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Abstract

We build a rigorous bridge between deep net-
works (DNs) and approximation theory via spline
functions and operators. Our key result is that a
large class of DNs can be written as a composition
of max-affine spline operators (MASOs), which
provide a powerful portal through which to view
and analyze their inner workings. For instance,
conditioned on the input signal, the output of a
MASO DN can be written as a simple affine trans-
formation of the input. This implies that a DN
constructs a set of signal-dependent, class-specific
templates against which the signal is compared
via a simple inner product; we explore the links to
the classical theory of optimal classification via
matched filters and the effects of data memoriza-
tion. Going further, we propose a simple penalty
term that can be added to the cost function of any
DN learning algorithm to force the templates to
be orthogonal with each other; this leads to signif-
icantly improved classification performance and
reduced overfitting with no change to the DN ar-
chitecture. The spline partition of the input signal
space opens up a new geometric avenue to study
how DN organize signals in a hierarchical fash-
ion. As an application, we develop and validate a
new distance metric for signals that quantifies the
difference between their partition encodings.

1. Introduction

Deep learning has significantly advanced our ability to ad-
dress a wide range of difficult machine learning and signal
processing problems. Today’s machine learning landscape
is dominated by deep (neural) networks (DNs), which are
compositions of a large number of simple parameterized
linear and nonlinear transforms. An all-too-common story
of late is that of plugging a deep network into an appli-
cation as a black box, training it on copious training data,
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and then significantly improving performance over classical
approaches.

Despite this empirical progress, the precise mechanisms by
which deep learning works so well remain relatively poorly
understood, adding an air of mystery to the entire field. On-
going attempts to build a rigorous mathematical framework
fall roughly into five camps: (i) probing and measuring DNs
to visualize their inner workings (Zeiler & Fergus, 2014); (ii)
analyzing their properties such as expressive power (Cohen
et al., 2016), loss surface geometry (Lu & Kawaguchi, 2017;
Soudry & Hoffer, 2017), nuisance management (Soatto &
Chiuso, 2016), sparsification (Papyan et al., 2017), and gen-
eralization abilities; (iii) new mathematical frameworks that
share some (but not all) common features with DNs (Bruna
& Mallat, 2013); (iv) probabilistic generative models from
which specific DNs can be derived (Arora et al., 2013; Patel
et al., 2016); and (v) information theoretic bounds (Tishby
& Zaslavsky, 2015).

In this paper, we build a rigorous bridge between DNs and
approximation theory via spline functions and operators.
We prove that a large class of DNs — including convo-
lutional neural networks (CNNs) (LeCun, 1998), residual
networks (ResNets) (He et al., 2016; Targ et al., 2016),
skip connection networks (Srivastava et al., 2015), fully
connected networks (Pal & Mitra, 1992), recurrent neural
networks (RNNs) (Graves, 2013), and beyond — can be
written as spline operators. In particular, when these net-
works employ current standard-practice piecewise-affine,
convex nonlinearities (e.g., ReLU, max-pooling, etc.) they
can be written as the composition of max-affine spline opera-
tors (MASOs) (Magnani & Boyd, 2009; Hannah & Dunson,
2013). We focus on such nonlinearities here but note that
our framework applies also to non-piecewise-affine nonlin-
earities through a standard approximation argument.

The max-affine spline connection provides a powerful portal
through which to view and analyze the inner workings of a
DN using tools from approximation theory and functional
analysis. Here is a summary of our key contributions:

[C1] We prove that a large class of DNs can be written as a
composition of MASOs, from which it follows immediately
that, conditioned on the input signal, the output of a DN is
a simple affine transformation of the input. We illustrate
in Section 4 by deriving a closed-form expression for the
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input/output mapping of a CNN.

[C2] The affine mapping formula enables us to interpret a
MASO DN as constructing a set of signal-dependent, class-
specific templates against which the signal is compared
via a simple inner product. In Section 5 we relate DNs
directly to the classical theory of optimal classification via
matched filters and provide insights into the effects of data
memorization (Zhang et al., 2016).

[C3] We propose a simple penalty term that can be added to
the cost function of any DN learning algorithm to force the
templates to be orthogonal to each other. In Section 6, we
show that this leads to significantly improved classification
performance and reduced overfitting on standard test data
sets like CIFAR100 with no change to the DN architecture.

