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Abstract

We introduce a principled approach for simultane-
ous mapping and clustering (SMAC) for establish-
ing consistent maps across heterogeneous object
collections (e.g., 2D images or 3D shapes). Our
approach takes as input a heterogeneous object
collection and a set of maps computed between
some pairs of objects, and outputs a homogeneous
object clustering together with a new set of maps
possessing optimal intra- and inter-cluster con-
sistency. Our approach is based on the spectral
decomposition of a data matrix storing all pair-
wise maps in its blocks. We additionally provide
tight theoretical guarantees for the accuracy of
SMAC under established noise models. We also
demonstrate the usefulness of our approach on
synthetic and real datasets.

1. Introduction

Establishing maps (e.g. pointwise correspondences) across
object collections is a fundamental problem spanning many
scientific domains. High-quality maps facilitating informa-
tion propagation and transformation are key to applications
ranging from 3D reconstruction with partial scans (Huber
& Hebert, 2001), data-driven geometry completion and re-
construction (Pauly et al., 2005), texture transfer (Schreiner
et al., 2004; Kraevoy & Sheffer, 2004), to comparative bi-
ology (Boyer et al., 2011; Gao et al., 2017), joint data-
analysis (Huang et al., 2011; Kim et al., 2012; Wang et al.,
2013; 2014; Huang et al., 2014), and data exploration and
organization (Kim et al., 2012; Huang et al., 2014).

High quality object maps are generally difficult to compute.
Prior work on map computation focused on optimizing maps
between pairs of objects; see (van Kaick et al., 2010) for
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a standard survey and (Kim et al., 2011; Mandad et al.,
2017) for some recent advances. Despite the significant
progress, state-of-the-art techniques tends to hit a barrier on
the quality of maps that are computed in a pairwise manner.
Building upon the availability of big-data, a recent line of
research (Kim et al., 2012; Nguyen et al., 2011; Ovsjanikov
et al., 2012; Huang et al., 2012; Huang & Guibas, 2013;
Huang et al., 2014; Chen et al., 2014; Zhou et al., 2015a;b;
Shen et al., 2016; Leonardos et al., 2017; Huang et al., 2017)
considered computing many pairwise maps jointly among
a collection of objects. The promise of these approaches
hinges upon the observation that one way to obtain a high
quality pairwise map between dissimilar objects is to choose
a path connecting these objects but consisting of consecutive
similar shapes: maps between similar objects are typically
of higher quality, and so is the resulted composed map.
From a regularization perspective, joint map computation
leverages the generic consistency of a network of maps
among multiple objects, in which composition of maps
along cycles are expected to be close to the identity map.

However, the performance of these data-driven approaches
relies predominantly on the homogeneity of the object col-
lection, i.e. the input objects fall into the same category or
sub-category (e.g. Chairs, Cars, and Human models). In
the presence of heterogeneous data, where the input objects
fall into multiple underlying categories, applying existing
data-driven approaches without the category label informa-
tion tend to produce unsatisfactory results. In this setting,
even though existing methods are able to suppress the noise
in intra-cluster maps within a single cluster, jointly com-
puted maps for the entire object collection leads are often
significantly worse. One explanation is that high fraction
of incorrect inter-cluster maps tends to “‘contaminate” the
regularization effect of intra-cluster maps. A natural resolu-
tion is to employ a two-stage cascadic strategy that identi-
fies the underlying clusters before computing the intra- and
inter-cluster maps. Unfortunately, such clustering requires
accurate quantification of the object similarities, which is
a difficult problem in its own right. Meanwhile, the error
produced in the clustering stage is unlikely remedied by the
consistency-based regularization.

