraint, in-
spired by the proof in (Conforti & Cornuejols, 1984) where
they focus only on submodular functions.

Lemma 3.5. GREEDMAX is guaranteed to obtain a solu-
tion X such that

5 1
h(X)>Hf[1—<1—k

where X* € argmax| x| <, M(X), h(X) = f(X) + g(X),
K¢ is the curvature of submodular f and k9 is the curvature
of supermodular g.

Proof. See Appendix D. O

Theorem 3.6. Theoretical guarantee in the cardinality
constrained case. GREEDMAX is guaranteed to obtain a
solution X such that

1
Ky
where X* € argmax, x| <, M(X), h(X) = f(X) + g(X),
K¢ is the curvature of submodular f and k9 is the curvature
of supermodular g.

ME) 2 — (1= 0 hxs) )

Proof. This follows Lemma 3.5 and uses the inequality
(17%)]“Se*“forallaanndkzl. O

Theorem 3.6 gives a lower bound of GREEDMAX in terms
of the submodular curvature x and the supermodular curva-
ture k9. We notice that this bound immediately generalizes
known results and provides a new one.

1. kf = 0, k9 = 0, h(X) = h(X™*). In this case, the
BP problem reduces to modular maximization under a
cardinality constraint, which is solved exactly by the
greedy algorithm.

2. Ky > 0,k = 0, h(X) > L= ™]h(X*). In
this case, BP problem reduces to submodular maximiza-
tion under a cardinality constraint, and with the same
é [1 — e~ "] guarantee for the greedy algorithm (Con-
forti & Cornuejols, 1984).

3. If we take ky — 0, we get 1 — w9, which is a new
curvature-based bound for monotone supermodular max-
imization subject to a cardinality constraint.
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4. k9 =1, h(X) > 0 which means, in the general fully
curved case for g, this offers no theoretical guarantee for
constrained BP or supermodular maximization, consis-
tent with (usul, 2016) and Lemma 3.1.

Another much weaker bound using the two curvatures can
also be achieved using greedy on a surrogate objective and
that takes the form h(X) > % [1 — e~ %] h(X*). This
bound is consistently less than or equal to our presented
bound (see Appendix E).

3.2.2. MULTIPLE MATROID CONSTRAINTS

Matroids are useful combinatorial objects for expressing
constraints in discrete problems, and which are made more
useful when taking the intersection of the independent
sets of p > 1 matroids defined on the same ground set
(Nembhauser et al., 1978b). In this section, we show that the
greedy algorithm on a BP function subject to p matroid inde-
pendent constraints has a guarantee if g is not fully curved.

Theorem 3.7. Theoretical guarantee in the p matroids
case. GREEDMAX is guaranteed to obtain a solution X
such that

1—~rY

e ey s

> h(X™) (7
where X* € argmaxycaqn..nm, H(X) h(X) =
f(X) + g(X), ky is the curvature of submodular f and

k9 is the curvature of supermodular g.

Proof. See Appendix F. O

Theorem 3.7 gives a theoretical lower bound of GREEDMAX

in terms of submodular curvature sy and supermodular

curvature k9 for the p matroid constraints case. Like in the

cardinality case, this bound also generalizes known results

and yields a new one.

1. kp =0,k =0, h(X) > %h(X*). In this case, the
BP problem reduces to modular maximization under p
matroid constraints (Conforti & Cornuejols, 1984).

2. Ky >0,k9 =0,h(X)> erle h(X™*) . In this case, the

BP problem reduces to submodular maximization under
p matroid constraints (Conforti & Cornuejols, 1984).

3. If we take ky — 0, we get (1 — 9)/p, which is a
new curvature-based bound for monotone supermodular
maximization subject to a p matroid constraints.

A

4. k9 =1, h(X) > 0 which means that, in general, there
is no theoretical guarantee for constrained BP or super-
modular maximization.

3.3. Theoretical guarantee of SEMIGRAD

In this section, we show a perhaps interesting result that
SEMIGRAD achieves the same bounds as GREEDMAX even

Guarantee I
. s

_

Guarantee

05
Curvig Curv_f

11

(a) Cardinality (b) Multiple matroids

Figure 1. Guarantees of GREEDMAX for two constraint types. The
x and y axes are k¢ and 7, respectively, and the z axis is the
guarantee. In (b), from top to bottom, the surfaces represent p =
2,5,10.

if we initialize SEMIGRAD with () and even though the
two algorithms can produce quite different solutions (as
demonstrated in Section 5).

Theorem 3.8. SEMIGRAD initialized with the empty set
is guaranteed to obtain a solution X for the cardinality
constrained case such that

W) > L[ e ] B(x7) @®)

ky

where X* € argmax| y|<; h(X), h(X) = f(X) + g(X),
& Ky (resp. K9) is the curvature of f (resp. g).