[C4] The partition of the input space induced by a MASO
links DN to the theory of vector quantization (VQ) and
K-means clustering, which opens up a new geometric av-
enue to study how DN cluster and organize signals in a
hierarchical fashion. Section 7 studies the properties of the
MASO partition.

[C5] Leveraging the fact that a DN considers two signals
to be similar if they lie in the same MASO partition region,
we develop a new signal distance in Section 7.3 that mea-
sures the difference between their partition encodings. The
distance is easily computed via backpropagation.

A number of appendices in the Supplementary Material
(SM) contain the mathematical setup and proofs. A signifi-
cantly extended account of these events with numerous new
results is available in (Balestriero & Baraniuk, 2018).

2. Background on Deep Networks

A deep network (DN) is an operator fgo : RP — R that
maps an input signal' z € RP to an output prediction
7y € RY as fo : RP — RC. All current DN can be written
as a composition of L intermediate mappings called layers

f ( ) (f () © of9(1))( ) (1

where © = {0, ... 010} is the collection of the net-
work’s parameters from each layer. This composition of
mappings is nonlinear and non-commutative, in general.

A DN layer at level £ is an operator f (< [)) that takes as input
the vector-valued signal 2!~V (x) € RP “

‘ .
the vector-valued output z(¥)(x) € RP “ We will as-
sume that = and z(*) are column vectors. We initialize with
29 (x) = x and denote z(X)(x) =: z for convenience.

" and produces

! For concreteness, we focus here on processing K -channel
images x, such as color digital photographs. But our analysis and
techniques apply to signals of any index-dimensionality, including
speech and audio signals, video signals, etc.

The signals z() () are typically called feature maps; it is
easy to see that

20(@) = (fih oo i) ) @), £ (L. L} @)

We briefly overview the basic DN operators and layers we
consider in this paper; more details and additional layers
are provided in (Goodfellow et al., 2016) and (Balestriero &
Baraniuk, 2018). A fully connected operator performs an
arbitrary affine transformation by multiplying its input by
the dense matrix W € RP'*DP“"" and adding the ar-
bitrary bias vector b(g) e RPY asin f(z ( =D (g )) =

WO 21 () 4- b%)-. A convolution operator reduces the
number of parameters in the affine transformation by replac-
ing the unconstrained W (¥) with a multichannel convolution

matrix, as in fg) (zV(z)) = CO2D(z) + bg).

An activation operator applies a scalar nonlinear activation
function ¢ independently to each entry of its input, as in
(199 (V@) ], = o (2D (@)i). k=1,...,DO.
Nonlinearities are crucial to DNs, since otherwise the en-
tire network would collapse to a single global affine trans-
form. Three popular activation functions are the rectified lin-
ear unit (ReLU) oreru(u) := max(u, 0), the leaky ReLU
oLReLU (1) := max(nu,u), n > 0, and the absolute value
0abs(u) := |u|. These three functions are both piecewise
affine and convex. Other popular activation functions in-
clude the sigmoid oig(u) == o= +e - and hyperbolic tangent
Otanh (1) = 204ig(2u) — 1. These two functions are neither
piecewise affine nor convex.

A pooling operator subsamples its input to reduce
its dimensionality according to a sub-sampling pol-
icy p applied over a collection of input indices

{Rk}kK:1> (typically a small patch), e.g., max pooling

¢ _ _
(157 (=D (@) I = MaXjeq® [2V(@)] k=
1,...,DW. See (Balestriero & Baraniuk, 2018) for the

definitions of average pooling, channel pooling, skip con-
nections, and recurrent layers.

Definition 1. A DN layer fe( 2y comprises a single nonlinear
DN operator (non-affine to be precise) composed with any
preceding affine operators lying between it and the preced-
ing nonlinear operator.

This definition yields a single, unique layer decomposition
for any DN, and the complete DN is then the composition
of its layers per (1). For example, in a standard CNN, there
are two different layers types: i) convolution-activation and
ii) max-pooling.

We form the prediction g by feeding fo(x) through a final
nonlinearity ¢ : RP™ 5 RPY asing = g(fo(x)). In
classification, g is typically the softmax nonlinearity, which
arises naturally from posing the classification inference as a
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multinomial logistic regression problem (Bishop, 1995). In
regression, typically no g is applied.