In this paper, we propose to solve the mapping and clus-
tering problems simultaneously. Instead of explicitly re-
lying on certain pairwise similarity and/or map distortion
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Figure 1. The pairwise map distortion scores (Left) and the pair-
wise cycle-consistency scores (Right) derived from 3-cycles. The
scores are normalized by the maximum score in each matrix.

scores, we identify the underlying clusters based on the
consistency of intra- and inter-cluster maps, inspired by
the observation that maps tend to be more consistent along
cycles within a cluster than across clusters. This discrep-
ancy has been observed in many different contexts, and
appears to be a consequence of the energy landscape of
almost all optimization-based pairwise matching algorithms.
The matching energy functional between objects in the same
underlying cluster tends to have simple energy landscapes
with easily identifiable global optimums, resulting in fairly
cycle-consistent intra-cluster maps; in contrast, the highly
non-convex energy landscape for dissimilar objects from
different clusters leads to more “random” maps due to ran-
dom initialization and/or multiple strong local minimums,
for which cycle-consistency is much less often observed.
This map consistency argument is the foundation of our
simultaneous mapping and clustering (SMAC) algorithm.

1.1. Motivating Example

We validate the map consistency argument through a mo-
tivating example (see Figure 1) on a real dataset from
SHRECO07 Watertight benchmark (Giorgi et al., 2007). This
dataset consists of 38 shapes: the first 18 are Human models
and the remaining 20 are Fourleg models (e.g., Horses and
Dogs). Each shape is represented as a discrete metric space
with 1024 sample points generated from farthest-point sam-
pling (Eldar et al., 1997). We compute pairwise blended
intrinsic maps (Kim et al., 2011) for all objects in this col-
lection and use these maps to compute two similarity scores
for each object pair: a map distortion score that measures
the squared sum of geodesic distortions across all point-
pairs (c.f. (Bronstein et al., 2006)), and a cycle-consistency
score that is the median value (among other options) of the
distortion scores of all 3-cycles to which the pair belongs,
where the distortion of a 3-cycle is defined as the squared
sum of the geodesic distances between each point and its
image propagated along the 3-cycle.

Figure 1 illustrates the distributions of the map distortion
scores (Left) and the cycle-consistency scores (Right) on the
38 models. The cycle-consistency scores clearly reveal the

underlying cluster structure and in fact better separates the
two clusters of models (Human vs. Fourleg) than the map-
distortion scores (intra-cluster blocks in the right figure are
darker in blue). The superior cluster separation is verified
by comparing the results of spectral clustering (Ng et al.,
2002; Lei & Rinaldo, 2015) using the two similarity scores:
spectral clustering based on the cycle-consistency scores
recovers the two underlying clusters perfectly, whereas the
same procedure using the map distortion scores incorrectly
puts two Fourleg models in the cluster of Human models.
This motivating example illustrates the effectiveness and
superiority of the map consistency score as a quantification
of object similarity.

1.2. Approach Overview

Motivated by the example above, we propose an algorithm
for simultaneous mapping and clustering (SMAC). Our
SMAC algorithm takes as input (i) an object collection that
falls into multiple clusters, and (ii) some noisy maps pre-
computed between object pairs, and outputs the underlying
clusters together with improved maps between all pairs of
objects. Our SMAC algorithm builds upon the equivalence
between map consistency and the low-rank property of a
data matrix with consistent maps in its blocks (c.f. (Huang
& Guibas, 2013)). We show that this low-rank property still
holds in the setting of multiple disjoint collections of con-
sistent intra-cluster maps, though the rank is expected to be
higher due to multiple clusters. Based on this observation,
the first step of our approach simultaneously recovers the un-
derlying clusters and intra-cluster maps by spectral decom-
position. We show that properly “rounding off” the leading
eigenvectors recovers the ground-truth clusters and intra-
cluster maps in a single pass. We then construct inter-cluster
maps from the recovered intra-cluster maps. Our theoreti-
cal analysis establishes sharp exact recovery conditions for
both steps under a fairly general noise model, using some
novel tight L°°-stability bounds for eigen-decompositions.

