
Approximation Guarantees for Adaptive Sampling

Eric Balkanski
1

Yaron Singer
1

Abstract

In this paper we analyze an adaptive sampling
approach for submodular maximization. Adap-
tive sampling is a technique that has recently been
shown to achieve a constant factor approximation
guarantee for submodular maximization under a
cardinality constraint with exponentially fewer
adaptive rounds than any previously studied con-
stant factor approximation algorithm for this prob-
lem. Adaptivity quantifies the number of sequen-
tial rounds that an algorithm makes when function
evaluations can be executed in parallel and is the
parallel running time of an algorithm, up to low
order terms. Adaptive sampling achieves its expo-
nential speedup at the expense of approximation.
In theory, it is guaranteed to produce a solution
that is a 1/3 approximation to the optimum. Nev-
ertheless, experiments show that adaptive sam-
pling techniques achieve far better values in prac-
tice. In this paper we provide theoretical justifica-
tion for this phenomenon. In particular, we show
that under very mild conditions of curvature of
a function, adaptive sampling techniques achieve
an approximation arbitrarily close to 1/2 while
maintaining their low adaptivity. Furthermore, we
show that the approximation ratio approaches 1
in direct relationship to a homogeneity property
of the submodular function. In addition, we con-
duct experiments on real data sets in which the
curvature and homogeneity properties can be eas-
ily manipulated and demonstrate the relationship
between approximation and curvature, as well as
the effectiveness of adaptive sampling in practice.

1. Introduction

In machine learning, many fundamental quantities we care
to optimize such as entropy, diversity, coverage, diffusion,

1Harvard University. Correspondence to: Eric Balka-
nski <ericbalkanski@g.harvard.edu>, Yaron Singer
<yaron@seas.harvard.edu>.

Proceedings of the 35 th
International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

and clustering are submodular functions. For the canonical
problem of maximizing a non-decreasing submodular func-
tion under a cardinality constraint k, the celebrated greedy
algorithm which iteratively adds elements whose marginal
contribution is largest is known to achieve a 1� 1/e approx-
imation (Nemhauser et al., 1978) which is tight unless the
algorithm uses exponentially-many queries in the size of the
ground set n (Nemhauser & Wolsey, 1978).

Although the simple greedy algorithm achieves an optimal
approximation guarantee, it is highly adaptive. Informally,
the adaptivity of an algorithm is the number of sequential
rounds it requires when polynomially-many function eval-
uations can be executed in parallel in each round. The
adaptivity of the greedy algorithm is k since it sequentially
adds elements in k rounds, making linearly many function
evaluations in each round to evaluate the marginal contribu-
tion of every element to the set of elements selected in the
previous rounds. In general, k 2 ⌦(n) and the adaptivity,
as well as the parallel runtime, of the greedy algorithm is
hence linear in the size of the data.

The concept of adaptivity is generally well-studied in multi-
ple areas of computer science as algorithms with low adap-
tivity lead to algorithms that can be parallelized efficiently
(see Section 6 for further discussion). These areas include
sorting and selection (Valiant, 1975; Cole, 1988; Braverman
et al., 2016), communication complexity (Papadimitriou &
Sipser, 1984; Duris et al., 1984; Nisan & Widgerson, 1991),
multi-armed bandits (Agarwal et al., 2017), sparse recovery
(Haupt et al., 2009a; Indyk et al., 2011; Haupt et al., 2009b),
and property testing (Canonne & Gur, 2017; Buhrman et al.,
2012; Chen et al., 2017).

Since the greedy algorithm has linear adaptivity and the
size of the ground set n can be large, a natural question is
whether constant factor approximations with lower adap-
tivity are achievable. Somewhat surprisingly, until very
recently ⌦(n) was the best known adaptivity required for a
constant factor approximation to maximizing a monotone
submodular maximization under a cardinality constraint.

In recent work (Balkanski & Singer, 2018) introduce an
adaptive sampling technique for maximizing monotone sub-
modular functions under a cardinality constraint. This tech-
nique produces an algorithm that is O(log n)-adaptive and
achieves an approximation arbitrarily close to 1/3. Further-

Approximation Guarantees for Adaptive Sampling

more, this is tight in the sense that no algorithm can achieve
a constant factor approximation with õ(log n) rounds.

Despite this exponential improvement in adaptivity, the ap-
proximation ratio suffers. In experiments however, it seems
that adaptive sampling does substantially better than 1/3
and in some cases comparable to those of the greedy algo-
rithm that uses O(n) rounds. Ideally, if we can characterize
the settings in which approximation guarantees for adaptive
sampling are better than 1/3, these techniques could be im-
plemented and dramatically reduce the parallel running time
of applications that rely on large scale computing.

Why does adaptive sampling perform so well in practice?

In this paper we use the standard notion of curvature to rea-
son about the strong performance of adaptive sampling. Cur-
vature is a well-studied concept in the context of submod-
ular optimization (Conforti & Cornuéjols, 1984; Vondrák,
2010; Iyer & Bilmes, 2013; Iyer et al., 2013; Sviridenko
et al., 2015; Balkanski et al., 2016). Recall that a function
f : 2N ! R has curvature  if fS(a) � (1 � )f(a) for
all S and a 62 S. Our main result in this paper is that even
under very mild conditions of curvature on the function,
adaptive sampling achieves an approximation guarantee that
is arbitrarily close to 1/2 in O(log n) rounds. In particular
we show:

• An approximation arbitrarily close to max(1� , 1/2)

in O

⇣
logn

1�

⌘
adaptive rounds if the function has

bounded curvature  < 1,

• An approximation arbitrarily close to 1� µ

2µ+1 for a
µ-homogeneous function with bounded curvature,

• A tradeoff between the approximation guarantee and
the number of adaptive rounds of the algorithm,

• A tight lower bound of log n adaptive rounds, up to
lower order terms, to obtain a 1/2 approximation for
functions with bounded curvature  < 1,

• Experiments over two real-world datasets demonstrat-
ing the effectiveness of adaptive sampling in practice
and the effect of curvature.

