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A. Experiments
A.1. Network Architectures

Fashion-MNIST We trained a simple convolutional neu-
ral network with two convolutional layers (size 5×5, 32 and
64 filters, respectively), each followed by max-pooling over
3×3 areas with stride 2, and a fully-connected layer with
1024 units. ReLU activation was used for all layers. The
output layer has 10 units with softmax activation. We used
cross-entropy loss, without any additional regularization,
and a mini-batch size of 64. We trained for a total of 6000
steps with a constant global step size α.

CIFAR-10 We trained a CNN with three convolutional
layers (64 filters of size 5×5, 96 filters of size 3×3, and 128
filters of size 3×3) interspersed with max-pooling over 3×3
areas with stride 2 and followed by two fully-connected
layers with 512 and 256 units. ReLU activation was used
for all layers. The output layer has 10 units with softmax
activation. We used cross-entropy loss function and applied
L2-regularization on all weights, but not the biases. During
training we performed some standard data augmentation
operations (random cropping of sub-images, left-right mir-
roring, color distortion) on the input images. We used a
batch size of 128 and trained for a total of 40k steps with a
constant global step size α.

CIFAR-100 We use the WRN-40-4 architecture of
Zagoruyko & Komodakis (2016); details can be found in
the original paper. We used cross-entropy loss and applied
L2-regularization on all weights, but not the biases. We
used the same data augmentation operations as for CIFAR-
10, a batch size of 128, and trained for 80k steps. For
the global step size α, we used the decrease schedule sug-
gested by Zagoruyko & Komodakis (2016), which amounts
to multiplying with a factor of 0.2 after 24k, 48k, and
64k steps. TensorFlow code was adapted from https:
//github.com/dalgu90/wrn-tensorflow.

War and Peace We preprocessed War and Peace, extract-
ing a vocabulary of 83 characters. The language model
is a two-layer LSTM with 128 hidden units each. We
used a sequence length of 50 characters and a batch size
of 50. Drop-out regularization was applied during train-
ing. We trained for 200k steps; the global step size α was
multiplied with a factor of 0.1 after 125k steps. Tensor-
Flow code was adapted from https://github.com/
sherjilozair/char-rnn-tensorflow.

A.2. Step Size Tuning

Step sizes α (initial step sizes for the experiments with a
step size decrease schedule) for each optimizer have been
tuned by first finding the maximal stable step size by trial
and error and then searching downwards over multiple or-
ders of magnitude, testing 6 · 10m, 3 · 10m, and 1 · 10m

for order of magnitude m. We evaluated loss and accuracy
on the full test set (as well as on an equally-sized portion
of the training set) at a constant interval and selected the
best-performing step size for each method in terms of max-
imally reached test accuracy. Using the best choice, we
replicated the experiment ten times with different random
seeds, randomizing the parameter initialization, data set
shuffling, drop-out, et cetera. In some rare cases where
the accuracies for two different step sizes were very close,
we replicated both and then chose the one with the higher
maximum mean accuracy.

The following list shows all explored step sizes, with the
“winner” in bold face.

Problem 1: Fashion-MNIST
M-SGD:
3, 1, 6·10−1, 3·10−1,1 · 10−1, 6·10−2, 3·10−2, 1·10−2, 6·
10−3, 3 · 10−3

ADAM:
3 · 10−2, 10−2, 6 · 10−3, 3 · 10−3,1 · 10−3, 6 · 10−4, 3 ·
10−4, 1 · 10−4

M-SSD:
10−2, 6 ·10−3, 3 ·10−3, 1 ·10−3, 6 ·10−4,3 · 10−4, 1 ·10−4

M-SVAG:
3, 1, 6·10−1,3 · 10−1, 1·10−1, 6·10−2, 3·10−2, 1·10−2, 6·
10−3, 3 · 10−3

Problem 2: CIFAR-10
M-SGD:
6 · 10−1, 3 · 10−1, 1 · 10−1, 6 · 10−2,3 · 10−2, 1 · 10−2, 6 ·
10−3, 3 · 10−3

ADAM:
6·10−3, 3·10−3, 1·10−3,6 · 10−4, 3·10−4, 1·10−4, 6·10−5

M-SSD:
6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4,1 · 10−4, 6 ·
10−5, 3 · 10−5