We learn the DN parameters © for a particular predic-
tion task in a supervised setting using a labeled data set
D = (T, Yn))_;, aloss function, and a learning policy to
update the parameters © in the predictor fo (). For classi-
fication problems, the loss function is typically the negative
cross-entropy Lcg(x,y) (Bishop, 1995). For regression
problems, the loss function is typically is the squared error.
Since the layer-by-layer operations in a DN are differen-
tiable almost everywhere with respect to their parameters
and inputs, we can use some flavor of first-order optimiza-
tion such as gradient descent to optimize the parameters ©
with respect to the loss function. Moreover, the gradients for
all internal parameters can be computed efficiently by back-
propagation (Hecht-Nielsen, 1992), which follows from the
chain rule of calculus.

3. Background on Spline Operators

Approximation theory is the study of how and how well
functions can best be approximated using simpler functions
(Powell, 1981). A classical example of a simpler function
is a spline s : RP — R (Schmidhuber, 1994). For con-
creteness, we will work exclusively with affine splines in
this paper (aka “linear splines’ ), but our ideas generalize
naturally to higher-order splines.

Multivariate Affine Splines. Consider a partition of a
domain RP? into a set of regions Q = {wi,...,wr} and
a set of local mappings ® = {¢1,...,¢r} that map each
region in the partition to R via ¢, (x) := ([a],.., x) + [3],
for & € w,.> The parameters are: o« € R*P a matrix of
hyperplane “slopes,” and 3 € R%, a vector of hyperplane
“offsets” or “biases”. We will use the terms offset and bias
interchangeably in the sequel. The notation [«],.. denotes
the column vector formed from the ** row of a.

With this setup, the multivariate affine spline is defined as

> (el @) + [8l,) Lz € w,)

r=

=: (az], =) + B[], (3)

sla, 5, Q) (x)

=

where 1(x € w,) is the indicator function. The second
line of (3) introduces the streamlined notation a[x] = [a];..
when & € w,; the definition for B[x| is similar. Such
a spline is piecewise affine and hence piecewise convex.
However, in general, it is neither globally affine nor globally
convex unless R = 1, a case we denote as a degenerate
spline, since it corresponds simply to an affine mapping.

% To make the connection between splines and DNs more im-
mediately obvious, here x is interpreted as a point in RP, which
plays the rdle of the space of signals in the other sections.

Max-Affine Spline Functions. A major complication of
function approximation with splines in general is the need
to jointly optimize both the spline parameters «, 3 and the
input domain partition 2 (the “knots” for a 1D spline) (Ben-
nett & Botkin, 1985). However, if a multivariate affine
spline is constrained to be globally convex, then it can al-
ways be rewritten as a max-affine spline (Magnani & Boyd,
2009; Hannah & Dunson, 2013)

sl B,0)(@) = max (lal,..@) + (8. @

An extremely useful feature of such a spline is that it is
completely determined by its parameters o and 3 without
needing to specify the partition 2. As such, we denote
a max-affine spline simply as s[a, 8]. Changes in the pa-
rameters «, § of a max-affine spline automatically induce
changes in the partition {2, meaning that they are adaptive
partitioning splines (Magnani & Boyd, 2009).

Max-Affine Spline Operators. A natural extension of an
affine spline function is an affine spline operator (ASO)
S[A, B, Q] that produces a multivariate output. It is ob-
tained simply by concatenating K affine spline functions
from (3). The details and a more general development are
provided in the SM and (Balestriero & Baraniuk, 2018).

We are particularly interested in the max-affine spline op-
erator (MASO) S[A, B] : RP — RX formed by concate-
nating K independent max-affine spline functions from (4).
A MASO with slope parameters A € RE*ExD and offset
parameters B € RX X% is defined as

)

max,=1,...,r{[Al1,r.. @) + [Bl1,r
S[A, B](z) = :

max,—1, . r{[Alkr. ) + [Blk,r

s

=: Alz] z + Blx]. (5)

The second line of (5) introduces the streamlined no-
tation in terms of the signal-dependent matrix Afx]
and signal-dependent vector B[x|, where [A[z]]s,. =
[A}kﬂ“k(m)y' and [B[wHk = [B]krk(m) with rk(x) -
arg max, ([Alxr.., €) + [Blk.r-

Max-affine spline functions and operators are always piece-
wise affine and globally convex (and hence also continuous)
with respect to each output dimension. Conversely, any
piecewise affine and globally convex function/operator can
be written as a max-affine spline. Moverover, using standard
approximation arguments, it is easy to show that a MASO
can approximate arbitrarily closely any (nonlinear) operator
that is convex in each output dimension.