1.3. Related Works

Joint object matching, i.e., simultaneously estimating maps
among a collection of objects, is an emerging field across
many scientific problems. Earlier works use combinato-
rial optimizations (Nguyen et al., 2011; Kim et al., 2012;
Huang et al., 2012). More recent works (Huang & Guibas,
2013; Huang et al., 2014; Chen et al., 2014; Wang & Singer,
2013) rely on convex or non-convex optimization tech-
niques.However, all these methods assume that the under-
lying object collection is homogeneous (all objects belong
to a single category). For a heterogeneous object collec-
tion where the objects fall into multiple distinctive clusters,
existing methods usually rarely succeed in producing both
high-quality intra- and inter-cluster maps.
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Clustering and in particular spectral clustering is another
well-studied topic. We refer to (Lei & Rinaldo, 2015; Rohe
et al., 2011) for some recent advances and to (Filippone
et al., 2008; Luxburg, 2007; Fortunato, 2010) for surveys.
Our approach falls into the general category of graph-based
clustering, but the pairwise information we utilize is of
“functional” rather than “scalar” nature. Instead of the more
common approach that derives affinity scores from the pair-
wise maps for clustering, our SMAC algorithm discovers the
cluster structure based purely on the consistency of pairwise
maps and demonstrates improved empirical performance.
This strategy is reminiscent of heterogeneous multirefer-
ence alignment (Boumal et al., 2017) and simultaneous
alignment and classification (Lederman & Singer, 2016) for
synchronization problems in Cryo-Electron Microscopy; in
this context, our residue-based clustering strategy is closest
in nature to learning group actions (Gao et al., 2016).

Our approach relies on tight L°°-type bounds on leading
eigenvectors of perturbed matrices. Though the stability of
eigenvalues and eigenspaces are well-studied, element-wise
eigenvector stability appears to be a much harder problem;
see recent survey (O’Rourke et al., 2016). We introduce
new stability bounds to tackle this technical difficulty.

1.4. Mathematical Notation

We use lower bold letters a, b, ¢, u, v, w, - - - to denote vec-
tors, and upper letters A, B, C, - - - for matrices. For a block
matrix X € R™71xn2m2 tywe use X;; € R™X™2 to de-
note its 7j-th block; the ij-th element of a matrix A is de-
noted as a;;. With @ we denote the Kronecker product. For
a symmetric matrix A € R™*", we always sort the eigen-
values in non-increasing order, i.e., A1 (4) > --- > A\, (A).
Matrix norms || - || =, || - ||1, || - |2, and || - ||oc Will be used
for a matrix A € R™*"2, of which || - |2 = omax(A) is the
maximum singular value of A, and the spectral norm || - ||2
is sometimes simplified as || - ||. We denote P,,, for the set
of permutation matrices of dimension m x m.

2. Algorithm

For simplicity, we focus on describing and analyzing our
algorithm under the setting where pair-wise maps are given
by permutations. In Section 4, we show how to modify the
algorithm for partially similar objects.

We first describe the problem setup. Consider n objects
S = {S1,--,S,} each represented by m points. With
G = (S8,€) we denote an observation graph among S.

An initial map X7 € Py, is pre-computed on each edge
(i,7) € & using an off-the-shelf pairwise object matching
algorithm from S; to S;. We also assume the objects in S
are partitioned into k > 2 clusters, but k is unknown. Our

goal is to identify the underlying clusters, and in the mean-

Algorithm 1 PermSMAC: Simultaneously mapping and
clustering

Input: Observation graph G = (S, £) and initial pairwise
maps X1, (i, ) € £
Output: Underlying clusters S = ¢; U - - - U ¢, and opti-
mized pairwise maps X;;,1 <17,5 <n
1: {Step 1} Simultaneously compute the intra-cluster
maps and extract the underlying clusters:
2:  {Step 1.1} Form data matrix based on (1).
3:  {Step 1.2} Compute the critical value r =
Ai— it
4:  {Step 1.3} Let U € R™™*" store the leading r eigen-
vectors of X. Compute pair-wise maps X7; by solving
(2)
5. {Step 1.4} Use f;;(X};) as the affinity score and
apply single-linkage clustering to obtain the underlying
clusters

6: {Step 2} compute the inter-cluster maps by solving (6)

while improve all pairwise maps between objects in S. As
a basis for identifying the underlying clusters, we assume
that the intra-cluster maps are more accurate (in terms of
cycle-consistency) than inter-cluster maps.

Our algorithm proceeds in two major steps. The first step
simultaneously extracts the underlying clusters and com-
putes intra-cluster maps. The second step then computes
inter-cluster maps. Now we introduce these two steps in
details. Algorithm 1 provides the pseudo code.