M-SVAG:
1, 6 ·10−1, 3 ·10−1, 1 ·10−1,6 · 10−2, 3 ·10−2, 1 ·10−2, 6 ·
10−3

Problem 3: CIFAR-100
M-SGD:
6,3, 1, 6·10−1, 3·10−1, 1·10−1, 6·10−2,3 · 10−2, 1·10−2

ADAM:
1 · 10−2, 6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4,3 · 10−4, 1 ·
10−4, 6 · 10−5, 3 · 10−5

M-SSD:
1 · 10−2, 6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 ·

https://github.com/dalgu90/wrn-tensorflow
https://github.com/dalgu90/wrn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow
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10−4,1 · 10−4, 6 · 10−5, 3 · 10−5

M-SVAG:
6,3, 1, 6·10−1, 3·10−1, 1·10−1, 6·10−2,3 · 10−2, 1·10−2

Problem 4: War and Peace
M-SGD:
10, 6,3, 1, 6 · 10−1, 3 · 10−1, 1 · 10−1, 6 · 10−2

ADAM:
1 · 10−2, 6 · 10−3,3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4, 1 ·
10−4, 6 · 10−5

M-SSD:
1 · 10−2, 6 · 10−3, 3 · 10−3,1 · 10−3, 6 · 10−4, 3 · 10−4, 1 ·
10−4, 6 · 10−5

M-SVAG:
30,10, 6, 3, 1, 6 · 10−1, 3 · 10−1, 1 · 10−1

B. Mathematical Details
B.1. The Sign of a Stochastic Gradient

We have stated in the main text that the sign of a stochastic
gradient, s(θ) = sign(g(θ)), has success probabilities

ρi := P[s(θ)i = sign(∇L(θ)i)]

=
1

2
+

1

2
erf

( |∇L(θ)i|√
2σ(θ)i

)
(27)

under the assumption that g ∼ N (∇L,Σ). The following
Lemma formally proves this statement and Figure 6 provides
a pictorial illustration.
Lemma 4. If X ∼ N (µ, σ2) then

P[sign(X) = sign(µ)] =
1

2

(
1 + erf

( |µ|√
2σ

))
. (28)

Proof. Define ρ := P[sign(X) = sign(µ)]. The cumula-
tive density function (cdf) of X ∼ N (µ, σ2) is P[X ≤
x] = Φ((x− µ)/σ), where Φ(z) = 0.5(1 + erf(z/

√
2)) is

the cdf of the standard normal distribution. If µ < 0, then

ρ = P[X < 0] = Φ

(
0− µ
σ

)
=

1

2

(
1 + erf

( −µ√
2σ

))
.

(29)

If µ > 0, then

ρ = P[X > 0] = 1−P[X ≤ 0] = 1− Φ

(
0− µ
σ

)
= 1− 1

2

(
1 + erf

( −µ√
2σ

))
=

1

2

(
1 + erf

(
µ√
2σ

))
,

(30)

where the last step used the anti-symmetry of the error
function.

B.2. Analysis on Stochastic QPs

B.2.1. DERIVATION OF ISGD AND ISSD

We derive the expressions in Eq. (13), dropping the fixed θ
from the notation for readability.

For SGD, we have E[g] = ∇L and E[gTQg] =
∇LTQ∇L + tr(Qcov[g]), which is a general fact for
quadratic forms of random variables. For the stochas-
tic QP the gradient covariance is cov[g] = ν2QQ, thus
tr(Qcov[g]) = ν2 tr(QQQ) = ν2

∑
i λ

3
i . Plugging every-

thing into Eq. (12) yields

ISGD =
(∇LT∇L)2

∇LTQ∇L+ ν2
∑d
i=1 λ

3
i

. (31)

For stochastic sign descent, s = sign(g), we have
E[si] = (2ρi − 1) sign(∇Li) and thus ∇LTE[s] =∑d
i=1∇LiE[si] =