4. DNs are Compositions of Spline Operators

While a MASO is appropriate only for approximating con-
vex functions/operators, we now show that virtually all of



A Spline Theory of Deep Networks

today’s DNs can be written as a composition of MASOs,
one for each layer. Such a composition is, in general, non-
convex and hence can approximate a much larger class of
functions/operators. Interestingly, under certain broad con-
ditions, the composition remains a piecewise affine spline
operator, which enables a variety of insights into DNs.

4.1. DN Operators are MASOs

We now state our main theoretical results, which are proved
in the SM and elaborated in (Balestriero & Baraniuk, 2018).

Proposition 1. An arbitrary fully connected operator f‘(,é)
is an affine mapping and hence a degenerate MASO

s[4, BY], with B = 1, 4Dk, = (WO, and
Bk = [ %@} .+ leading 10 WO 2D () 4 b8 =
A&ﬁ,)v [x]2( D () + Bw []. The same is true of a convolu-
tion operator with W) | b&,@ replaced by C'), b(é).

. L 0 . )
Proposition 2. Any activation operator f((7 ) using a piece-
wise affine and convex activation function is a MASO

S[A‘(TZ)7B'(TK)} with B = 2, |:B((f):|k.1 - [B‘(TZ)}kz B

0 Vk, and for ReLU [A((f)} 0, {Aff)}

k,1,- k,2,
ey, Vk; for leaky ReLU [A,(f)h = vey, {A((f)}k L=
ei Vk,v > 0; and for absolute value {Afp} = —ey,

IEEN

|:A((T£):| k,2

basis element of R

= ey Vk, where ey, represents the k™ canonical

DWW

Proposition 3. Any pooling operator f,@ that is piece-
wise affine and convex is a MASO S [AEJZ), B,(,Z)} 3 Max-
#Ry. (typically a constant over all
= {e;,i € Ry}, and

pooling has R =

output dimensions k), [A(pe)}
[By)} = 0 Vk,r. Average-pooling is a degenerate
k,r

MASO with R = 1, [AE,’Z)} L

[N

— 1
= FR) 2iew, & and

[B,Sﬂ = 0 VE.

Proposition 4. A DN layer constructed from an arbitrary
composition of fully connected/convolution operators fol-

lowed by one activation or pooling operator is a MASO
S[A® | BO] such that

FOEY (@) = A ]V (@) + BO].  (©)

Consequently, a large class of DNs boil down to a compo-
sition of MASOs. We prove the following in the SM and
in (Balestriero & Baraniuk, 2018) for CNNs, ResNets, skip
connection nets, fully connected nets, and RNNs.

3 This result is agnostic to the pooling type (spatial or channel).

Theorem 1. A DN constructed from an arbitrary composi-
tion of fully connected/convolution, activation, and pooling
operators of the types in Propositions 1-3 is a composi-
tion of MASOs that is equivalent to a global affine spline
operator.

Note carefully that, while the layers of each of the DNs
stated in Theorem 1 are MASOs, the composition of several
layers is not necessarily a MASO. Indeed, a composition of
MASOs remains a MASO if and only if all of its component
operators (except the first) are non-decreasing with respect
to each of their output dimensions (Boyd & Vandenberghe,
2004). Interestingly, ReLU and max-pooling are both non-
decreasing, while leaky ReL.U is strictly increasing. The
culprits causing non-convexity of the composition of layers
are negative entries in the fully connected or convolution op-
erators, which destroy the required non-increasing property.
A DN where these culprits are thwarted is an interesting
special case, because it is convex with respect to its input
(Amos et al., 2016) and multiconvex (Xu & Yin, 2013) with
respect to its parameters.