The homogeneity condition, which we introduce to further
improve the approximation guarantee, resembles the large
market assumption in mechanism design, e.g. (Bei et al.,
2012; Anari et al., 2014; Balkanski & Hartline, 2016), in
the sense that it bounds the impact of a single element on
the overall objective.

We consider a simple, yet useful, operation to alter general
submodular functions into functions with bounded curva-
ture, which we call curvaturing and which was previously

used in Iyer et al. (2013). This technique can be interpreted
as an analogue to regularization in convex optimization.

Interestingly, we use curvaturing to obtain both upper and
lower bounds. We use curvaturing on general submodular
functions to extend the 1/2 approximation guarantee to func-
tions with unbounded curvature, at the cost of an additional
additive term in the approximation. We also give a reduction
from lower bounds for functions with bounded curvature to
lower bounds for general submodular functions using this
same technique of curvaturing. With this reduction, a previ-
ous lower bound on the number of rounds needed to obtain
a constant approximation implies the new lower bound for
functions with bounded curvature.

Paper organization. We first cover preliminary defini-
tions in Section 2. The ADAPTIVE-SAMPLING algorithm
is presented and analyzed in Section 3. We then give a
lower bound in Section 4. The experiments are in Section 5.
Finally, related work is in Section 6.

2. Preliminaries

A function f : 2N ! R+ is submodular if the marginal
contributions fS(a) := f(S [a)� f(S) of an element a 2
N to a set S ✓ N are diminishing, i.e., fS(a) � fT (a) for
all a 2 N \ T and S ✓ T , and is monotone if f(S)  f(T)
for all S ✓ T . A submodular function f is also subadditive,
meaning f(S [T)  f(S) + f(T) for all S ✓ T .We
assume that f is non-negative, i.e., f(S) � 0 for all S ✓ N ,
which is standard.

Informally, the adaptivity of an algorithm is the number of
sequential rounds of queries it makes, where every round
allows for polynomially-many parallel queries.
Definition. Given a function f , an algorithm is r-adaptive

if every query f(S) for the value of a set S occurs at a round

i 2 [r] such that S is independent of the values f(S0) of all

other queries at round i.

A submodular function f has curvature , 0    1, if

fS(a) � (1� )f(a)

for all sets S and elements a 62 S. A useful corollary is
that fS(T) � (1 � )f(T) for all non intersecting sets
|S \ T | = 0. Given a function f , the curvaturing operation
produces f̃(S) = f(S) + (1 � )|S|. Even though f

might have unbounded curvature, f̃ has curvature  when f

is normalized such that maxa2N f(a)  1.

Finally, a function f is µ-homogeneous, µ � 0, if

f(a)  (1 + µ)
OPT

k

for all a 2 N , where OPT := maxS:|S|k f(S) is the value
of the optimal solution.

Approximation Guarantees for Adaptive Sampling

3. The Algorithm

In this section, we present and analyze the ADAPTIVE-
SAMPLING algorithm. By its design, this algorithm ter-
minates after O(log n) rounds and its approximation ratio
is arbitrarily close to 1/3. We show that if the function
respects a mild curvature condition such that it has bounded
curvature  < 1, the approximation ratio of the algorithm is
arbitrarily close to max(1 � , 1/2), in O

⇣
logn

1�

⌘
rounds.

In addition, if the function is µ-homogeneous then the ap-
proximation ratio of the algorithm is further improved to
being arbitrarily close to 1� µ

2µ+1 .

Description of the algorithm. The ADAPTIVE-
SAMPLING algorithm is a generalization of the algorithm
in Balkanski & Singer (2018) designed to achieve superior
approximation guarantees for bounded curvature. The
algorithm maintains two solutions X and S, initialized
to the empty set and the ground set N respectively. At
every round, the algorithm either adds k

r
elements to X

or discards from S a constant fraction of its remaining
elements. The algorithm terminates when |X| = k or
alternatively when sufficiently many elements have been
discarded to get |X [S|  k. Thus, with r = O(log n),
the algorithm has at most logarithmic many rounds. The
algorithm is formally described below.

Algorithm 1 ADAPTIVE-SAMPLING

input threshold �, approximation ↵, samples m, rounds r
Initialize X ;, S N

while |X| < k and |X [S| > k do

update D to be uniform over subsets of S of size k

r

R argmaxR2{Ri⇠D}m
i=1

fX(R)

M top k

r
valued elements a with respect to fX(a)

if max {fX(R), fX(M)} � ↵

r
OPT then

add argmax{fX(R), fX(M)} to X , discard it from S

else

discard {a : ER⇠D
⇥
fX[R\{a}(a)

⇤
< �} from S

return X if |X| = k, or X [S otherwise

Algorithm 1 generalizes the adaptive sampling algorithm
in Balkanski & Singer (2018) by not only considering the
best sample R when adding elements to X , but also the set
M of top k/r elements a with largest contribution fX(a).
This generalization is needed to obtain, by a simple argu-
ment about curvature, the 1�  term in the approximation.

Algorithm 1 is an idealized version of the algorithm since we
cannot exactly compute expectations and OPT is unknown.
In practice, the expectations can be estimated arbitrarily
well by sampling and the algorithm can be executed multiple
times with different guesses for OPT. The full algorithm
is described in Appendix B.1. For readability we present

the analysis of the idealized version as above which easily
extends to the full algorithm, as shown in Appendix B.3.

Good and bad optimal elements. The key idea in ana-
lyzing the approximation ratio of adaptive sampling as a
function of curvature requires partitioning the elements in
the optimal solution O into good optimal elements and bad

optimal elements, as we now define. The good and bad
optimal elements play complementary roles in the analysis.
The good optimal elements O+ allow analyzing the approxi-
mation ratio in terms of curvature and bad optimal elements
O

� enable bounding the value lost in terms of homogeneity.