∑
i(2ρi − 1)|∇Li|. Regarding the de-

nominator, it is

sTQs ≤
∣∣∣∣∣
d∑
i=1

qijsisj

∣∣∣∣∣ ≤
d∑
i=1

|qij ||si||sj |

=

d∑
i=1

|qij |,
(32)

since |si| = 1. Further, by definition of pdiag(Q), we
have

∑d
i=1 |qij | = pdiag(Q)−1

∑d
i=1 |qii|. Since Q is pos-

itive definite, its diagonal elements are positive, such that∑d
i=1 |qii| =

∑d
i=1 qii =

∑d
i=1 λi. Plugging everything

into Eq. (12) yields

ISSD ≥
1

2

(∑d
i=1(2ρi − 1)|∇L(θ)i|

)2
∑d
i=1 λi

pdiag(Q). (33)

B.2.2. PROPERTIES OF pDIAG(Q)

By writing Q =
∑
k λkvkv

T
k in its eigendecomposition

with orthonormal eigenvectors vk ∈ Rd, we find

∑
i,j

|qij | =
∑
i,j

∣∣∣∣∣∑
k

λkvk,ivk,j

∣∣∣∣∣ ≤∑
i,j

∑
k

λk|vk,ivk,j |

=
∑
k

λk

(∑
i

|vk,i|
)∑

j

|vk,j |


≤
∑
k

λk‖vk‖21.

(34)

As mentioned before,
∑
i |qii| =

∑
i λi. Hence,

pdiag(Q) =

∑
i |qii|∑
i,j |qij |

=

∑
i λi∑

i λi‖vi‖21
. (35)
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Figure 6. Probability density functions (pdf) of three Gaussian distributions, all with µ = 1, but different variances σ2 = 0.5 (left),
σ2 = 1.0 (middle), σ2 = 4.0 (right). The shaded area under the curve corresponds to the probability that a sample from the distribution
has the opposite sign than its mean. For the Gaussian distribution, this probability is uniquely determined by the fraction σ/|µ|, as shown
in Lemma 4.

As we have already seen, the best case arises if the eigen-
vectors are axis-aligned (diagonal Q), resulting in ‖vi‖1 =
‖vi‖2 = 1.

A worst case bound originates from the (tight) upper bound
‖w‖1 ≤

√
d‖w‖2 for any w ∈ Rd, which results in

pdiag(Q) ≥ 1

d
. (36)

We can get a rough intuition for the average case from the
following consideration: For a d-dimensional random vector
w ∼ N (0, I), which corresponds to a random orientation,
we have

E[‖w‖2] ≈
√
d, E[‖w‖1] = d

√
2/π. (37)

As a rough approximation, we can thus assume that a
randomly-oriented vector will satisfy ‖w‖1 ≈

√
2d/π‖w‖2.

Plugging that in for the eigenvectors of Q in Eq. (35) yields
an approximate average case value of

pdiag(Q) ≈ π

2d
≈ 1.57

d
. (38)

B.3. Variance Adaptation Factors

Proof of Lemma 1. Using E[p̂i] = pi and E[p̂2i ] = p2i +σ2
i ,

we get

E[‖γ � p̂− p‖22] =

d∑
i=1

E[(γip̂i − pi)2]

=

d∑
i=1

(
γ2iE[p̂2i ]− 2γipiE[p̂i] + p2i

)
=

d∑
i=1

(
γ2i (p2i + σ2

i )− 2γip
2
i + p2i

)
.

(39)

Setting the derivative w.r.t. γi to zero, we find the optimal
choice

γi =
p2i

p2i + σ2
i

. (40)

For the second part, using E[sign(p̂i)] = (2ρi− 1) sign(pi)
and sign(·)2 = 1, we get

E[‖γ � sign(p̂)− sign(p)‖22]

=

d∑
i=1

E
[
(γi sign(p̂i)− sign(pi))

2
]

=

d∑
i=1

(
γ2i − 2γi sign(pi)E[sign(p̂i)] + 1

)
=

d∑
i=1

(
γ2i − 2γi(2ρi − 1) + 1

)
(41)

and easily find the optimal choice

γi = 2ρi − 1. (42)

by setting the derivative to zero.

