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APPENDIX: Differentially Private Database Release via Kernel Mean Embeddings

A. Proofs
Here we provide proofs for the results stated in the main text, together with additional supporting lemmas required for these
proofs.

A.1. Algorithm 1 (Synthetic Data Subspace): Consistency

Before proving Theorem 2, we obtain a Lemma showing that the “projection error” incurred due to projecting the KME µ̂X
onto the finite-dimensional subspaceHM spanned by the synthetic data points, quantified by the RKHS distance between
µ̂X and the projection µX , converges to 0 as N →∞:

Lemma 10. Let X be a compact metric space and k : X × X → R a continuous kernel on X . Suppose that the synthetic
data points z1, z2, . . . are sampled i.i.d. from a probability distribution q on X . If the support supp(X) of X is included in
the support of q, then

‖µX − µ̂X‖H
P→ 0 as N →∞. (6)

Proof. Let ε > 0. As k is continuous on X × X , which as a product of compact spaces is itself compact by Tychonoff’s
theorem, the kernel k is uniformly continuous and in particular there exists δ > 0 such that for all x, x′ ∈ X we have
|k(x, x) − k(x, x′)| < ε2/2 whenever ‖x − x′‖X < δ. As X is compact, it is totally bounded, and thus so is its subset
supp(X). Therefore supp(X) can be covered with finitely many open balls B1, . . . , BK of radius δ/2. Let the sequence
z1, z2, . . . be sampled i.i.d. from q, and let EM be the event that at least ones of these K balls contains no element of
z1, . . . , zM . Since supp(X) ⊆ supp(q) by assumption, we have q(Bk) > 0 for all k = 1, . . . ,K and therefore P[EM ]→ 0
as M →∞.

Note that if all K balls contain an element of z1, . . . , zM (i.e., ECM holds), then for each x ∈ supp(X) one can find
1 ≤ m(x) ≤M such that ‖x− zm(x)‖ < δ/2 + δ/2 = δ. In that case

‖µX − µ̂X‖H = inf
h∈HM

‖h− µ̂X‖H [property of projection]

≤

∥∥∥∥∥ 1

N

N∑
n=1

k(zm(xn), ·)− µ̂X

∥∥∥∥∥
H

[as 1
N

∑N
n=1 k(zm(xn), ·) ∈ HM ]

≤ 1

N

N∑
n=1

∥∥k(zm(xn), ·)− k(xn, ·)
∥∥
H [Triangle inequality]

<
1

N

N∑
n=1

ε [see below]

= ε, (7)

where we have used the reproducing property, the Triangle inequality and our choices of δ and zm(xn) to see that for all
1 ≤ n ≤ N ,∥∥k(zm(xn), ·)− k(xn, ·)

∥∥
H = 〈k(zm(xn),· − k(xn, ·), k(zm(xn),· − k(xn, ·)〉1/2H (8)

=
(
k(zm(xn), zm(xn))− 2k(zm(xn), xn) + k(xn, xn)

)1/2

(9)

≤
(
|k(zm(xn), zm(xn))− k(zm(xn), xn)|+ |k(xn, xn)− k(zm(xn), xn)|

)1/2
(10)

<

(
ε2

2
+
ε2

2

)1/2

= ε. (11)

Hence we have that P [‖µX − µ̂X‖H > ε] ≤ P[EM ] → 0 as M → ∞. But since ε > 0 was arbitrary and M → ∞ as
N →∞ by construction, the claimed convergence in probability result follows from definition.



Differentially Private Database Release via Kernel Mean Embeddings

Theorem 2. Let X be a compact metric space and k : X × X → R a continuous kernel on X . Suppose that the synthetic
data points z1, z2, . . . are sampled i.i.d. from a probability distribution q on X . If the support of X is included in the support
of q, then Algorithm 1 outputs a consistent estimator of the kernel mean embedding µX in the sense that

M∑
m=1

wmk(zm, ·)
P→ µX as N →∞. (12)

Proof. Using the Triangle inequality, we can upper bound the RKHS distance between the output µ̃X of Algorithm 1 and
the true kernel mean embedding µX as follows:

‖µ̃X − µX‖H ≤ ‖µ̃X − µX‖H︸ ︷︷ ︸
privacy error

+ ‖µX − µ̂X‖H︸ ︷︷ ︸
projection error

+ ‖µ̂X − µX‖H︸ ︷︷ ︸
finite sample error

. (13)

The finite sample error tends to 0 as N →∞ by the law of large numbers, while the projection error tends to 0 as N →∞
by Lemma 10. For the privacy error, using orthonormality of the basis {b1, . . . , bF } we have

‖µ̃X − µX‖
2
H =

∥∥∥∥∥∥
F∑
f=1

(βf − αf )bf

∥∥∥∥∥∥
2

H

=

F∑
f=1

(βf − αf )2 =
8 ln(1.25/δ)

N2ε2
F

1

F

F∑
f=1

N (0, 1)2. (14)

As a function of N , the size of the basis F ∈ N is a non-decreasing function, so it either converges to some L ∈ N, in
which case the obtained expression clearly tends to 0 as N → ∞ with probability 1, or F → ∞ as N → ∞. In this
latter case 1

F

∑F
f=1N (0, 1)2 → 1 as N →∞ a.s. by the strong law of large numbers, and F/N2 → 0 as N →∞ since

F ≤M = o(N2). Hence the privacy error goes to 0 as N →∞ either way, as required to complete the proof.

Theorem 11. Suppose that the kernel k is c0-universal (Sriperumbudur et al., 2011) and f is any continuous function
mapping from X to some space Y . Let C ≥ 1 be any finite constant. If line 7 of Algorithm 1 is replaced with a regularised
reduced set method solving the constrained minimisation problem

w = argmin
u:‖u‖1≤C

∥∥∥∥∥µ̃X −
M∑
m=1

umk(zm, ·)

∥∥∥∥∥
H

, (15)

then the points output by Algorithm 1 yield a consistent estimator of the kernel mean embedding E[k(f(X), ·)] of f(X) in
the sense that

M∑
m=1

wmk(f(zm), ·) P→ µf(X) as N →∞. (16)

Proof. Let µout
X :=

∑M
m=1 wmk(zm, ·) be the RKHS element output by Algorithm 1 after adding the stated regularisation.

First we show that despite the regularisation, µout
X remains a consistent estimator of the true kernel mean embedding µX as

N →∞.

The modification introduces an additional regularisation error term ‖µout
X − µ̃X‖H into the upper bound on ‖µout

X − µX‖,
compared to the corresponding bound (13) in the proof of Theorem 2. So to show the first desired consistency result, it
remains to show that this extra regularisation error term converges to 0 in probability as N →∞. To this end, let ε > 0
be arbitrary. Define δ > 0, the sequence z1, z2, . . . and m(x) for x ∈ X as in the proof of Lemma 10. Note that the
RKHS element 1

N

∑N
n=1 k(zm(xn), ·) is in the feasible set of the regularised minimisation problem (15), because the sum of

absolute values of expansions coefficients is

M∑
m=1

∑
n:m(xn)=n

1

M
=

N∑
n=1

1

N
= 1 ≤ C (17)
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Therefore the regularisation error can be upper bounded as

‖µout
X − µ̃X‖H ≤

∥∥∥∥∥ 1

N

N∑
n=1

k(zm(xn), ·)− µ̃X

∥∥∥∥∥
H

[property of min]

≤ ‖µ̃X − µ̂X‖H +

∥∥∥∥∥µ̂X − 1

N

N∑
n=1

k(zm(xn), ·)

∥∥∥∥∥
H

[Triangle inequality]

The first term goes to 0 as N →∞ by the argument given in the proof of Theorem 2. The probability that the second term
is larger than ε converges to 0 as N →∞ using the argument given in the proof of Lemma 10. Hence we have the desired
convergence of the modified Algorithm 1’s output µout

X to the true kernel mean embedding µX as N →∞, in probability.

This means that the modified algorithm still outputs a consistent estimator of the kernel mean embedding of µX . Moreover,
the weights in the released finite expansion now have their L1 norm

∑M
m=1 |wm| bounded by the constant C by construction,

so Theorem 1 of (Simon-Gabriel et al., 2016) applies and gives the desired conclusion regarding consistency of the estimator
for the kernel mean embedding µf(X) of f(X).