2.1. Step I: Extract underlying clusters and compute
intra-cluster maps.

Motivated from prior works for map synchroniza-
tion (Pachauri et al., 2013; Shen et al., 2016), we use a
block data matrix X € R™™*™™ to encode the input maps:

.o ] XG-qnh) ) eé
E 0 otherwise

(D

Our approach is motivated by the empirical observation
that the leading eigen-vectors of X reveal the underlying
clusters and simultaneously denoise intra-cluster maps if
intra-cluster maps are more accurate than inter-cluster maps.
We provide the algorithmic details below; an analysis is
provided in Section 3.

Given the data matrix, we first estimates the number of
stable eigen-vectors as
Ai — A1

T = argmax .
m<i<nm |Ail +[Xiy1]

Here we search within the range of [m, nm], as we expect
multiple underlying clusters. Let U € R™™*" store the
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top r eigen-vectors of X, and divide U into n matrices
Ui,...,U, of shape m x r such that U = (U{,--- ,UNT.
We then compute the estimated map X; along each edge
(z,7) € € by solving a linear assignment problem, i.e.,

Xi5 = ng;,mme), fii(X) =X -U; = Uil|% ()

forall 1 <4,5 < n. Note that (2) admits an exact solution
via linear assignment. In fact,

X} = argmin | XU; — U;||% 3)
XEPm

= al”gel;lin (IUil% + 1U;11F - 20XU;, U)) 4

= argmax (X, U;U7). (5)
XEPm

Intuitively, U; U provides an approximation of the underly-
ing map X;;, and the linear assignment procedure projects
this approximation onto the space of permutations.

For clustering, we treat the residual score f;; (ij)y 1<
i,7 < n as the distance measure between S; and S;, and
apply single-linkage clustering (Gower & Ross, 1969) to
obtain the underlying clusters. We set & = [—<] as the
number of desired clusters.

Empirically, we found that when the input inter-cluster maps
are inaccurate, the quality of estimated inter-cluster maps
appear to be much more noisy than estimated intra-cluster
maps. This motivates us to re-estimate inter-cluster maps as
a second step, described in Section 2.2 below.

2.2. Step II: Estimate inter-cluster maps.

We estimate the inter-cluster maps between each pair of
clusters independently. Specifically, consider two clusters
csand ¢; . Let S;, € ¢s and S;, € ¢; be a pair of objects
selected from each cluster, respectively. We optimize the
inter-cluster map X", represented as a pairwise object

map X;_;,, by solving the following linear assignment:

XM = argmin g

X — X0 X X
XEPm i€cs,jEct,(1,))EE

— argmax Z (X, X0, X" X1,). (6)

XEPm iec, j€cr,(irf)€E
Note that it is possible to jointly optimize X' among all
pairs of clusters. However, since the number of clusters is
usually significantly smaller than the size of each cluster,
we found the gain of doing so is insignificant.

3. Analysis

We first describe our noise model in Section 3.1. We then
analyze our method under this model and present the exact

recovery conditions for both underlying clusters and the
pairwise maps in Section 3.2. Our analysis is based on a
set of new stability bounds of eigen-decompositions. The
proofs of all Lemma’s and Theorem’s with technical details
can be referred to in the supplemental material.

3.1. Model for Analysis

We consider two models, one for the pairwise map and
the other one for the observation graph and the underlying
cluster structure.

Map model. We generalize the map model described
in (Shen et al., 2016) to multiple clusters: Suppose there
are k underlying clusters. With cs,1 < s < k we denote
the vertex indices of the s-th cluster. In other words, we
have {1,--- ,n} = ¢;UcaU---Ucg. Given an observation
graph, the input pairwise maps are independent, and they
follow

xin _ Iy with probability 7;;
4 | Up, withprobability 1 —n;;

where Up, denotes a random permutation matrix satisfying

E[Up,] = %11? (7)

7n;; depends on the edge type: n;; = p if (4,7) is an
intra-cluster edge, i.e., (i,7) € €N (Ur<s<iCs X ¢s5), and
n;; = ¢ if (4,7) is an inter-cluster edge, ie., (i,j) €
E N (Ur<st<iCs X ¢). We assume p > q.