B.4. Convergence of Idealized SVAG

We prove the convergence results for idealized variance-
adapted stochastic gradient descent (Theorem 1). The
stochastic optimizer generates a discrete stochastic process
{θt}t∈N0

. We denote as Et[·] = E[·|θt] the conditional ex-
pectation given a realization of that process up to time step
t. Recall that E[Et[·]] = E[·].
We first show the following Lemma.
Lemma 5. Let f : Rd → R be µ-strongly convex and L-
smooth. Denote as θ∗ := arg minθ∈Rd f(θ) the unique
minimizer and f∗ = f(θ∗). Then, for any θ ∈ Rd,

2L2

µ
(f(θ)− f∗) ≥ ‖∇f(θ)‖2 ≥ 2µ(f(θ)− f∗). (43)
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Proof. Regarding the first inequality, we use ∇f(θ∗) = 0
and the Lipschitz continuity of ∇f(·) to get ‖∇f(θ)‖2 =
‖∇f(θ)−∇f(θ∗)‖2 ≤ L2‖θ− θ∗‖2. Using strong convex-
ity, we have f(θ) ≥ f∗ +∇f(θ∗)

T (θ − θ∗) + (µ/2)‖θ −
θ∗‖2 = f∗+ (µ/2)‖θ− θ∗‖2. Plugging the two inequalities
together yields the desired inequality.

The second inequality arises from strong convexity, by min-
imizing both sides of

f(θ′) ≥ f(θ) +∇f(θ)T (θ′ − θ) +
µ

2
‖θ′ − θ‖2 (44)

w.r.t. θ′. The left-hand side obviously has minimal
value f∗. For the right-hand side, we set its derivative,
∇f(θ) + µ(θ′ − θ), to zero to find the minimizer θ′ =
θ − ∇f(θ)/µ. Plugging that back in yields the minimal
value f(θ)− ‖∇f(θ)‖/(2µ).

Proof of Theorem 1. Using the Lipschitz continuity of ∇f ,
we can bound f(θ+ ∆θ) ≤ f(θ) +∇f(θ)T∆θ+ L

2 ‖∆θ‖2.
Hence,

Et[ft+1]

≤ ft − αEt[∇fTt (γt � gt)] +
Lα2

2
Et[‖γt � gt‖2]

= ft −
1

L

d∑
i=1

γt,i∇ft,iEt[gt,i] +
1

2L

d∑
i=1

γ2t,iEt[g
2
t,i]

= ft −
1

L

d∑
i=1

γt,i∇f2t,i +
1

2L

d∑
i=1

γ2t,i(∇f2t,i + σ2
t,i).

(45)
Plugging in the definition γt,i = ∇f2t,i/(∇f2t,i + σ2

t,i) and
simplifying, we get

Et[ft+1] ≤ ft −
1

2L

d∑
i=1

∇f4t,i
∇f2t,i + σ2

t,i

. (46)

This shows that Et[ft+1] ≤ ft. Defining et := ft− f∗, this
implies

E[et+1] = E[Et[et+1]] ≤ E[et] (47)

and consequently, by iterating backwards, E[et] ≤ E[e0] =
e0 for all t. Next, using the discrete version of Jensen’s
inequality5 we find

d∑
i=1

∇f4t,i
∇f2t,i + σ2

t,i

≥ ‖∇ft‖4
‖∇ft‖2 +

∑d
i=1 σ

2
t,i

. (48)

5 Jensen’s inequality states that, for a real convex function φ,
numbers xi ∈ R, and positive weights ai ∈ R+ with

∑
i ai = 1,

we have
∑
i aiφ(xi) ≥ φ

(∑
i aixi

)
. We apply it here to the

convex function φ(x) = 1/x, x > 0, with xi :=
∇f2t,i+σ

2
t,i

∇f2t,i
and

ai :=
∇f2t,i
‖∇ft‖2

.