Theorem 2. A DN whose layers { = 2, ..., L consist of an
arbitrary composition of fully connected and convolution op-
erators with nonnegative weights, i.e., W,géj) >0 C ]iej) >0y
non-decreasing, piecewise-affine, and convex activation op-
erators; and non-decreasing, piecewise-affine, and convex
pooling operators is globally a MASO and thus also glob-
ally convex with respect to each of its output dimensions.

The above results pertain to DNs using convex, affine op-
erators. Other popular non-convex DN operators (e.g., the
sigmoid and arctan activation functions) can be approxi-
mated arbitrarily closely by an affine spline operator but not
by a MASO.

DNs are Signal-Dependent Affine Transformations. A
common theme of the above results is that, for DNs con-
structed from fully connected/convolution, activation, and
pooling operators from Propositions 1-3, the operator/layer
outputs z(*)(x) are always a signal-dependent affine func-
tion of the input x (recall (5)). The particular affine mapping
applied to « depends on which partition of the spline it falls
in RP. More on this in Section 7 below.

DN Learning and MASO Parameters. Given labeled
training data (x,,, y,,))_,, learning in a DN that meets the
conditions of Theorem 1 (i.e., optimizing its parameters ©)
is equivalent to optimally approximating the mapping from
input  to output § = g(z")(x)) using an appropriate cost
function (e.g., cross-entropy for classification or squared
error for regression) by learning the parameters 6(©) of the
layers. In general the overall optimization problem is non-
convex (it is actually piecewise multi-convex in general
(Rister, 2016)).
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4.2. Application: DN Affine Mapping Formula

Combining Propositions 1-3 and Theorem 1 and substitut-
ing (5) into (2), we can write an explicit formula for the
output of any layer z()(x) of a DN in terms of the input
x for a variety of different architectures. The formula for
a standard CNN (using ReL.U activation and max-pooling)
is given in (7) above; we derive this formula and analo-
gous formulas for ResNets and RNNs in (Balestriero &
Baraniuk, 2018). In (7), A%
matrices corresponding to the ReLU activations, A(pe) [x]
are the signal-dependent matrices corresponding to max-
pooling, and the biases b&f,), bg) arise directly from the
fully connected and convolution operators. The absence of
B [x], Bf(f) [x] is due to the absence of bias in the ReLU
(recall (2)) and max-pooling operators (recall (3)).

[x] are the signal-dependent

Inspection of (7) reveals the exact form of the signal-
dependent, piecewise affine mapping linking @ to z(cLl\?N (x).
Moreover, this formula can be collapsed into

(L)

zoun (@) = W (Acxn(z] @ + Bonn(z]) + b&zxL/) ®)

from which we can recognize

(L— 1)( )

ZCONN = Acnn[z]  + Bonn|[z] &)

as an explicit, signal-dependent, affine formula for the fea-
turization process that aims to convert x into a set of (hope-
fully) linearly separable features that are then input to the
linear classifier in layer ¢ = L with parameters W (%) and
b%). Of course, the final prediction g is formed by running
zéLI\%N(x) through a softmax nonlinearity g, but this merely
rescales its entries to create a probability distribution.

5. DNs are Template Matching Machines

We now dig deeper into (8) in order to bridge DNs and
classical optimal classification theory. While we focus on
CNNss and classification for concreteness, our analysis holds
for any DN meeting the conditions of Theorem 1.

5.1. Template Matching

An alternate interpretation of (8) is that z((jLI\%N(sc) is the
output of a bank of linear matched filters (plus a set of
biases). That is, the c*® element of z(%) (2:) equals the inner
product between the signal « and the matched filter for the
™ class, which is contained in the ¢ row of the matrix

L-1 {+1
AP (2] AP ]C“>>w+W<L>Z

=1 \j=L-1

[[ ADADICD | (AN [2)AL [2]bE ) +biy)

Benn (2]

@)
W@ Alx]. The bias W) Blx] + b%,) can be used to
account for the fact that some classes might be more likely
than others (i.e., the prior probability over the classes). It is
well-known that a matched filterbank is the optimal classifier
for deterministic signals in additive white Gaussian noise
(Rabiner & Gold, 1975). Given an input x, the class decision
is simply the index of the largest element of z(%) (x).*