A.2. Algorithm 1 (Synthetic Data Subspace): Convergence Rates

Towards proving the convergence rate of Proposition 5, we will make use of the following Lemma 12, which is a refinement
of the corresponding consistency result of Lemma 10 above. It uses the Lipschitz assumption on the kernel to establish a
quantitative dependence between ε and δ, and the condition on q to establish a dependence between δ, K and P[EM ].
Lemma 12. Suppose that X is a bounded subset of RD, the kernel k is Lipschitz with some Lipschitz constant L ∈ R+,
and the synthetic data points z1, z2, . . . are sampled i.i.d. from a distribution q whose density is bounded away from 0 on
any bounded subset of RD. Then

∀γ ∈ (0, 1), a > 0 ∃C ∈ R, ε0 > 0 ∀ε ∈ (0, ε0) M ≥ Cε−2D−a ⇒ P [‖µ̂X − µ̄X‖H ≥ ε] ≤ γ.

Proof. Let γ ∈ (0, 1) and a > 0. Suppose for the moment that C and ε0 have already been chosen based on X , q, γ, a and
based on the Lipschitz constant L of the kernel k. Let ε ∈ (0, ε0) and suppose that M ≥ Cε−2D−a.

Define δ = ε2

2L and let B1, . . . , BK be a covering of supp(X) with K open balls of radii δ2 . By the Lipschitz property

‖x− x′‖X < δ ⇒ |k(x, x′)− k(x, x)| ≤ L‖x− x′‖X < Lδ =
ε2

2

and so by the argument appearing in the proof of Lemma 10, if each ball Bk contains at least one synthetic data point zm,
then ‖µ̂X − µ̄X‖H < ε. Therefore it suffices to show that if M ≥ Cε−2D(1+a), then the probability of some of the balls
not containing any synthetic data point is at most γ.

To this end, let us look at the number of balls K, and the probability that a synthetic data point lands in a particular ball, as
functions of ε (via the ball radius δ

2 ). First, since X is a bounded subset of RD, there exists C1 ∈ R such that for all δ > 0,
the space X can be covered with bC1δ

−Dc open balls of radii δ/2. Second, since the density of q is assumed to be bounded
away from 0 on any bounded subset of RD, there exists C2 ∈ R such that q(Bk) ≥ C2δ

D for all k.

Let AMk be the event that the ball Bk remains without a synthetic data point after M of them have been sampled. Then the
probability of the event EM that any of the K balls remains empty can be upper bounded by a union bound as

P[EM ] ≤
K∑
k=1

P[AMk ] =

K∑
k=1

(1− q(Bk))M ≤
K∑
k=1

(1− C2δ
D)M ≤ K exp

(
−MC2δ

D
)
≤ C1δ

−D exp
(
−MC2δ

D
)
.

Solving for M , we can easily verify that P[EM ] ≤ γ is ensured whenever

M ≥ 1

C2δD

(
D ln

1

δ
+ ln

C1

γ

)
=

(2L)D

C2

1

ε2D

(
2 ln

1

ε
+ ln

C1(2L)D

γ

)
Since ln 1

ε <
1
εa for all sufficiently small ε, we see that we could have chosen ε0 > 0 and C ∈ R such that the right-hand

side is at most Cε−2D−a for all ε ∈ (0, ε0). But the condition M ≥ Cε−2D−a is satisfied by supposition, and so we
conclude that P [‖µ̂X − µ̄X‖H] ≤ P[EM ] ≤ γ.
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Proposition 5 Suppose that X is a bounded subset of RD, the kernel k is Lipschitz, and the synthetic data points z1, z2, . . .
are sampled i.i.d. from a distribution q whose density is bounded away from 0 on any bounded subset of RD. Then M(N)
can be chosen so that Algorithm 1 outputs an estimator that converges to the true kernel mean embedding µX in RKHS
norm at a rate Op(N−1/(D+1+c)), where c is any fixed positive number c > 0.

Proof. As in the proof of Theorem 2, we can decompose the error between the released element µ̃X and the true µX as

‖µ̃X − µX‖H ≤ ‖µ̂X − µX‖H︸ ︷︷ ︸
finite sample error

+ ‖µX − µ̂X‖H︸ ︷︷ ︸
projection error

+ ‖µ̃X − µX‖H︸ ︷︷ ︸
privacy error

. (18)

Using the standard empirical kernel mean embedding estimator, the finite sample error vanishes as Op(N−1/2) (Muandet
et al., 2016). From the proof of Theorem 2 we can see that the privacy error vanishes as Op(

√
F/N) ⊆ Op(

√
M/N).