Using the assumption
∑d
i=1 σ

2
t,i ≤ cv|∇ft‖2 +Mv in the

denominator, we obtain

‖∇ft‖4
‖∇ft‖2 +

∑d
i=1 σ

2
t,i

≥ ‖∇ft‖4
(1 + cv)‖∇ft‖2 +Mv

. (49)

Using Lemma 5, we have

2L2

µ
et ≥ ‖∇ft‖2 ≥ 2µet (50)

and can further bound

‖∇ft‖4
(1 + cv)‖∇ft‖2 +Mv

≥ 4µ2e2t
2(1+cv)L2

µ et +Mv

=:
c1e

2
t

c2et + c3
,

(51)

where the last equality defines the (positive) constants c1, c2
and c3. Combining Eqs. (48), (49) and (51), inserting in
(46), and subtracting f∗ from both sides, we obtain

Et[et+1] ≤ et −
1

2L

c1e
2
t

c2et + c3
, (52)

and, consequently, by taking expectations on both sides,

E[et+1] ≤ E[et]−
1

2L
E

[
c1e

2
t

c2et + c3

]
≤ E[et]−

1

2L

c1E[et]
2

c2E[et] + c3

(53)

where the last step is due to Jensen’s inequality applied to
the convex function φ(x) = c1x

2

c2x+c3
. Using E[et] ≤ e0 in

the denominator and introducing the shorthand ēt := E[et],
we get

ēt+1 ≤ ēt − cē2t = ēt(1− cēt), (54)

with c := c1/(2L(c2e0 + c3)) > 0. To conclude the proof,
we will show that this implies ēt ∈ O( 1

t ). Without loss of
generality, we assume ēt+1 > 0 and obtain

ē−1t+1 ≥ ē−1t (1− cēt)−1 ≥ ē−1t (1 + cēt)

= ē−1t + c,
(55)

where the second step is due to the simple fact that (1 −
x)−1 ≥ (1+x) for any x ∈ [0, 1). Summing this inequality
over t = 0, . . . , T − 1 yields ē−1T ≥ e−10 + Tc and, thus,

T ēT ≤
(

1

Te0
+ c

)−1
T→∞−→ 1

c
<∞, (56)

which shows that ēt ∈ O( 1
t ).
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B.5. Gradient Variance Estimates via Moving Averages

We proof Eq. (20). Iterating the recursive formula for m̃t

backwards, we get

mt =

t∑
s=0

1− β1
1− βt+1

1

βt−s1︸ ︷︷ ︸
=:c(β1,t,s)

gs, (57)

with coefficients c(β1, t, s) summing to one by the geo-
metric sum formula, making mt a convex combination of
stochastic gradients. Likewise, vt =

∑t
s=0 c(β2, t, s)g

2
s is a

convex combination of squared stochastic gradients. Hence,

E[mt,i] =
∑

c(β, t, s)E[gs,i],

E[vt,i] =
∑

c(β, t, s)E[g2s,i].
(58)

Assumption 1 thus necessarily implies E[gs,i] ≈ ∇Lt,i and
E[g2s,i] ≈ ∇L2

t,i+σ
2
t,i. (This will of course be utterly wrong

for gradient observations that are far in the past, but these
won’t contribute significantly to the moving average.) It
follows that

E[m2
t,i] = E[mt,i]

2 + var[mt,i]

= ∇L2
t,i +

t∑
s=0

c(β, t, s)2 var[gs,i]

= ∇L2
t,i + σ2

t,i

t∑
s=0

c(β, t, s)2,

(59)

where the second step is due to the fact that gs and gs′

are stochastically independent for s 6= s′. The last term
evaluates to

ρ(β, t) :=

t∑
s=0

c(β, t, s)2 =

t∑
s=0

(
1− β

1− βt+1
βt−s

)2

=
(1− β)2

(1− βt+1)2

t∑
k=0

(β2)k

=
(1− β)2

(1− βt+1)2
1− (β2)t+1

1− β2

=
(1− β)(1− β)

(1− βt+1)(1− βt+1)

(1− βt+1)(1 + βt+1)

(1− β)(1 + β)

=
(1− β)(1 + βt+1)

(1 + β)(1− βt+1)
,

(60)

where the fourth step is another application of the geometric
sum formula, and the fifth step uses 1−x2 = (1−x)(1+x).
Note that

ρ(β, t)→ 1− β
1 + β

(t→∞), (61)

such that ρ(β, t) is uniquely defined by β in the long term.

As an interesting side note, the division by 1 − ρ(β, t) in
Eq. (22) is the analogon to Bessel’s correction (the use of
n− 1 instead of n in the classical sample variance) for the
case where we use moving averages instead of arithmetic
means.