Definition 1. Let X be the set in ADAPTIVE-SAMPLING
when the algorithm terminates and ✏ > 0. Given some arbi-

trary ordering on the elements in O s.t. O = {o1, . . . , ok},

for every i 2 [k], let Oi = {o1, . . . , oi}. The set of good

optimal elements O
+

is the set of elements in O whose

marginal contribution to X [Oj�1 exceeds (1 + ✏)�, i.e.

O
+ := {oj 2 O : fX[Oj�1(oj) � (1 + ✏)�}. The set of

bad optimal elements is O
� = O \O

+
.

3.1. Curvature

The analysis of the approximation ratio requires bounding
the value of the set of elements discarded S

� from the
optimal solution in two major steps:

1. We first bound the value f(S�
\ O

+) of good opti-
mal elements that are discarded by 1

1�
fX(S�

\O
+).

We then bound fX(S�
\O

+) by |O
+
\ S

�
|
↵OPT

k
. It

then follows that f(S�
\ O

+)  ↵

1�
OPT, which is

arbitrarily bad as the curvature increases;

2. A second important step in the analysis is bounding
|O

+
\ S

�
| by ER⇠D [f(R)] /�. The partition of O

into O
+ and O

� is what makes this step possible as
|O \ S

�
| can be arbitrarily close to k in general. The

analysis distinguishes between elements in O
+ that

must have large value and elements in S
� that must

have small value to improve the bound on |O
+
\ S

�
|.

Lemma 1. Let f be a monontone submodular function with

curvature  and rd be the number of rounds where elements

with contribution less than � are discarded, then w.h.p.,

f(S�
\O

+) 

�
1 + ✏

�1
�
· rd · (↵+ ✏)

(1� ) · r
· OPT.

Proof. Let Xi and Di denote the set X and distribution
D at a round i of the algorithm. An optimal element
o 2 O is among the elements S

�
i

discarded at round i

if ER⇠Di

⇥
fXi[R\{o}(o)

⇤
< �. This bound on the value of

elements o 2 S
�
\O is with respect to Xi. We use curva-

ture to relate the value of the set S�
\ O

+ to its marginal

Approximation Guarantees for Adaptive Sampling

contribution to X as follows:

f
�
S
�
\O

+
�


1

1� 
· fX(S�

\O
+)

=
1

1� 
· fX([rd

i=1(S
�
i
\O

+))


1

1� 

rdX

i=1

fX

�
O

+
\ S

�
i

�

where the first inequality is by curvature and the last by
subadditivity. Next, using the definitions of O+ and S

�
i

, we
both lower and upper bound fX(O+

\ S
�
i
) by terms that

are dependent on |O
+
\ S

�
i
|. First, the value of O+

\ S
�
i

is upper bounded using the threshold � for elements to be
in S

�
i

:

fX(O+
\ S

�
i
)

 fXi(O
+
\ S

�
i
)

 E
R⇠Di

⇥
fXi[R(O

+
\ S

�
i
)
⇤
+ E

R⇠Di

[fXi(R)]

 E
R⇠Di

2

4
X

a2O+\S
�
i

fXi[R(a)

3

5+ E
R⇠Di

[fXi(R)]



X

a2O+\S
�
i

E
R⇠Di

⇥
fXi[R\{a}(a)

⇤
+ E

R⇠Di

[fXi(R)]

 |O
+
\ S

�
i
| ·�+ E

R⇠Di

[fXi(R)]

where the first inequality is by submodularity, the second
by monotonicity, the third by submodularity, the fourth by
linearity of expectation and monotonicity, and the fifth by
the definition of S�

i
. Next, we lower bound fX(O+

\ S
�
i
)

using submodularity and the definition of O+:

fX(O+
\ S

�
i
) �

X

oj2O+\S
�
i

fX[Oj�1(oj)

� |O
+
\ S

�
i
| · (1 + ✏)�.

Combining these upper and lower bounds on f(O+
\ S

�
i
),

we obtain the following bound on the number of good opti-
mal elements that are discarded,

|O
+
\ S

�
i
|  (✏�)�1

· E
R⇠Di

[f(R)] .

Then, by adding this last bound to the upper bound for
fX(O+

\ S
�
i
), we get

fX(O+
\ S

�
i
)  |O

+
\ S

�
i
| ·�+ ER⇠Di [f(R)]


�
1 + ✏

�1
�
· ER⇠Di [f(R)] .

Finally, by standard concentration bounds (Lemma 7 in Ap-
pendix B.1), with m = (r/✏)2 log (2rd/�), w.p. 1 � �/rd,
fXi (Ri) � ER⇠D [fXi(R)] � ✏OPT/r where Ri is the
sample with largest contribution to Xi at round i. By a

union bound this holds for all rd rounds where elements
are discarded w.p. 1 � �. By the algorithm, we have
fXi (Ri) <

↵

r
OPT at a round where elements are discarded.

Thus, ER⇠D [fXi(R)]  ↵+✏

r
OPT at rounds i 2 rd, and

f
�
S
�
\O

+
�


1

1� 

rdX

i=1

fX(O+
\ S

�
i
)


1

1� 

rdX

i=1

�
1 + ✏

�1
�

E
R⇠Di

[fXi(R)]


1

1� 

�
1 + ✏

�1
�
rd

↵+ ✏

r
OPT.

The next lemma shows that the algorithm obtains a 1 � 

approximation in one round with the k elements with largest
marginal contribution, the proof is deferred to Appendix A
and follows easily from the definition of curvature.

Lemma 2. Let f be a monotone submodular function with

curvature , then ADAPTIVE-SAMPLING is a non-adaptive

algorithm that obtains a (1� )-approximation with r = 1
and ↵ = 1� .