Solving for ε in the statement of the preceding Lemma 12 we have that for all γ ∈ (0, 1), a > 0 and all sufficiently large M ,

P
[
‖µ̂X − µ̄X‖H ≥

1

C
M−

1
2D+a

]
≤ γ.

The projection error thus vanishes at a rate Op(M−1/(2D+a)), for any arbitrarily small a > 0. To achieve the claimed total
rate Op(N−1/(D+1+c)) we choose M(N) = Nk with k = 1− 4/(2D + a+ 2), and verify that

Op

(
1√
N

+M
−1

2D+a +

√
M

N

)
= Op

(
1√
N

+N
−k

2D+a +

√
Nk

N

)
= Op

(
1√
N

+N−
1

D+1+a/2

)
= Op

(
N−

1
D+1+a/2

)
and the claimed result follows by taking a = 2c > 0.

Proposition 6 Suppose that a fixed proportion η of the private database can be published without modification. Using this
part of the database as the synthetic data points, Algorithm 1 outputs a consistent estimator of µX that converges in RKHS
norm at a rate Op(N−1/2).

Proof. Let µ̂baseline := 1
M

∑M
m=1 k(zm, ·) be the baseline estimator that weights the M public points uniformly. Noting that

µ̂baseline ∈ HM lies in the span of feature maps of synthetic data points, for the projection error as defined in equation (18)
we have:

‖µX − µ̂X‖H =
∥∥µ̂baseline − µ̂X

∥∥
H [ property of projection ]

=
∥∥µ̂baseline − µX

∥∥
H + ‖µ̂X − µX‖H [ Triangle inequality ]

∈ Op
(
M−1/2

)
+Op

(
N−1/2

)
Using the error decomposition of equation (18) we thus have

‖µ̃X − µX‖H ∈ Op
(
N−1/2 + (M−1/2 +N−1/2) +

√
M/N

)
and this is in Op(N−1/2) when M = ηN is proportional to N .

A.3. Algorithm 1 (Synthetic Data Subspace): Differential Privacy

The proof of Proposition 3 rests on the following simple calculation:

Lemma 13. If k(x, x) ≤ 1 for all x ∈ X , then the RKHS norm sensitivity of the empirical kernel mean embedding µ̂X with
respect to changing one data point is at most 2

N .

Proof. Let D = {x1, . . . , xN} and D′ = {x′1, . . . , x′N} be two databases of the same cardinality N , differing in a single
row. Without loss of generality xn = x′n for 1 ≤ n ≤ N − 1. Let µ̂X and µ̂′X be the empirical kernel mean embeddings
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computed using D and D′, respectively. Then

‖µ̂X − µ̂′X‖H =

∥∥∥∥∥ 1

N

N∑
n=1

k(xn, ·)−
1

N

N∑
n=1

k(x′n, ·)

∥∥∥∥∥
H

=
1

N
‖k(xN , ·)− k(x′N , ·)‖H (19)

≤ 1

N
(‖k(xN , ·)‖H + ‖k(xN , ·)‖H) =

1

N

(
k(xN , xN )1/2 + k(x′N , x

′
N )1/2

)
≤ 2

N
. (20)

As D and D′ were arbitrary neighbouring databases, the claimed result follows.

Proposition 3. If k(x, x) ≤ 1 for all x ∈ X , then Algorithm 1 is (ε, δ)-differentially private.

Proof. As the synthetic data points z1, . . . , zM do not depend on the private data, it suffices to show that the weights
w1, . . . , wM are (ε, δ)-differentially private. However, these weights result from data-independent post-processing of the
coefficients β, which are a perturbed version of the coefficients α, with the perturbation provided by the privacy-protecting
Gaussian mechanism (Dwork & Roth, 2014). It remains to verify that the Gaussian mechanism employs sufficiently scaled
noise; in particular we need to verify that 2/N ≥ ∆2 := supD,D′:D∼D′ ‖α−α′‖2.