Yet another interpretation of (8) is that z(%)(z) is computed
not in a single matched filter calculation but hierarchically
as the signal propagates through the DN layers. Abstracting
(5) to write the per-layer maximization process as 2z (*) (x) =
max,.e A( ) z(£ 1)( )+ B( (ry and cascading, we obtain a
formula for the end-to-end DN mapping

2B (z) = W) max (A(fL 11)> max <A5<3>

r(L—1) r(2)
1 2 L-1 L
mx (Ao + BY) + B )k B ) ol
(10)

This formula elucidates that a DN performs a hierarchical,
greedy template matching on its input, a computationally
efficient yet sub-optimal template matching technique. Such
a procedure is globally optimal when the DN is globally
convex.

Corollary 1. For a DN abiding by the requirements of The-
orem 2, the computation (10) collapses to the following
globally optimal template matching

(1) () — WO (L-1) (4@
2 (x) =W T (Ar@_l) (ATm
(Al e+ BY)) +BR) -+ BEL) + ol
1D

5.2. Template Visualization Examples

Since the complete DN mapping (up to the final soft-
max) can be expressed as in (8), given a signal x, we
can compute the signal-dependent template for class c via

Alz). = W, which can be efficiently computed via
backpropogation (Hecht-Nielsen, 1992).> Once the template
Alx]. has been computed, the bias term b[x]. can be com-
puted via b[z]. = 2(F) (x), — (A[z]..,x). Figure 1 plots

4 Again, since the softmax merely rescales the entries of
P () into a probability distribution, it does not affect the loca-
tion of its largest element.

3In fact, we can use the same backpropagation procedure used
for computing the gradient with respect to a fully connected or
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Figure 1. Visualization of the matched filter templates generated
by a CNN using ReLU activation and max-pooling. At top, we
show the input image x of the digit ‘0’ from the MNIST dataset
along with the three signal-dependent templates Acnn ([z](7o/,.,
Acnn[z] s ..), and Acxn|x](r72..). The inner products between
x and the three templates are 32.7, —27.7, —27.8, respectively (c.f.
(12)). Below, we repeat the same experiment with the input image
z of a ‘truck’ from the CIFAR10 dataset along with the three signal-
dependent templates corresponding to the classes ‘truck,” ‘bird,
and ‘dog.’ The inner products between x and the three templates
are 30.6, —12.5, —16.2, respectively. (The final classification will
involve not only these inner products but also the relevant biases
and softmax transformation.)

various signal-dependent templates for two CNNs trained
on the MNIST and CIFARI10 datasets.

5.3. Collinear Templates and Data Set Memorization

Under the matched filterbank interpretation of a DN devel-
oped in Section 5.1, the optimal template for an image x
of class c is a scaled version of «x itself. But what are the
optimal templates for the other (incorrect) classes? In an
idealized setting, we can answer this question.

Proposition 5. Consider an idealized DN consisting of a
composition of MASOs that has sufficient approximation
power to span arbitrary MASO matrices Alx.,) from (9) for
any input x,, from the training set. Train the DN to classify
among C classes using the training data D = (., yn)_,
with normalized inputs ||, ||2 = 1 Vn and the cross-entropy
loss Log(Yn, fo(xr)) with the addition of the regulariza-
tion constraint that ) . || A[y]c,. |2 < a with o > 0. At the
global minimum of this constrained optimization problem,
the rows of A*[x,,] (the optimal templates) have the form:

[A* @], = Ny (12)

’ e}

In short, the idealized CNN in the proposition will memorize
a set of collinear templates whose bimodal outputs force

convolution weight but instead with the input z. This procedure is
becoming increasingly popular in the study of adversarial examples
(Szegedy et al., 2013).

10000
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4000 4000

2000 2000
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Figure 2. Empirical study of the implications of Proposition 5. We
illustrate the bimodality of ([A*[@y]]e,., ) for the largeCNN
matched filterbank trained on (a) MNIST and (b) CIFAR10. Train-
ing used batch normalization and bias units. Results are similar
when trained with bias and no batch-normalization. The green
histogram summarizes the output values for the correct class (top
half of (12)), while the red histogram summarizes the output values
for the incorrect classes (bottom half of (12)). The easier the clas-
sification problem (MNIST), the more bimodal the distribution.

the softmax output to a Dirac delta function (aka /-hot
representation) that peaks at the correct class. Figure 2
confirms this bimodal behavior on the MNIST and CIFAR10
datasets.