Combining the two previous lemmas, we get the general the-
orem about the approximation ratio obtained for functions
with bounded curvature. For the remaining of this section,
the parameters of ADAPTIVE-SAMPLING are sample com-
plexity m = (r/✏)2 log

�
2 log1+✏(n)/�

�
, ↵ = 1/2� ✏ and

� = (1 + ✏)OPT/(2k).

Theorem 1. Let f be a monotone submodular function with

curvature , then, for any ✏ > 0, ADAPTIVE-SAMPLING
is a log1+✏(n) + r adaptive algorithm which obtains w.h.p.

the following approximation:

max

✓
1� ,

1

2
�

3✏

2
�

log1+✏(n)

(1� ) · ✏ · r

◆
.

Proof Sketch, full proof in Appendix A. First, we show that
f(S [X) � f(O+

[X) � f(O+
\ S

�) by subadditiv-
ity and monotonicity. Then, by the definition of O+ and
O

�, we get that f(O+
[X) � OPT� |O

�
|(1 + ✏)�. By

combining these two inequalities with Lemma 1, we obtain
f(S[X) � 1

2 � ✏�
1

1�

�
1 + ✏

�1
� log1+✏(n)

r
. When the al-

gorithm returns X , f(X) �
P

r

i=1
↵

r
OPT =

�
1
2 � ✏

�
OPT.

By Lemma 2, the algorithm obtains a 1�  approximation.
Finally, we show that a (1+ ✏) fraction of the remaining ele-
ments are discarded at every round, so the number of rounds
where elements are discarded is at most log1+✏(n).

Tradeoff between approximation and rounds. An inter-
esting characteristic of this result is the tradeoff between the
approximation and the number of rounds of the algorithm as
a function of . In contrast to previous curvature-dependent
approximation guarantees that decrease as a function of ,

Approximation Guarantees for Adaptive Sampling

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6
Tradeoff between apx and rounds

Rounds

A
pp
ro
xi
m
at
io
n

Figure 1. The tradeoff between the approximation guarantee and
the number of rounds x· 1

1� ·log1+✏(n), where x is the horizontal
axis, from Corollary 1.

Corollary 1 shows that as  increases, an increase in the
number of rounds maintains an approximation arbitrarily
close to 1/2. We illustrate this tradeoff in Figure 1.

Corollary 1. Let f be a monotone submodular func-

tion with curvature , then, for any ✏ > 0, ADAPTIVE-
SAMPLING is a

⇣
1

1�

8
✏2

+ 1
⌘
log1+✏(n)-adaptive algo-

rithm that obtains w.h.p. a
1
2 � ✏ approximation.

In particular, when   1� 1/ poly(log n), this corollary
gives a 1/2� ✏ approximation in poly(log n) rounds.

Unbounded curvature. In the case where the curvature
is unbounded (when  > 1 � 1/ poly(log n)), we obtain
approximation guarantees by altering the function via cur-
vaturing. Curvaturing creates a surrogate function with
improved curvature such that the previous approximation
guarantee holds for the surrogate function. This then im-
plies an approximation guarantee for f with an additional
additive loss. We assume that f is normalized. Recall that a
function is normalized if maxa2N f(a)  1.

Corollary 2. Let f be a normalized monotone submodular

function and S be the solution obtained by ADAPTIVE-
SAMPLING over the function f̃ with curvature  = 1 �
1/ log n obtained via curvaturing f . Then,

f(S) �

✓
1

2
� ✏

◆
OPT�

k

log n

✓
1

2
+ ✏

◆✓
1 +

1

log n

◆
.

Proof. The function f is curvatured with  = 1� 1/ log n
to obtain the following surrogate function f̃ :

f̃(S) =

✓
1�

1

log n

◆
f(S) +

|S|

log n
.

Note that the optimal solution O of size k for f is also an
optimal solution for f̃ . Let S be the solution obtained by

ADAPTIVE-SAMPLING on f̃ . By Corollary 1, it is a 1/2� ✏

approximation to f̃(O). We get

f(S) =

✓
f̃(S)�

k

log n

◆✓
1�

1

log n

◆�1

�

✓✓
1

2
� ✏

◆
f̃(O)�

k

log n

◆✓
1�

1

log n

◆�1

�

✓
1

2
� ✏

◆
f(O)�

k

log n

✓
1

2
+ ✏

◆✓
1 +

1

log n

◆
.

3.2. Homogeneity

The bad optimal elements O� are used to analyze the ap-
proximation in terms of the homogeneity condition. Homo-
geneity plays a complementary role to curvature which, as
previously shown, bounds the loss from good optimal ele-
ments O+. The following lemma improves the bound on the
number |O�

| of bad optimal elements as a function of the
homogeneity parameter µ, which then implies an improved
approximation guarantee (proof deferred to Appendix A).
Lemma 3. Let f be a µ-homogeneous monotone submodu-

lar function. Then,

|O
�
| 

µ

µ+ (1� ✏)/2
· k.

Combining the bounds on the losses due to both good and
bad optimal elements, we obtain an approximation guaran-
tee arbitrarily close to 1 for functions with arbitrarily good
homogeneity when the curvature  is bounded.
Theorem 3. Let f be a µ-homogeneous monotone sub-

modular function with curvature  < 1, then ADAPTIVE-
SAMPLING is a

⇣
1

1�

1
✏2

+ 1
⌘
log1+✏(n) adaptive algo-

rithm which obtains w.h.p. the following approximation:

1�
µ · (1 + ✏)2

2µ+ 1� ✏
� ✏.

Proof Sketch, full proof in Appendix A. Similarly as for
Theorem 1, we have f(S[X) � f(O+

[X)�f(O+
\S

�)
and f(O+

[X) � OPT � |O
�
|(1 + ✏)�. By combining

these two inequalities with Lemma 1 and Lemma 3, we then
get the desired approximation guarantee. The approxima-
tion obtained when the algorithm returns X and the number
of rounds follow similarly as for Theorem 1.