But indeed, since b1, . . . , bF are orthonormal, for any α and α′ computed using neighbouring databases,

‖α−α′‖2 =

 F∑
f=1

(αf − α′f )2

1/2

=
∥∥∥µ̂N − µ̂′N∥∥∥H ≤ ‖µ̂N − µ̂′N‖H ≤ 2

N
, (21)

(last inequality is Lemma 13) as required to verify the Gaussian mechanism. Then (ε, δ)-differential privacy for the entire
algorithm follows.

A.4. Algorithm 2 (Random Features RKHS Algorithm): Consistency

As a preliminary lemma, we first show that a uniform convergence result for the random features φ translates into a bound
on the error incurred by Algorithm 2 due to using random features instead of the original kernel k.
Lemma 14. Let µ̂out

X :=
∑M
m=1 wmk(zm, ·) ∈ H be the element in H represented by the output of Algorithm 2. Let

µ̂φ,out
X :=

∑M
m=1 wmφ(zm) be the corresponding element in the random features RKHSHφ. If the random feature scheme

φ is such that supx,x′∈X |φ(x)Tφ(x′)− k(x, x′)| < δ, then the following bound on the “random features error” holds:∣∣∣∣∥∥∥µ̂φ,out
X − µ̂φX

∥∥∥
Hφ
− ‖µ̂out

X − µ̂X‖H

∣∣∣∣ ≤ 2
√
δ.

Proof. Expanding the RKHS norms using bilinearity of inner products, we have∣∣∣∣∥∥∥µ̂φ,out
X − µ̂φX

∥∥∥
Hφ
−
∥∥µ̂out

X − µ̂X
∥∥
H

∣∣∣∣
=

∣∣∣∣∣
(

M∑
m1=1

M∑
m2=1

wm1
wm2

φ(zm1
)Tφ(zm2

) +

N∑
n1=1

N∑
n2=1

1

N

1

N
φ(xn1

)Tφ(xn2
)− 2

M∑
m=1

N∑
n=1

wm
1

N
φ(zm)Tφ(xn)

)1/2

−

(
M∑

m1=1

M∑
m2=1

wm1
wm2

k(zm1
, zm2

) +

N∑
n1=1

N∑
n2=1

1

N

1

N
k(xn1

, xn2
)− 2

M∑
m=1

N∑
n=1

wm
1

N
k(zm, xn)

)1/2 ∣∣∣∣∣
Since

∑M
m=1 |wm| ≤ 1 by construction and

∑N
n=1

1
N = 1, thanks to the assumption on φ this expression is of the form∣∣∣(a+ b+ 2c)1/2 − (A+B + 2C)1/2

∣∣∣
for suitable a,A, b, B, c, C ∈ R with |a − A|, |b − B|, |c − C| < δ. By monotonicity of the square root function, this
expression is maximised when A = a+ δ, B = b+ δ, C = c+ δ. Writing s := a+ b+ 2C, we have∣∣∣(a+ b+ 2c)1/2 − (A+B + 2C)1/2

∣∣∣ ≤ |s1/2 − (s+ 4δ)1/2| = (s+ 4δ)1/2 − s1/2 ≤ s1/2 + 2δ1/2 − s1/2 = 2δ1/2.
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Theorem 7 Suppose that the random features φ converge φ(·)Tφ(·)→ k(·, ·) uniformly in X as the number of random
features J →∞. Assume also availability of an approximate Reduced set construction method that solves the minimisation
(5) either up to a constant multiplicative error, or with an absolute error that can be made arbitrarily small. Then Algorithm 2
outputs a consistent estimator of the kernel mean embedding µX in the sense that

M∑
m=1

wmk(zm, ·)
P→ µX as N →∞. (22)

Proof. The output of Algorithm 2 specifies an element µ̂out
X :=

∑M
m=1 wmk(zm, ·) ∈ H in the RKHS H of k. Its RKHS

distance to the true kernel mean embedding µX ofX can be upper bounded by a decomposition using the Triangle inequality,
where we write µ̂φ,out

