A Spline Theory of Deep Networks

SUPPLEMENTARY MATERIAL

For more details regarding notation, architectures, experiments, and proofs, please see (Balestriero & Baraniuk, 2018).

A. Notation

For concreteness, we focus here on processing multichannel images x, such as RGB color digital photographs. However, our
analysis and techniques apply to signals of any index-dimensionality, including speech and audio signals, video signals, etc.,
simply by adjusting the appropriate dimensionalities. We will use two equivalent representations for the signal and feature
maps, one based on tensors and one based on flattened vectors. In the fensor representation, the input image = contains
C'©) channels of size (I(O) X J(O)) pixels, and the feature map z(©) contains C®) channels of size (I(Z) X J(Z)) pixels. In
the vector representation, [x] represents the entry of the k*h dimension of the flattened, vector version x of z. Hence,
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x An input/observation tensor of shape (K, I, .J)

T A vectorized input with length D

7(z) An output/prediction associated to input

T Observation n

Yn Target variable associated to x,, for classification y,, € {1,...,C}, C > 1,
for regression y,, € R, C > 1

D (resp. Ds) Labeled training set with N (resp. N,) samples D = {(X,,, Y;,)"_;}

D. Unlabeled training set with V,, samples D, = {(Xn)ﬁ’;l

fo(f[)) Layer at level £ with internal parameters (), ¢ =1,..., L

(C] Collection of all parameters © = {#©) ¢ =1,... L}

fo Deep Neural Network (DNN) mapping with fe : RP? — R¢

Shape of the representation at layer ¢ with (C(©), 10 J©)) = (K I,.J) and
(OB, 1B g1 = (C,1,1)

DO Dimension of the flattened representation at layer £ with D) = C(©) () j(O)
DO = Dand DP) = C
2O (1) Representation of z at layer £ in an unflattened format of shape (C©), 19 J(©)),

with 20 (z) = =
Value of the representation of x at layer ¢, channel ¢, and spatial position (4, j)
Representation of  at layer £ in a flattened format of dimension D(¢)

Value at dimension k. One has [2(9)]..;.
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B. Deep Network Topologies and Datasets

We first present the topologies used in the experiments except for the notation ResNetD-W which is the standard wide
ResNet based topology with depth D and width /. We thus have the following network architectures for smallCNN and
largeCNN:
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Figure 5. Description of the smallCNN and large CNN topologies.
where the Conv2DLayer(layers[-1],192,3,pad="valid’) denotes a standard 2D convolution with 192 filters of spatial size
(3,3) and with valid padding (no padding).

The used datasets are MNIST, CIFAR10-100 and SVHN. The standard datasets were used with standard train test set except
for MNIST for which it was drawn at random unless specified in the experiment section.

C. Proofs
C.1. Proof of Theorem 1:

A composition of affine spline operators is an affine spline operator.

C.2. Proof of Theorem 2:
See (Amos et al., 2016) and adapt the result in the context of MASOs in the spirit of (Boyd & Vandenberghe, 2004).

C.3. Proof of Propositions 1-3

These are trivial by the definitions and the uniqueness of a piecewise affine convex mapping. By definition of the mappings,
the correspondence is direct.

C.4. Proof Proposition 4: Examples of DN Layers as MASOs
We provide some examples to better illustrate this layer reparametrization.

Affine Transform+Activation: Any MASO following an affine transformation can be computed via definition of a new
reparametrized MASO with
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with [AO],, .. = WOT[AD] . and pOy,, = bS] + b5 (A k0,
Linear skip-connection: Any MASO with a skip-connection can be computed via definition of a new reparametrized MASO

with

S{A(Z),b“)} @ +z=| ’ +x
max,—1,....r [A9)f .2+ 0]k

max,— 1,...,R; ([A(Z)]Lr“ + el)TSC + [b(z)h’r
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with [A]gr. = [A©O]k,. + €, and b1, = O]k, + bOT[AO], .
ResNet layer: Any ResNet layer can be computed via definition of a new reparametrized MASO with
[Coxip) T + [bskip]1 + max,—1, . [Aw I{,.(Cz+bc)+ [b((f)]l,r
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with [AO)y .. = CT[A ). + [Cosiplr.. and b)), = [AP]T | b + [0 + [bkip) -

C.5. Proof of Proposition 5

We aim at minimizing the cross-entropy loss function for a given input X,, belonging to class Y,,. We also have the constraint
Zc 1 IJA[X3])e|]? < K. The loss function is thus convex on a convex set. It is thus sufficient to find a extremum point. We
denote the augmented loss function with the Lagrange multiplier as

C
HA[X 1, Al X e, A) = —(A[ XLy, Jrlog(ZeA[X"]C’ ) (ZHA 1> = )

The sufficient KKT conditions are thus
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We first proceed by identifying A as follows

dl =0
dAX.: 2 c d
A[X, )T =
= D AlXal; dax,y. "
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we now leverage the fact that A[X,,]; = A[X,,];, Vi, j # Y., to simplify notations
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We now proceed by using the proposed optimal solutions A*[X,].,c = 1,...,C and demonstrate that it leads to an

extremum point which by nature of the problem is the global optimum. We denote by ¢ any index different from Y,,, first
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case k =Y,
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