4. Lower Bound

In this section, we show that the number of rounds needed to
obtain a 1� + o(1) approximation is ⌦(log n/ log log n).
Together with Corollary 1 from the previous section, this
provides a tight, up to lower order factors, characterization

Approximation Guarantees for Adaptive Sampling

of the number of rounds needed to obtain a 1/2 � ✏ ap-
proximation for functions with bounded curvature. This
hardness result is achieved with a general lemma that uses
curvaturing to reduce the problem of showing lower bounds
for submodular functions with bounded curvature to lower
bounds for general submodular functions.

Lemma 4. Assume F is a class of normalized monotone

submodular functions such that OPT � (1�✏)k, ✏ > 0, that

cannot be ↵ approximated in r rounds. Then there exists a

class of monotone submodular functions F
0

with curvature

 that cannot be ↵+ 1�

1�✏
approximated in r rounds.

Proof Sketch, full proof in Appendix C. We consider the
class of functions F 0 obtained by curvaturing F . We then
show that an algorithm that is an ↵+ 1�

1�✏
approximation

algorithm for F 0 is an algorithm that is an ↵ approximation
for F , which does not exist in r rounds by the assumption
on the class of functions F .

With this reduction, the hardness result in Balkanski &
Singer (2018) for general monotone submodular functions
implies the following lower bound for submodular functions
with bounded curvature.

Theorem 4. There is no
logn

12 log logn
-adaptive algorithm that

obtains, with probability !(1/n), an approximation of

1� 

1� 2
logn

+


log n

for monotone submodular functions with curvature .

Proof Sketch, full proof in Appendix C. The hardness re-
sult in Balkanski & Singer (2018) shows that there is no

logn

12 log logn
-adaptive algorithm that obtains, w.p. !(1/n),

a 1
logn

-approximation for general monotone submodular
functions. After normalizing the hard class of functions,
Lemma 4 immediately implies the hardness result.

5. Experiments

We conduct experiments on two datasets to empirically eval-
uate the performance of the adaptive sampling algorithm.
We observe that it performs almost as well as the standard
greedy algorithm, which achieves the optimal 1� 1/e ap-
proximation, and outperforms two simple algorithms with
low adaptivity. These experiments indicate that in prac-
tice, adaptive sampling performs significantly better than its
worst-case 1/3 approximation guarantee.

5.1. Experimental setup

We begin by describing the two datasets and the benchmarks
for the experiments.

Figure 2. A map of New York City where the purple circles are
of size proportional to the number of taxi trips with pick-ups that
occurred in the corresponding neighborhood.

5.1.1. DATASETS

Movie recommendation system. The goal of a movie
recommendation system is to find a personalized and di-
verse collection of movies to recommend to an individual
user, given ratings of movies that this user has already seen.
We use the MovieLens 1M dataset (Harper & Konstan.,
2015) which contains 1 million ratings from 6000 users on
4000 movies. A standard approach to solve the problem
of movie recommendation is low-rank matrix completion.
This approach models the problem as an incomplete rat-
ing matrix with users as rows and movies as columns and
aims to produce a complete matrix which agrees with the
incomplete matrix and has low rank. For a given user ui,
the completed matrix then gives a predicted score for each
movie mj which we denote by vi,j . A high quality recom-
mendation must also be diverse. We add a diversity term
in the objective that is a coverage function C where C(S)
is the number of different genres covered by movies in S.1
We obtain the following objective for user ui:

fi,↵(S) = (1� ↵)
X

mj2S

vi,j + ↵C(S)

where ↵ is a parameter controlling the weight of the objec-
tive on the individual movie scores versus the diversity term.
Similar submodular objectives for movie recommendation
systems have previously been used, e.g., (Mitrovic et al.,
2017; Lindgren et al., 2015; Mirzasoleiman et al., 2016;
Feldman et al., 2017). The algorithm used for low-rank ma-
trix completion is an iterative low-rank SVD decomposition
algorithm from the python package fancyimpute (Rubin-
steyn & Feldman, 2017) corresponding to the SVDimpute
algorithm analyzed in Troyanskaya et al. (2001). Unless
otherwise specified, we set k = 100, ↵ = 0.6, and number

1Each movie has one genre, for example, ”romantic comedy”
is one genre, which is different than the ”romantic drama” genre.

Approximation Guarantees for Adaptive Sampling

0 20 40 60 80 100
0

20

40

60

80

100
Movie

Number of rounds

f(S
)

0 6 12 18 24 30
0

0.5

1

Taxi

Number of rounds

f(S
)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
Movie

α

f(S
)

0 1 2 3
0

0.5

1

Taxi

Radius

f(S
)

Figure 3. The GREEDY, ADAPTIVE-SAMPLING, TOPK, and RANDOM algorithms correspond to the black, red, blue, and green lines
respectively. Figures 3(a) and 3(b) show the evolution of the value of the current solution of each algorithm at every round. The dotted
lines indicate that the algorithm terminated at a previous round. Figures 3(c) and 3(d) show the final value obtained by each algorithm as a
function of the weight parameter ↵ and radius R for the movie recommendation and taxi applications respectively. The curvature of the
functions increases as ↵ and R increase.

of rounds of adding elements r = 4 for adaptive sampling.

Taxi dispatch. In the taxi dispatch application, there are
k taxis and the goal is to pick the k best locations to cover
the maximium number of potential customers. We use 2
millions taxi trips in June 2017 from the New York City
taxi and limousine commission trip record dataset (NYC-
Taxi-Limousine-Commission, 2017), illustrated in Figure 2.
We assign a weight wi to each neighborhood ni 2 N that
is equal to the number of trips where the pick-up was in
neighborhood ni, where N is the collection of all neighbor-
hoods. We then build a coverage function CR(S) which is
equal to the sum of the weights of neighborhoods ni that are
reachable from at least one location in S, where reachable
means nj 2 S is at “as the crow flies” distance d(i, j)  R

from ni. More precisely,

CR(S) =
X

ni2N

19nj2S:d(i,j)R · wi.