Proof. See Appendix G. O

Theorem 3.9. SEMIGRAD initialized with the empty set
is guaranteed to obtain a solution X, feasible for the p
matroid constraints, such that

1— k9

e Fpyery s

h(X™) ©)

where X* € argmax x e Aq,n...AM, MX),h=f+g &
k¢ (resp. K9) is the curvature of f (resp. g).

Proof. See Appendix H. O

All the above guarantees are plotted in Figure 1 (in the
matroid case for p = 2, 5, or 10 matroids).

4. Hardness

We next show that the curvature 9 limits the polynomial
time approximability of BP maximization.

Theorem 4.1. Hardness for cardinality constrained
case. For all 0 < 3 < 1, there exists an instance of a BP
function h = f + g with supermodular curvature K9 = 3
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1

(a) (b)

Figure 2. Empirical test of our guarantee. The upper and middle
surface indicate the performance of SEMIGRAD and GREEDMAX
respectively, and the lower surface is the theoretical worst case
guarantee. (a) and (b) are two sets of experiments.

such that no poly-time algorithm solving Problem I with a
cardinality constraint can achieve an approximation factor
better than 1 — k9 + €, for any € > 0.

Proof. See Appendix 1. O

For the p matroid constraints case, Hazan et al. (2006) stud-
ied the complexity of approximating p-set packing which
is defined as follows: given a family of sets over a certain
domain, find the maximum number of disjoint sets, which is
actually a special case of finding the maximum intersection
of p matroids. They claim that this problem cannot be effi-
ciently approximated to a factor better than O(1nr/p) unless
P = NP. We generalize their result to BP maximization.

Theorem 4.2. Hardness for p matroids constraint case.
Forall 0 < B < 1, there exists an instance of a BP function
h = f + g with supermodular curvature k9 = (3 such that
no poly-time algorithm can achieve an approximation factor
better than (1 — mg)O(lnTp) unless P=NP.

Proof. See Appendix J. O

Corollary 4.2.1. No polynomial algorithm can beat

GREEDMAX or SEMIGRAD by a factor of 1ii_1 for cardi-

nality, or O(In(p)) for p matroid constraints, unless P=NP.

5. Computational Experiments

We empirically test our guarantees for BP maximization
subject to a cardinality constraint on contrived functions
using GREEDMAX and SemiGrad. For the first experiment,
we let |[V| = 20 set the cardinality constraint to k& = 10,
and partition the ground set into |Vi| = |Va| = k,

ViuVy, = V where Vi = {vy,va,...,u}. Let
w; = [(1— o) —(1- %)Hl} fori = 1,2,... k.
Then we define the submodular and supermodular functions

as follows, f(X) = W} Z{mieX} w; + ‘Xrllvﬂ’

gX) = |X| = Bmin(1 + |X N W|,|X|,k) +
emax(| X1, [X| + 125 (|X NVa| — k + 1)) and h(X) =
Af(X)+(1=X)g(X) for0 < o, 8, A < lande = 1x107°.
Immediately, we notice that Ky = o and k9 = (. In
particular, we choose o, 5,A = 0,0.01,0.02,...,1 and
for all cases, we normalize h(X) using either exhaustive
search so that OPT = h(X*) = 1. Since we are doing a
proof-of-concept experiment to verify the guarantee, we are
interested in the worst case performance at curvatures & ¢
and 9. In Figure 2(a), we see that both methods are always
above the theoretical worst case guarantee, as expected.
Interestingly, SEMIGRAD is doing significantly better than
GREEDMAX demonstrating the different behavior of the
algorithms, despite their identical guarantee. Moreover,
the gap between GREEDMAX and the bound layer is small
(the maximum difference is 0.1852), which suggests the
guarantee for greedy may be almost tight in this case.

The above example is designed to show the tightness
of GREEDMAX and the better potential performance of
SEMIGRAD. For a next experiment, we again let |V| = 20
and k = 10, partition the ground set into |V;| = |V2| =k,
VTuVe, = V. Let f(X) = [ XNV|* and g(X) =
max (0, %) 0 < «, 8 < 1, and normalize h (by ex-
haustive search) to ensure OPT = h(X*) = 1. Immediately,
we notice that the curvature of fis Ky =1 —k*+ (k— 1)
and the curvature of g is k9 = . The objective BP function
is h(X) = f(X) + g(X). We see that SemiGrad is again
doing better than GREEDMAX in most but not all cases (Fig-
ure 2(b)) and both are above their bounds, as they should
be.

6. Discussion/Conclusions

We have provided a practical constant factor multiplicative
guarantee to the greedy and a semigradient algorithm for
the family of non-submodular functions admitting a BP
decomposition. Future work will advance settings where
computable guarantees are possible for non-submodular
functions outside the BP family.
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