Remark 1. Note that one can also generalize the model by
assuming there exist underlying permutations P;, 1 < i < n,
so that the ground-truth map X;; = PjPZ-T. Nevertheless,
it turns out that the two models are identical (Shen et al.,
2016) . Hence we adopt the simpler form for convenience.

Model for the observation graph and clusters. To obtain
concise and interpretable exact recovery conditions, we
are particularly interested in analyzing our algorithm when
the observation graph and underlying clusters are generated
from the following established model: assume n = ngk, and
the size of each underlying cluster |cs| = ng,1 < s < k;
the observation graph is generated from the Erdds-Rényi
G(n,t) with edge selection probability ¢t. However, the
stability bounds we introduce in the supplemental material
can be used for analyzing more general noisy models, e.g.,
sizes of the underlying clusters are different.

3.2. Map and Cluster Recovery

We begin by analyzing the leading eigenvalues and eigen-
vectors of E[X] to gain insights on the necessary conditions
for map and cluster recovery. To make our discussion more
general, we first assume the underlying cluster and the obser-
vation graph are fixed. Consider then the following (p, q)-
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reweighted normalized adjacency matrix A(p,q) € R**":

o P (Z,]) eén Ulgsgm,(cs X CS))
(AP @) = ¢ (i) € ENUicszzm(es x ).
0 otherwise

®)

It is clear that
— 1
E[X] = A(p.q) ® (I, — —117)

and thus the non-zero eigenvalues of F[X] are non-zero
eigenvalues of A(p, ¢) with multiplicity m — 1. Furthermore,

let (ﬁl,Hm) be an orthonormal basis for R™. Then

the leading k(m — 1) eigenvectors of E[X] are given by
S ® H,,. This ljads two conditions on the eigenvalues and
eigenvectors of A(p, q) for map and cluster recovery:

¢ Eigenvalue separation. Since our method leverages

the largest eigengap, we assume that Ax(A(p,q)) —

Ae+1(A(p, ¢)) has the largest eigengap. Define
max

(max (AP, ) — i (Alp,9)

T T NER ) - (A, )

Then a necessary condition for map recovery is v < 1.

¢ Eigenvector separation. We further assume that the
underlying clusters can be recovered by reading off
the rows of S;. Formally, consider rows of Sy as
coordinates of the corresponding objects, and define

. — Jp— . T
dintra félgagk z{rjlgi ” (el e]) Sk ”7 9)

dinter = _ min __min ||(€1 - ej)TSkH' (10)
1<s<t<ki€cs,jEce
dingra and diqeer €ssentially measure the maximum dis-
tance within each cluster and the minimum distance be-
tween different clusters, respectively. Thus, a necessary
condition for cluster recovery is that diy < £t - diner
for some small constant .

Under these two conditions, it is easy to see that when
X ~ E[X], we have U; ~ (el'Sy) ® H,, and U;U}" ~
(ejTS;C SFe;) (I, — 2117, It follows that both the underly-
ing clusters and intra-cluster maps can be exactly recovered.

These two separation conditions are quite general. In fact,
they hold for the noisy model described in Section 3.1. To
gain some further insight, one can show that (c.f. (Le et al.,
2017)) with high probability

B ¢+ 51+ 0(7) i=1
M(A(p,q) =4 T +0(5) 2<i<k
O(—+) k+1<i<n

indicating that v = o(1). Moreover, under this model
A(p.g) = (p— @)1 ® (117) + ¢(117).

If p and g are well-separated, the top k eigenvectors of
A(p, q) approximate I}, ® 1, meaning djpy, = 0 and diger ~
1. Now we formally state the exact recovery conditions:

Theorem 3.1. (Intra-Cluster and Map Recovery) Assume
t = Q(%) Consider the noise model described in
Section 3.1. There exists an absolute constant Ciyy, Such
that PermSMAC recovers the underlying intra-cluster maps
and the underlying clusters with high probability if

log(n)
nt

P —q > Cinak (11)

Remark 2. Note that the gap between p and ¢ is used to
ensure the recovery of the underlying clusters. Moreover,
the recovery rate matches the information theoretic lower
bound established in (Chen et al., 2016) up to O(+/log(n),
indicating the tightness of our condition for PermSMAC.