B.6. Connection to Generalization

Proof of Lemma 3. Like in the proof of Lemma 3.1 in
Wilson et al. (2017), we inductively show that θt =
λt sign(XT y) with a scalar λt. This trivially holds for
θ0 = 0. Assume that the assertion holds for all s ≤ t.
Then

∇R(θt) =
1

n
XT (Xθt − y)

=
1

n
XT (λtX sign(XT y)− y)

=
1

n
XT (λtcy − y) =

1

n
(λtc− 1)XT y,

(62)

where the first step is the gradient of the objective (Eq. 26),
the second step uses the inductive assumption, and the third
step uses the assumption X sign(XT y) = cy. Now, plug-
ging Eq. (62) into the update rule, we find

θt+1 = θt − α sign(∇R(θt))

= λt sign(XT y)− α sign((λtc− 1)XT y)

= (λt − α sign(λtc− 1)) sign(XT y).

(63)

Hence, the assertion holds for t+ 1.

C. Alternative Methods
C.1. SVAG

M-SVAG applies variance adaptation to the update direction
mt, resulting in the variance adaptation factors Eq. 25. We
can also update in direction gt and choose the appropriate
estimated variance adaptation factors, resulting in an imple-
mentation of SVAG without momentum. We have already
derived the necessary variance adaptation factors en route
to those for the momentum variant, see Eq. (23) in §4.2.
Pseudo-code is provided in Alg. 3. It differs from M-SVAG
only in the last two lines.

C.2. Variants of ADAM

This paper interpreted ADAM as variance-adapted M-SSD.
The experiments in the main paper used a standard imple-
mentation of ADAM as described by Kingma & Ba (2015).
However, in the derivation of our implementation of M-
SVAG, we have made multiple adjustments regarding the
estimation of variance adaptation factors which correspond-
ingly apply to the sign case. Specifically, this concerns:
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Algorithm 3 SVAG

Input: θ0 ∈ Rd, α > 0, β ∈ [0, 1], T ∈ N
Initialize θ ← θ0, m̃← 0, ṽ ← 0
for t = 0, . . . , T − 1 do
m̃← βm̃+ (1− β)g(θ), ṽ ← βṽ + (1− β)g(θ)2
m← (1− βt+1)−1m̃, v ← (1− βt+1)−1ṽ
s← (1− ρ(β, t))−1(v −m2)
γ ← m2/(m2 + s)
θ ← θ − α(γ � g)

end for

• The use of the same moving average constant for the
first and second moment (β1 = β2 = β).

• The bias correction in the gradient variance estimate,
see Eq. (22).

• The adjustment of the variance adaptation factors for
the momentum case, see §4.3.

• The omission of a constant offset ε in the denominator.

Applying these adjustment to the sign case gives rise to a
variant of the original ADAM algorithm, which we will refer
to as ADAM*. Pseudo-code is provided in Alg. 4. Note
that we use the variance adaptation factors (1 + η)−1/2 and
not the optimal ones derived in §3.1, which would under
the Gaussian assumption be erf[(

√
2η)−1]. We initially

experimented with both variants and found them to perform
almost identically, which is not surprising given how similar
the two are (see Fig. 3). We thus stuck with the first option
for direct correspondence with the original ADAM and to
avoid the cumbersome error function.

In analogy to SVAG versus M-SVAG, we could also define
a variance-adapted version stochastic sign descent without
momentum, i.e., using the base update direction sign(gt).
We did not explore this further in this work.

Algorithm 4 ADAM*
Input: θ0 ∈ Rd, α > 0, β ∈ [0, 1], T ∈ N
Initialize θ ← θ0, m̃← 0, ṽ ← 0
for t = 0, . . . , T − 1 do
m̃← βm̃+ (1− β)g(θ), ṽ ← βṽ + (1− β)g(θ)2
m← (1− βt+1)−1m̃, v ← (1− βt+1)−1ṽ
s← (1− ρ(β, t))−1(v −m2)

γ ←
√
m2/(m2 + ρ(β, t)s)

θ ← θ − α(γ � sign(m))
end for

C.3. Experiments

We tested SVAG as well as ADAM* with and without mo-
mentum on the problems (P2) and (P3) from the main paper.
Results are shown in Figure 7.
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Figure 7. Experimental results for SVAG and ADAM*. The plot is
set-up like Fig. 5.