X :=
∑M
m=1 wmφ(zm) for the element ofHφ that the Reduced set method constructs to approximate

the privacy-protected µ̃φX :∥∥µX − µ̂out
X

∥∥
H ≤ ‖µX − µ̂X‖H︸ ︷︷ ︸

finite sample error

+
∥∥µ̂X − µ̂out

X

∥∥
H︸ ︷︷ ︸

other errors

≤ ‖µX − µ̂X‖H︸ ︷︷ ︸
finite sample error

+

∣∣∣∣∥∥∥µ̂φ,out
X − µ̂φX

∥∥∥
Hφ
−
∥∥µ̂N − µ̂out

X

∥∥
H

∣∣∣∣︸ ︷︷ ︸
random features error

+
∥∥∥µ̂φ,out

X − µ̂φX
∥∥∥
Hφ︸ ︷︷ ︸

other errors

≤ ‖µX − µ̂X‖H︸ ︷︷ ︸
finite sample error

+

∣∣∣∣∥∥∥µ̂φ,out
X − µ̂φX

∥∥∥
Hφ
−
∥∥µ̂N − µ̂out

X

∥∥
H

∣∣∣∣︸ ︷︷ ︸
random features error

+
∥∥∥µ̂φ,out

X − µ̃φX
∥∥∥
Hφ︸ ︷︷ ︸

reduced set error

+
∥∥∥µ̃φX − µ̂φX∥∥∥Hφ︸ ︷︷ ︸

privacy error

. (23)

The finite sample error tends to 0 as N → ∞ in probability by consistency of the empirical kernel mean estimate. The
random features error goes to 0 as N →∞ by Lemma 14, since J →∞ as N →∞ and φ(·)Tφ(·)→ k(·, ·) uniformly in
X as J →∞. The privacy error goes to 0 as N →∞ by the same argument as in the proof of Theorem 2, with F replaced
by J . So it remains to show that the reduced set error also goes to 0 as N →∞, in probability.

First, note that the private empirical kernel mean embedding µ̂φX = 1
N

∑N
n=1 φ(xn) is in the feasible set of the constrained

minimisation problem solved by the reduced set method, as the sum of absolute values of weights in this expansion is
N | 1

N | = 1 ≤ 1. The RKHSHφ distance of µ̂φX to the optimisation target µ̃φX equals the privacy error, so it follows that the
reduced set error is upper bounded by the privacy error, and hence also goes to 0 as N →∞:∥∥∥µ̂φ,out

X − µ̃φX
∥∥∥
Hφ︸ ︷︷ ︸

reduced set error

≤
∥∥∥µ̃φX − µ̂φX∥∥∥Hφ︸ ︷︷ ︸

privacy error

P→ 0 as N →∞, (24)

as required to complete the proof.

Corollary 15. Let f be any continuous function. Then whenever k is a c0-universal kernel, applying f to the points output
by Algorithm 2 yields a consistent estimator of the kernel mean embedding µf(X) of f(X).

Proof. Noting that the sum of absolute values of weights wm output by Algorithm 2 is at most C by construction, in light of
Theorem 7 we see that Theorem 1 of (Simon-Gabriel et al., 2016) applies and gives the desired conclusion.

A.5. Algorithm 2 (Random Features RKHS Algorithm): Convergence Rate

Proposition 7 Suppose that φ is a random feature scheme for the kernel k that converges uniformly on any compact set at
a rate Op(J−1/2) with the number J of random features. Then J(N) can be chosen such that if the employed Reduced set
method finds a global optimum of (5), Algorithm 2 outputs an element that converges to the true kernel mean embedding
µX at a rate Op(N−1/3).



Differentially Private Database Release via Kernel Mean Embeddings

Proof. Equation (23) shows that the error ‖µX − µ̂out
X ‖H between the released element µ̂out

X and the true kernel mean
embedding µX can be upper bounded by the sum of four terms: the finite sample error, the random features error, the
reduced set error, and the privacy error. Arguing as in the proof of Proposition 5, the finite sample error vanishes at a rate
Op(N−1/2). The proof of Theorem 7 shows that the reduced set error is upper bounded by the privacy error, which itself
vanishes at a rate of Op(

√
J/N) by the argument given in the proof of Theorem 2, with F replaced by J . Lemma 14

implies that if the random features converge uniformly at a rate Op(J−1/2), then the random features error vanishes at a rate
Op(J−1/4). The total convergence rate is thus

Op

(
N−1/2 +

√
J

N
+ J−1/4

)

and we can check that this becomes Op(N−1/3) by setting J = bN4/3c.