The following theorem provides an exact recovery condition
for the inter-cluster maps. Compared with the previous
lower bound, the lower bound on ¢ for inter-cluster map
recovery is significantly cruder. This shows the advantage
of recovering inter-cluster maps as a separate step.

Theorem 3.2. There exists an absolute constant Cipeer > 0,
so that when

log(n)

n2t ’
PermSMAC recovers the underlying inter-cluster maps with
high probability.

q Z Cinterk

4. Partial Matching

In this section we extend the algorithm to handle partially
(as opposed to fully) similar objects. Each input object S;
(1 €7 < n)in this setting has m; € N, points, where the
m;’s vary across the collection. Consequently, the pairwise
maps ij” € {0,1}™i*™i are no longer permutation ma-
trices since some rows and columns may only contain zero
elements. We propose the following modified algorithm for
SMAC in this partial matching setting.

Step I: Extract underlying clusters and compute intra-
cluster maps. Forming the data matrix and leading eigen-
vector computation stay the same as in the full matching
setting, except we replace X;” — L117 by X7 in (1).
The first difference occurring in the partial matching set-
ting is that we cannot apply (2) to obtain pair-wise maps
and affinity scores for clustering. Our strategy is to apply
single linkage clustering on the rows of U. Specifically,
the distance measure between two points p, p’ is given by
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lw, — w, ||?, where w,, is the corresponding row of p in U.
The number of output clusters is set as r. Each output clus-
ter of this single-linkage procedure collects a set of matched
points among the input objects. We merge two clusters if the
objects they belong to overlap. Suppose we finally obtain
k clusters cq, - - - , ¢i. For each cluster ¢;, we introduce a
binary matrix Y; € {0, 1}"*", whose columns encode the
enclosed point clusters. Then it is easy to see that the blocks
of Y;Y;T' describe intra-cluster maps. Note that 7; = m in
the full setting, but in the partial setting r; is usually larger
than max; <;<, m;, due to partial similarity.

Step II: Compute inter-cluster maps. In the partial set-
ting, we encode the inter-cluster map from cluster cs to
cluster ¢; as a matrix X; € {0,1}"t*"=. Consider a object
pair (4,7) € £, where i € ¢, and j € ¢;. With E;  and E; ;
we denote the index matrices that extract the correspond-
ing blocks in Y and Y;. It is easy to see that the entries
YIE; 1 X fj”EZT <Y, provide cues for the inter-cluster map
Xs¢. Similar to the full map setting, we compute

Cst = Z

i€cs,j€cy,(i,5)€E

YV E;j XPELY,.

Since the inter-cluster maps may not be permutation ma-
trices either, we apply a simple thresholding to obtain the
inter-cluster maps:

Xst = Cst > 651&7

where [, is set as 0.9 times the maximum element of Cly;
in our experiments.

5. Experimental Results

In this section, we evaluate our approach on both synthetic
(Section 5.1) and real datasets (Section 5.2 and Section 5.3).
For baseline comparison, we consider state-of-the-art ap-
proaches for clustering and joint mapping in each domain.

5.1. Experimental Results on Synthetic Instances

We apply the model described in Section 3 to generate the
synthetic data sets for our experiments. Below we summa-
rize how the procedure depends on the model parameters:

e The observation graph G. We employ a standard two-
community stochastic block model (Abbe et al., 2016)
which enables us to fully control the vertex degree
and the spectral gap. We use this model to generate
three observation graphs Gi, G2, G3. All of them have
n = 300 vertices, but the vertex degrees and spectral
gaps vary. Specifically, G; is the clique graph. Go
is a sparse graph, whose average vertex degree is 50
and the spectral gap is 0.1. The average vertex degree
and spectral gap of Gs are 50 and 0.5, respectively. In

our experiment, we treat G; as the default observation
graph. We also study the influence of the observation
graphs on the performance of our algorithm.

e Number of clusters k. Without loss of generality, we
allocate each object into a underlying cluster with prob-
ability % For each observation graph, we generate and
fix one underlying cluster throughout our experiments.

e Other parameters m, vy, p,q. We fix the number of
points on each object as m = 30. In the partial match-
ing setting, we follow the protocol (Chen et al., 2014)
to generate the input objects so that the expected size
of each object is my. We sample the ratio of correct
inter-cluster maps g = exp(—15), 15 < i < 50. Since
p > g, we sample the ratio of correct intra-cluster maps

sothatp — ¢ = 45,1 < < 30.