Unless otherwise specified, the parameters are k = 30, ra-
dius R = 1.5km, and number of rounds of adding elements
for adaptive sampling r = 3.

5.1.2. BENCHMARKS

We compare the performance of ADAPTIVE-SAMPLING
with three algorithms. The GREEDY algorithm, which
adds the element with largest marginal contribution at each
round, is the standard algorithm for submodular optimiza-
tion and obtains the optimal 1 � e

�1 approximation (and
(1 � e

�)/ for functions with curvature  (Conforti &
Cornuéjols, 1984)) in linearly many rounds. It is used as an
upper bound to measure the performance cost of obtaining
logarithmic adaptivity with ADAPTIVE-SAMPLING. The
TOPK algorithm picks the k elements a with largest sin-
gleton value f(a). This simple algorithm has one adaptive
round and obtains a 1 �  approximation for submodular
functions with curvature . Its low adaptivity and its ap-
proximation guarantee make it a natural benchmark. Finally,

RANDOM simply returns a random subset of size k and has
0 rounds of adaptivity.

5.2. Experimental results

General performance. We first analyze how the value
of the solutions maintained by each algorithm evolves at
every round. In Figures 3(a) and 3(b), we observe that
ADAPTIVE-SAMPLING achieves a final value that is close
to the one obtained by GREEDY, but in a much smaller
number of rounds. ADAPTIVE-SAMPLING also significantly
outperforms the two simple algorithms. There are rounds
where the value of the ADAPTIVE-SAMPLING solution does
not increase, these correspond to rounds where elements are
discarded, and which allow to then pick better elements in
future rounds. For the movie recommender application, the
value of the solution obtained by GREEDY increases linearly
but we emphasize that this function is not linear, as movies
that have the same genre as a movie already picked have
their marginal contribution to the solution that decreases by
↵. In these experiments, ADAPTIVE-SAMPLING uses only
100 samples at every round. In fact, we observe very similar
performance for ADAPTIVE-SAMPLING whether it uses 10
or 10K samples per round. Thus, the sample complexity
is not an issue for ADAPTIVE-SAMPLING in practice and
can be much lower than the theoretical sample complexity
needed for the approximation guarantee.

The role of curvature and homogeneity. Next, we an-
alyze the performance of the algorithms as a function of
curvature and homogeneity. Both functions have curvature
 = 0 when ↵ = 0 and R = 0 respectively, and the cuvature
increase as ↵ and the radius increase. The movie applica-
tion has good homogeneity with µ close to 0 regardless of
↵ since optimal movies all have similarly high predicted
ratings and different genres. On the other hand, homogene-
ity gets worse as the radius increases for the taxi dispatch
application since one neighborhood covers a larger number
of neighborhoods as the radius increases.

Approximation Guarantees for Adaptive Sampling

0 3 6 9 12
0

20

40

60

80

100
Movie

Number of rounds

f(S
)

r = 1
r = 2
r = 4
r = 10

0 2 4 6 8 10
0

0.5

1

Taxi

Number of rounds

f(S
)

r = 1
r = 2
r = 5
r = 10

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
Movie

α

N
um

be
r o

f r
ou

nd
s

0 1 2 3
0

10

20

30
Taxi

Radius

N
um

be
r o

f r
ou

nd
s

Figure 4. Figures 4(a) and 4(b) show the evolution of the value of the current solution of ADAPTIVE-SAMPLING at every round, for
different values of the parameter r which controls the number of rounds of the algorithm. Figures 4(c) and 4(d) show how many rounds
are needed by GREEDY (in black) and ADAPTIVE-SAMPLING (in red) to achieve 95 percent of the final value obtained by GREEDY.

Again, we observe in Figures 3(c) and 3(d) that ADAPTIVE-
SAMPLING obtains a solution of value of very close to the
value obtained by GREEDY, and significantly better than
the two simple algorithms in general for any ↵ and any ra-
dius. As it is implied by the theoretical bounds, ADAPTIVE-
SAMPLING, TOPK, and GREEDY all perform arbitrarily
close to the optimal solution when the curvature is small.
The gap between ADAPTIVE-SAMPLING and GREEDY is
the largest for mid-range values of ↵ and R. This can be
explained by the design of the functions, which become
“easier” to optimize as ↵ and R increase since any neigh-
borhood covers a large fraction of the total value when R

is large and since there is always a large number of movies
that have a genre that is not yet in the current solution.

Figures 4(c) and 4(d) show how many rounds are needed
by GREEDY and ADAPTIVE-SAMPLING to obtain 95 per-
cent of the value of the solution of GREEDY. When the
curvature is small, the k elements with largest contribution
is a good solution so ADAPTIVE-SAMPLING only needs
one round, whereas the value obtained by GREEDY grows
linearly so it needs to be close to 95 percent of its k rounds.
For the movie recommendation, since the value obtained
by GREEDY always grows almost linearly, GREEDY always
needs 95 rounds for k = 100. For the taxi dispatch, since a
small number of elements can have very large value for large
radius, the number of rounds needed by GREEDY decreases
for large radius, as well as for ADAPTIVE-SAMPLING. Sim-
ilarly as in the two previous figures with the approximation,
we observe that the setting where ADAPTIVE-SAMPLING
needs the most number of rounds is for mid-range radius.

Number of rounds r versus performance. There is a
tradeoff between the number of rounds of ADAPTIVE-
SAMPLING and its performance. This tradeoff is more
apparent for the taxi application than for the movie recom-
mender application where ADAPTIVE-SAMPLING obtains
high value after 2 rounds (Figures 4(a) and 4(b)). Overall,
ADAPTIVE-SAMPLING obtains a high value in a small num-
ber of rounds, but this value can be slightly improved by
increasing the number of rounds of ADAPTIVE-SAMPLING.