6. New DNs with Orthogonal Templates

While a DN’s signal-dependent matched filterbank (8) is
optimized for classifying signals immersed in additive white
Gaussian noise, such a statistical model is overly simplistic
for most machine learning problems of interest. In practice,
errors will arise not just from random noise but also from
nuisance variations in the inputs such as arbitrary rotations,
positions, and modalities of the objects of interest. The
effects of these nuisances are only poorly approximated
as Gaussian random errors. Limited work has been done
on filterbanks for classification in nonGaussian noise; one
promising direction involves using not matched but rather
orthogonal templates (Eldar & Oppenheim, 2001).

For a MASO DN’s templates to be orthogonal for all in-
puts, it is necessary that the rows of the matrix W (%) in the
final linear classifier layer be orthogonal. This weak con-
straint on the DN still enables the earlier layers to create a
high-performance, class-agnostic, featurized representation
(recall the discussion just below (9)). To create orthogonal
templates during learning, we simply add to the standard
(potentially regularized) cross-entropy loss function Lcg
a term that penalizes non-zero off-diagonal entries in the
matrix W) (WE)T Jeading to the new loss with the
additional penalty

Lo +A Y ’<[W(L)]Ch.,[W(L)]027'>‘2. (13)
c1ca

The parameter A controls the tradeoff between cross-entropy
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Figure 3. Orthogonal templates significantly boost DN performance with no change to the architecture. (a) Classification performance of
the largeCNN trained on CIFAR100 for different values of the orthogonality penalty X in (13). We plot the average (back dots), standard
deviation (gray shade), and maximum (blue dots) of the test set accuracy over 15 runs. (b, top) Training set error. The blue/black curves
corresponds to A = 0/1. (b, bottom) Test set accuracy over the course of the learning.

minimization and orthogonality preservation. Conveniently,
when minimizing (13) via backpropagation, the orthogonal
rows of W () induce orthogonal backpropagation updates
for the various classes.

We now empirically demonstrate that orthogonal templates
lead to significantly improved classification performance.
We conducted a range of experiments with three different
conventional DN architectures — smallCNN, largeCNN, and
ResNet4-4 — trained on three different datasets — SVHN,
CIFAR10, and CIFAR100. Each DN employed bias
units, ReL U activations, and max-pooling as well as batch-
normalization prior each ReLU. The full experimental de-
tails are given in the (Balestriero & Baraniuk, 2018). For
learning, we used the Adam optimizer with an exponential
learning rate decay. All inputs were centered to zero mean
and scaled to a maximum value of one. No further pre-
processing was performed, such as ZCA whitening (Nam
et al., 2014). We assessed how the classification perfor-
mance of a given DN would change as we varied the or-
thogonality penalty A in (13). For each configuration of DN
architecture, training dataset, learning rate, and penalty A,
we averaged over 15 runs to estimate the average perfor-
mance and standard deviation.

We report here on only the CIFAR100 with largeCNN ex-
periments. (See (Balestriero & Baraniuk, 2018) for detailed
results for all three datasets and the other architectures. The
trends for all three datasets are similar and are independent
of the learning rate.) The results for CIFAR100 in Figure 3
indicate that the benefits of the orthogonality penalty emerge
distinctly as soon as A > 0. In addition to improved final ac-
curacy and generalization performance, we see that template
orthogonality reduces the temptation of the DN to overfit.
(This is is especially visible in the examples in (Balestriero
& Baraniuk, 2018).) One explanation is that the orthogonal
weights W (L) positively impact not only the prediction but
also the backpropagation via orthogonal gradient updates
with respect to each output dimension’s partial derivatives.

7. DN’s Intrinsic Multiscale Partition

Like any spline, it is the interplay between the (affine) spline
mappings and the input space partition that work the magic
in a MASO DN. Recall from Section 3 that a MASO has the
attractive property that it implicitly partitions its input space
as a function of its slope and offset parameters. The induced
partition (2 opens up a new geometric avenue to study how a
DN clusters and organizes signals in a hierarchical fashion.