We observe that SVAG performs better than M-SVAG on (P2).
On (P3), it makes faster initial progress but later plateaus,
leading to slightly worse outcomes in both training loss and
test accuracy. SVAG is a viable alternative. In future work,
it will be interesting to apply SVAG to problems where SGD
outperforms M-SGD.

Next, we compare ADAM* to the original ADAM algorithm.
In the CIFAR-100 example (P3) the two methods are on
par. On (P2), ADAM is marginally faster in the early stages
of the the optimization process. ADAM* quickly catches
up and reaches lower minimal training loss values. We
conclude that the adjustments to the variance adaptation
factors derived in §4 do have a positive effect.

D. Mini-Batch Gradient Variance Estimates
In the main text, we have discussed estimation of gradient
variances via moving averages of the past gradient obser-
vations. An alternative gradient variance estimate can be
obtained locally, within a single mini-batch. The individual
gradients ∇`(θ;xk) in a mini-batch are iid random vari-
ables and var[g(θ)] = |B|−1vark∼U([M ])[∇`(θ;xk)]. We
can thus estimate g(θ)’s variances by computing the sample
variance of the {∇`(θ;xk)}k∈B, then scaling by |B|−1,

ŝmb(θ) =
1

|B|

(
1

|B| − 1

∑
k∈B

∇`(θ;xk)2 − g(θ)2

)
. (64)

Several recent papers (Mahsereci & Hennig, 2015; Balles
et al., 2017b) have used this variance estimate for other
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aspects of stochastic optimization. In contrast to the moving
average-based estimators, this is an unbiased estimate of the
local gradient variance. The (non-trivial) implementation
of this estimator for neural networks is described in Balles
et al. (2017a).

D.1. M-SVAG with Mini-Batch Estimates

We explored a variant of M-SVAG which use mini-batch
gradient variance estimates. The local variance estimation
allows for a theoretically more pleasing treatment of the
variance of the update direction mt. Starting from the for-
mulation of mt in Eq. (57) and considering that gs and gs′
are stochastically independent for s 6= s′, we have

var[mt] =

t∑
s=0

(
1− β

1− βt+1
βt−s

)2

var[gs]. (65)

Given that we now have access to a true, local, unbiased
estimate of var[gs], we can estimate var[mt] by

s̄t :=

t∑
s=0

(
1− β

1− βt+1
βt−s

)2

ŝmb(θs). (66)

It turns out that we can track this quantity with another
exponential moving average: It is s̄t = ρ(β, t)rt with

r̃t = β2r̃t−1 + (1− β2)ŝmb
t , rt =

r̃t
1− (β2)t+1

. (67)

This can be shown by iterating Eq. (67) backwards and
comparing coefficients with Eq. (66). The resulting mini-
batch variant of M-SVAG is presented in Algorithm 5.

Note that mini-batch gradient variance estimates could like-
wise be used for the alternative methods discussed in §C.
We do not explore this further in this paper.

D.2. Experiments

We tested the mini-batch variant of M-SVAG on the problems
(P1) and (P2) from the main text and compared it to the
moving average version. Results are shown in Figure 8. The
two algorithms have almost identical performance.

Algorithm 5 M-SVAG with mini-batch variance estimate
Input: θ0 ∈ Rd, α > 0, β ∈ [0, 1], T ∈ N
Initialize θ ← θ0, m̃← 0, r̃ ← 0
for t = 0, . . . , T − 1 do

Compute mini-batch gradient g(θ) and variance ŝmb(θ)
m̃← βm̃+ (1− β)g(θ), r̃ ← β2r̃ + (1− β2)ŝmb(θ)

m← (1− βt+1)−1m̃, r ← (1− β2(t+1))−1r̃
γ ← m2/(m2 + ρ(β, t)r)
θ ← θ − α(γ �m)

end for
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Figure 8. Experimental results for the mini-batch variant of M-
SVAG (marked “mb” in the legend). The plot is set-up like Fig. 5.