6. Related Work

Map-Reduce. There is a long line of work on distributed
submodular optimization in the Map-Reduce model (Ku-
mar et al., 2015; Mirzasoleiman et al., 2013; Mirrokni &
Zadimoghaddam, 2015; Mirzasoleiman et al., 2015; Bar-
bosa et al., 2015; 2016; Epasto et al., 2017). Map-Reduce is
designed to tackle issues related to massive data sets that are
too large to either fit or be processed by a single machine.
Instead of addressing distributed challenges, adaptivity ad-
dresses the issue of sequentiality, where query-evaluation
time is the main runtime bottleneck and where these evalu-
ations can be parallelized. The existing Map-Reduce algo-
rithms for submodular optimization have adaptivity that is
linear in n in the worst-case. This high adaptivity is caused
by the distributed algorithms which are run on each machine,
which are variants of the greedy algorithm and thus have
adaptivity at least linear in k.

Parallel computing and depth. In the PRAM model, the
notion of depth is closely related to the concept of adaptivity.
The depth of a PRAM algorithm is the number of parallel
steps of this algorithm on a shared memory machine with
any number of processors, in other words, it is the longest
chain of dependencies of the algorithm, including operations
which are not necessarily queries. The problem of design-
ing low-depth algorithms is well-studied , e.g. (Blelloch,
1996; Blelloch et al., 2011; Berger et al., 1989; Rajagopalan
& Vazirani, 1998; Blelloch & Reid-Miller, 1998; Blelloch
et al., 2012). Our positive results extend to the PRAM model
with the adaptive sampling algorithm having Õ(log2 n · df)
depth, where df is the depth required to evaluate the func-
tion on a set. While the PRAM model assumes that the input
is loaded in memory, we consider the value query model
where the algorithm is given oracle access to a function of
potentially exponential size.

More broadly, there has been recent interest in machine
learning to scale submodular optimization algorithms for
applications over large datasets (Jegelka et al., 2011; 2013;
Wei et al., 2014; Nishihara et al., 2014; Pan et al., 2014).

Approximation Guarantees for Adaptive Sampling

Acknowledgements

This research was supported by a Google PhD Fellowship,
NSF grant CAREER CCF-1452961, BSF grant 2014389,
NSF USICCS proposal 1540428, Google research award,
and a Facebook research award.

References

Agarwal, A., Agarwal, S., Assadi, S., and Khanna, S. Learn-
ing with limited rounds of adaptivity: Coin tossing, multi-
armed bandits, and ranking from pairwise comparisons.
In COLT, pp. 39–75, 2017.

Anari, N., Goel, G., and Nikzad, A. Mechanism design
for crowdsourcing: An optimal 1-1/e competitive budget-
feasible mechanism for large markets. In FOCS, pp.
266–275. IEEE, 2014.

Balkanski, E. and Hartline, J. D. Bayesian budget feasibility
with posted pricing. In WWW, pp. 189–203, 2016.

Balkanski, E. and Singer, Y. The adaptive complexity of
maximizing a submodular function. In STOC, 2018.

Balkanski, E., Rubinstein, A., and Singer, Y. The power
of optimization from samples. In NIPS, pp. 4017–4025,
2016.

Barbosa, R., Ene, A., Nguyen, H., and Ward, J. The power
of randomization: Distributed submodular maximization
on massive datasets. In ICML, pp. 1236–1244, 2015.

Barbosa, R. d. P., Ene, A., Nguyen, H. L., and Ward, J. A
new framework for distributed submodular maximization.
In FOCS, pp. 645–654. Ieee, 2016.

Bei, X., Chen, N., Gravin, N., and Lu, P. Budget feasible
mechanism design: from prior-free to bayesian. In STOC,
pp. 449–458. ACM, 2012.

Berger, B., Rompel, J., and Shor, P. W. Efficient nc al-
gorithms for set cover with applications to learning and
geometry. In FOCS, pp. 54–59. IEEE, 1989.

Blelloch, G. E. Programming parallel algorithms. Commu-

nications of the ACM, 39(3):85–97, 1996.

Blelloch, G. E. and Reid-Miller, M. Fast set operations
using treaps. In SPAA, pp. 16–26, 1998.

Blelloch, G. E., Peng, R., and Tangwongsan, K. Linear-
work greedy parallel approximate set cover and variants.
In SPAA, pp. 23–32, 2011.

Blelloch, G. E., Simhadri, H. V., and Tangwongsan, K.
Parallel and i/o efficient set covering algorithms. In SPAA,
pp. 82–90. ACM, 2012.

Braverman, M., Mao, J., and Weinberg, S. M. Parallel al-
gorithms for select and partition with noisy comparisons.
In STOC, pp. 851–862, 2016.

Buhrman, H., Garcı́a-Soriano, D., Matsliah, A., and de Wolf,
R. The non-adaptive query complexity of testing k-
parities. arXiv preprint arXiv:1209.3849, 2012.

Canonne, C. and Gur, T. An adaptivity hierarchy theorem
for property testing. arXiv preprint arXiv:1702.05678,
2017.

Chen, X., Servedio, R. A., Tan, L.-Y., Waingarten, E., and
Xie, J. Settling the query complexity of non-adaptive
junta testing. arXiv preprint arXiv:1704.06314, 2017.

Cole, R. Parallel merge sort. SIAM Journal on Computing,
17(4):770–785, 1988.

Conforti, M. and Cornuéjols, G. Submodular set func-
tions, matroids and the greedy algorithm: tight worst-case
bounds and some generalizations of the rado-edmonds
theorem. Discrete applied mathematics, 7(3):251–274,
1984.