We now study the empirical phase transition curves when
varying p and ¢ under different &, v and observation graphs.

Varying k. The first two rows of Figure 2 show the phase
transition curves of map and cluster recovery for k = 2,4, 6.
Across all configurations, our approach tolerates a signif-
icant portion of noise in the input maps. The fraction of
noise that our approach can handle reduces as k increases,
which is consistent with the exact recovery conditions in
Section 3. In addition, phase transitions with respect to map-
ping recovery and cluster recovery roughly align. The subtle
differences are two-fold: when p and q are close, cluster
recovery breaks as there is no cue for clustering; likewise,
map recovery breaks when ¢ approaches 0.

Versus mapping only. Figure 2 compares our approach to
state-of-the-art map recovery technique (Huang & Guibas,
2013). SMAC clearly exhibits a clear advantage in the
regime, where ¢ is small and p is significantly larger than q.
This is expected through our exact recovery condition.

Varying observation graph. Figure 3 shows phase transi-
tion curves of map and cluster recovery when varying the
observation graphs (k = 2, = 1). Our approach tolerates
a larger fraction of incorrect maps for larger vertex degrees.
Moreover, when vertex degrees are comparable, a small
spectral gap means higher recovery rate.

Varying . Figure 4 shows the phase transition curves
when varying the overlapping ratio . We again show three
configurations, i.e., v = 1,y = 0.8 and v = 0.6. Still, our
approach can tolerate a large rate of noise in the input maps.
Moreover, the rate reduces as v becomes smaller. This is
expected, as low overlapping ratio introduces weak signal
for mapping and cluster recovery.
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Figure 2. Phase transition curves when varying g and p — ¢ under
different configurations of k. The first and second rows show
mapping and cluster recovery of PermSMAC, respectively. The
third row shows mapping recovery of (Huang & Guibas, 2013). (a)
k = 2. (b) k = 4. (c¢) k = 6. Red means more success.

5.2. Experimental Results on 3D Shapes

We proceed to evaluate SMAC on 3D shapes. We consider
two datasets for this task. The first dataset collects four cate-
gories of 3D shapes from SHRECO07-Watertight (Giorgi
et al., 2007), namely, Human, Fourleg, Armadillo and
Teddy. These categories appear to have both similar global
structures and local geometric details. However, the inter-
category variability is salient. The second dataset is more
fine-grained. It has 10 underlying shape collections from
FAUST training dataset (Bogo et al., 2014), where each col-
lection consists of different poses of the same human subject
(10 poses per collection). For evaluating shape maps, we
follow the protocol of (Kim et al., 2011) by collecting statis-
tics on the geodesic distortion of predicted correspondences
with respect to human annotated feature correspondences.

Mapping performance. Figure 5(c) plots the accuracy of
predicted correspondences of our approach versus the in-
put. For a detailed assessment, we separate the statistics of
intra-cluster maps and inter-cluster maps. We consider two
approaches for baseline comparison: the first applies (Huang
& Guibas, 2013) to the entire dataset, and the second ap-
plies (Huang & Guibas, 2013) to each category in isolation
then applies the third step of our approach to compute inter-
cluster maps. The second baseline may be considered as
a performance upper bound. Our proposed SMAC is sig-
nificantly better than mapping without clustering (which is
seriously affected by the noise in inter-cluster maps) and
competitive against the second baseline.
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Figure 3. Phase transition curves of map recovery and cluster re-
covery when varying the observation graph. The top row shows
mapping recovery, and the bottom row shows cluster recovery.
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Figure 4. Phase transition curves of map recovery and cluster re-
covery when varying the overlapping ratio. The top row shows
mapping recovery, and the bottom row shows cluster recovery.
(a)y=1. (b)y =0.8. (c)y = 0.6.
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Clustering performance. As shown in Table 1, our
approach correctly identifies all underlying clusters in
SHRECO07 and FAUST. We also applied two baseline clus-
tering approaches on the same dataset. The first approach
performs k-means on the spectral shape descriptors (Rusta-
mov, 2007). This approach only yields 84.6% and 72.0%,
respectively. The second approach utilizes the mapping
distortion as an affinity measure and applies spectral cluster-
ing. This approach yields 94.9% and 74.0%, respectively,
which are better than the first baseline. However, our ap-
proach is still better, which shows the advantage of using
the cycle-consistency constraint for clustering.