7.1. Effect of the DN Operators on the Partition

A DN operator at level ¢ directly influences the partition-

ing of its input space R” “" and indirectly influences the
partitioning of the overall signal space R”.

A ReLU activation operator splits each of its input dimen-
sions into two half-planes depending on the sign of the input
in each dimension. This partitions R? “"" into a combina-
torially large number (up to 27 (E)) of regions. Following a
fully connected or convolution operator with a ReLU simply
rotates the partition in R” “UOA max-pooling operator
. pe¢=1 . . .
also partitions R into a combinatorially large number
(up to #RDm) of regions, where #R is the size of the
pooling region.

This per-MASO partitioning of each layer’s input space con-
structs an overall partitioning of the input signal space R”.
As each MASO is applied, it subdivides the input space R”
into finer and finer partitions. The final partition corresponds
to the intersection of all of the intermediate partitions, and
hence we can encode the input in terms of the ordered col-
lection of per-layer partition regions into which it falls. This
overall process can be interpreted as a hierarchical vector
quantization (VQ) of the training input signals x,,. There
are thus many potential connections between DNs and op-
timal quantization, information theory, and clustering that
we leave for future research. See (Balestriero & Baraniuk,
2018) for some early results.
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Figure 4. Example of the partition-based distance between images in the CIFAR10 (top) and SVHN (bottom) datasets. In each image, we
plot the target image @ at top-left and its 15 nearest neighbors in the partition-based distance at layer ¢ of a smallCNN trained without

batch normalization (see (Balestriero & Baraniuk, 2018) for the details). From left to right, the images display layers £ =1, ...

,6, and

we see that the images become further and further in Euclidean distance but closer and closer in featurized distance. In particular, the first
layer neighbors share similar colors and shapes (and thus are closer in Euclidean distance). Later layer neighbors mainly come from the

same class independently of their color or shape.

7.2. Inferring a DN Layer’s Intrinsic Partition

Unfortunately there is no simple formula for the partition of
the signal space. However, once can obtain the set of inputs
signals «,, that fall into the same partition region at each
layer of a DN. At layer ¢, denote the index of the region
selected by the input = (recall (6)) by

[t(e)(:c)}k = arg max<[A([)]k7rﬁ.,z(€_1)(w)> + [BY)y.r

(14)

Thus, [tP], € {1,...,R®}, with R() the number of
partition regions in the layer’s input space. Encoding the
partition as an ordered collection of integers designating
the activate hyperplane parameters from (4), we can now
visualize which inputs fall into the same or nearby partitions.

Due to the very large number of possible regions (up to 2 “

for a ReLU at layer ¢) and the limited amount of training
data, in general, many partitions will be empty or contain
only a single training data point.

7.3. A New Image Distance based on the DN Partition

To validate the utility of the hierarchical intrinsic clustering
induced by a DN, we define a new distance function between
the signals &1 and x5 that quantifies the similarity of their
position encodings ‘(21 ) and t*(x5) at layer £ via

d(t(e)(scl), G (mg))

S (1 )} — [0 (@)])
& .

For a ReLU MASQO, this corresponds simply to counting
how many entries of the layer inputs for ; and x5 are
positive or negative at the same positions. For a max-pooling

=1-

(15)

MASQO, this corresponds to counting how many argmax
positions are the same in each patch for x; and x5.

Figure 4 provides a visualization of the nearest neighbors of
a test image under this partition-based distance measure. Vi-
sual inspection of the figures highlights that, as we progress
through the layers of the DN, similar images become closer
in the new distance but further in Euclidean distance.

8. Conclusions

We have used the theory of splines to build a rigorous bridge
between deep networks (DNs) and approximation theory.
Our key finding is that, conditioned on the input signal, the
output of a DN can be written as a simple affine transfor-
mation of the input. This links DN directly to the classical
theory of optimal classification via matched filters and pro-
vides insights into the positive effects of data memorization.

There are many avenues for future work, including a more
in-depth analysis of the hierarchical MASO partitioning,
particularly from the viewpoint of vector quantization and
K -means clustering, which are unsupervised learning tech-
niques, and information theory. The spline viewpoint also
could inspire the creation of new DN layers that have
certain attractive partitioning or approximation capabili-
ties. We have begun exploring some of these directions in
(Balestriero & Baraniuk, 2018).°
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