Duris, P., Galil, Z., and Schnitger, G. Lower bounds on
communication complexity. In STOC, pp. 81–91, 1984.

Epasto, A., Mirrokni, V. S., and Zadimoghaddam, M. Bi-
criteria distributed submodular maximization in a few
rounds. In SPAA, pp. 25–33, 2017.

Feldman, M., Harshaw, C., and Karbasi, A. Greed is good:
Near-optimal submodular maximization via greedy opti-
mization. arXiv preprint arXiv:1704.01652, 2017.

Harper, F. M. and Konstan., J. A. The movielens datasets:
History and context. ACM Transactions on Interactive In-

telligent Systems (TiiS) 5, 4, Article 19 (December 2015),

19 pages., 2015. doi: http://dx.doi.org/10.1145/2827872.

Haupt, J., Nowak, R., and Castro, R. Adaptive sensing
for sparse signal recovery. In Digital Signal Processing

Workshop and 5th IEEE Signal Processing Education

Workshop, pp. 702–707. IEEE, 2009a.

Haupt, J. D., Baraniuk, R. G., Castro, R. M., and Nowak,
R. D. Compressive distilled sensing: Sparse recovery
using adaptivity in compressive measurements. In Sig-

nals, Systems and Computers, 2009 Conference Record of

the Forty-Third Asilomar Conference on, pp. 1551–1555.
IEEE, 2009b.

Indyk, P., Price, E., and Woodruff, D. P. On the power of
adaptivity in sparse recovery. In FOCS, pp. 285–294.
IEEE, 2011.

Approximation Guarantees for Adaptive Sampling

Iyer, R. K. and Bilmes, J. A. Submodular optimization with
submodular cover and submodular knapsack constraints.
In NIPS, 2013.

Iyer, R. K., Jegelka, S., and Bilmes, J. A. Curvature and op-
timal algorithms for learning and minimizing submodular
functions. In NIPS, 2013.

Jegelka, S., Lin, H., and Bilmes, J. A. On fast approxi-
mate submodular minimization. In Advances in Neural

Information Processing Systems, pp. 460–468, 2011.

Jegelka, S., Bach, F., and Sra, S. Reflection methods for
user-friendly submodular optimization. In Advances in

Neural Information Processing Systems, pp. 1313–1321,
2013.

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A.
Fast greedy algorithms in mapreduce and streaming. ACM

Transactions on Parallel Computing, 2(3):14, 2015.

Lindgren, E. M., Wu, S., and Dimakis, A. G. Sparse and
greedy: Sparsifying submodular facility location prob-
lems. In NIPS Workshop on Optimization for Machine

Learning, 2015.

Mirrokni, V. and Zadimoghaddam, M. Randomized compos-
able core-sets for distributed submodular maximization.
In STOC, pp. 153–162, 2015.

Mirzasoleiman, B., Karbasi, A., Sarkar, R., and Krause,
A. Distributed submodular maximization: Identifying
representative elements in massive data. In NIPS, pp.
2049–2057, 2013.

Mirzasoleiman, B., Karbasi, A., Badanidiyuru, A., and
Krause, A. Distributed submodular cover: Succinctly
summarizing massive data. In NIPS, pp. 2881–2889,
2015.

Mirzasoleiman, B., Badanidiyuru, A., and Karbasi, A. Fast
constrained submodular maximization: Personalized data
summarization. In ICML, pp. 1358–1367, 2016.

Mitrovic, S., Bogunovic, I., Norouzi-Fard, A., Tarnawski,
J. M., and Cevher, V. Streaming robust submodular maxi-
mization: A partitioned thresholding approach. In NIPS,
pp. 4560–4569, 2017.

Nemhauser, G. L. and Wolsey, L. A. Best algorithms for ap-
proximating the maximum of a submodular set function.
Mathematics of operations research, 3(3):177–188, 1978.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functionsi. Mathematical Programming, 14(1):265–
294, 1978.

Nisan, N. and Widgerson, A. Rounds in communication
complexity revisited. In STOC, pp. 419–429, 1991.

Nishihara, R., Jegelka, S., and Jordan, M. I. On the conver-
gence rate of decomposable submodular function mini-
mization. In Advances in Neural Information Processing

Systems, pp. 640–648, 2014.

NYC-Taxi-Limousine-Commission. New york city taxi
and limousine commission trip record data. 2017.
URL http://www.nyc.gov/html/tlc/html/

about/trip_record_data.shtml.

Pan, X., Jegelka, S., Gonzalez, J. E., Bradley, J. K., and
Jordan, M. I. Parallel double greedy submodular maxi-
mization. In Advances in Neural Information Processing

Systems, pp. 118–126, 2014.

Papadimitriou, C. H. and Sipser, M. Communication com-
plexity. Journal of Computer and System Sciences, 28(2):
260–269, 1984.

Rajagopalan, S. and Vazirani, V. V. Primal-dual rnc ap-
proximation algorithms for set cover and covering integer
programs. SIAM Journal on Computing, 28(2):525–540,
1998.

Rubinsteyn, A. and Feldman, S. fancyimpute, ma-
trix completion and feature imputation algorithms.
2017. URL https://github.com/hammerlab/

fancyimpute.

Sviridenko, M., Vondrák, J., and Ward, J. Optimal approx-
imation for submodular and supermodular optimization
with bounded curvature. In SODA, 2015.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P.,
Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B.
Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520–525, 2001.

Valiant, L. G. Parallelism in comparison problems. SIAM

Journal on Computing, 4(3):348–355, 1975.

Vondrák, J. Submodularity and curvature: the optimal algo-
rithm. RIMS, 2010.

Wei, K., Iyer, R., and Bilmes, J. Fast multi-stage submodular
maximization. In ICML, pp. 1494–1502, 2014.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://github.com/hammerlab/fancyimpute
https://github.com/hammerlab/fancyimpute