5.3. Experimental Results on 2D Images

Finally, we evaluate our approach on two datasets of 2D
images. The first dataset (Figure 6(Left)) consists of 600
internet images of Notre Dame. These images naturally
fall into 3 categories, each of which collects images from
a similar camera pose (Snavely et al., 2006). The second
dataset (Figure 6(Right)) collects 600 internet images of 4
landmark churches in Europe (Amiens Cathedral (200 im-
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Figure 5. Experimental results on 3D shapes. We consider two
datasets: (left) Human/Fourleg/Armadillo/Teddy, and (right) Dif-
ferent poses of xxx human subjects. For each dataset, we show
(top) snapshots of each dataset, and (bottom) error distribution of
predicted intra-cluster and inter-cluster shape maps.

| SHRECO7 | FAUST | Notre Dame | Church
SMAC | 100% | 940% | 993% | 96.1%
Distort. | 94.9% | 74.0% | 943% | 91.9%
Descrip. | 84.6% | 72.0% | 843% | 86.7%

Table 1. Classification accuracy of our method and baseline ap-
proaches on the four datasets show in Figure 5 and Figure 6. Dis-
tort. and Descrip. stand for using the pairwise mapping distortion
score and global object descriptor for clustering, respectively.

ages), York Minster (200 images), Duomo (100 images) and
Westminster Abbey (100 images)). As inter-cluster maps
do not make much sense here, we only evaluate clustering
results and intra-cluster maps in this experiment. We sample
400 SIFT features (Lowe, 2004) for each image and apply
SIFT flow (Liu et al., 2011) to establish pairwise correspon-
dences between the features. We manually mark feature
correspondences for evaluation.

Mapping performance. Figure 6 compares our approach
with the two baseline approaches introduced in Section 5.2.
The relative performance is consistent. Specifically, due to
the small-overlapping region across different clusters, inter-
cluster maps are rather noisy, so applying joint-mapping
directly leads to sub-optimal results. In addition, our ap-
proach is competitive against the approach of computing
intra-cluster and inter-cluster maps in a sequential manner.

Clustering performance. Finally, we evaluate our ap-
proach in terms of clustering accuracy. We choose two base-
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Figure 6. Experimental results on 2D images. We consider two
datasets: (Left) Internet images of Norte Dame from three diverse
camera poses, and (Right) Internet images of five churches from
similar view points. Visualization is the same as Figure 5.

0.025 0.05 0.075 0.1
Euclidean error

line approaches, where the first baseline approach performs
k-means on image descriptors. In this case, we employ
GIST (Oliva & Torralba, 2001). The second baseline uses
the residual of SIFT flow as the affinity score for clustering.
As shown in Table 1, our approach leads to a clustering
accuracy of 99.3% and 96.1% on Notre Dame and Church,
respectively. They are higher than those of the top perform-
ing baselines, i.e., 94.5% and 92.1%, respectively.

6. Conclusions

We have introduced SMAC for simultaneously computing
consistent maps across a heterogeneous data collection and
identifying the underlying clusters. The key idea is to lever-
age the higher self-consistency within intra-cluster maps
than inter-cluster maps. Enforcing this variation of consis-
tency allows us to denoise the input maps in a sequential
manner while simultaneously identifying the underlying
cluster structures. The approach is based on spectral de-
composition, for which we provided tight exact recovery
conditions for both the input maps and the underling clus-
ters. Experimental results on synthetic data sets justify our
exact recovery conditions, and experimental results on real
data sets demonstrate the efficacy of our approach.
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