A.6. Algorithm 2 (Random Features RKHS Algorithm): Differential Privacy

Proposition 9 Assume that the random feature vectors produced by φ are bounded by 1 in L2 norm (‖φ(x)‖2 ≤ 1 for all
x ∈ X ). Then Algorithm 2 is (ε, δ)-differentially private.

Proof. The output of the algorithm is produced by a Reduced set method that is initialised blindly to the database and
optimises RKHS distance to the element µ̃φX ∈ Hφ, while only having access to the distance to it, rather than any
representation of µ̃φX . As µ̃φX can be seen as a vector in RJ obtained by perturbing µ̂φX using the Gaussian mechanism with
∆2 = 2

N , it suffices to show that the L2-sensitivity of µ̂φX is upper bounded by 2
N . To this end, assume D = {x1, . . . , xN}

and D′ = {x′1, . . . , x′N} are two neighbouring databases of cardinality N , differing w.l.o.g. in their last element only. Then

‖µ̂φD − µ̂
φ
D′‖2 =

∥∥∥∥∥ 1

N

N∑
n=1

φ(xn)− 1

N

N∑
n=1

φ(x′n)

∥∥∥∥∥
2

(25)

=
1

N
‖φ(xN )− φ(x′N )‖2 (26)

≤ 1

N
‖φ(xN )‖2 +

1

N
‖φ(x′N )‖2 ≤

2

N
, (27)

as required to complete the proof.

B. Setup of Empirical Illustrations
We considered two scenarios in our basic empirical evaluations shown in Sections 4 and 5:

1. No publishable subset: No rows of the private database are, or can be made public without some privacy-ensuring
modification.

2. Publishable subset: A small part of the private database is already public, or can be made public, perhaps for one of the
several possible reasons outlined in Section 1.

To illustrate the impact of data dimensionality on the performance of the proposed algorithms, we provide results on datasets
with data dimension D = 2 and D = 5. In both cases we constructed a synthetic private dataset by sampling N = 100, 000
data points from a multivariate Gaussian mixture distribution. The mixture had 10 components, with mixing weights
proportional to 1, 1

2 , . . . ,
1
10 , and the means of the components were chosen randomly themselves from a spherical Gaussian

distribution with mean [100, . . . , 100] and covariance 200ID. Each of the N private data points was simulated by first
sampling its mixture component using the mixing weights as probabilities, and then the point itself was sampled from a
spherical Gaussian centered at the mean of the chosen mixture component and with covariance 30ID.

We chose to work with the widely popular exponentiated quadratic kernel k(x1, x2) = e−γ‖x1−x2‖22 for RD-valued data
(also known as a Gaussian kernel, or a squared exponential kernel), with the parameter setting γ = 10−4/D. This kernel
is known to be characteristic (Fukumizu et al., 2008), and so as discussed in Section 2.2, no information about the data
generating distribution pX is lost by working with its kernel mean embedding µX .



Differentially Private Database Release via Kernel Mean Embeddings

We used our proposed algorithms to release an approximate version of the empirical KME of the private database, in such a
way that the output satisfies the definition of (ε, δ)-differential privacy. We investigated the common privacy levels given by
ε ∈ {0.01, 0.1, 1.0}, and used the fixed value of δ = 10−6, which satisfies the usual requirement that δ � 1

N .

B.1. Evaluation Metric

The geometry of the RKHSH allows comparing the performance of different algorithms by computing the RKHS distance
∆ between the empirical KME µ̂X computed using all N private data points (and which could not have been released
without violating differential privacy) and the element of the RKHS represented by the actually released weighted set of
synthetic data points (z1, w1), . . . , (zM , wM ):

∆ :=

∥∥∥∥∥µ̂X −
M∑
m=1

wmk(zm, ·)

∥∥∥∥∥
H

.

Moreover, as the empirical KME µ̂X is based on a large sample size of N = 100, 000 i.i.d. data points, it can be expected to
be a good proxy for the true KME µX of the data-generating random variable X . In that case ∆ is also a good proxy for the
RKHS distance between the true KME µX and the RKHS element represented by the released dataset.

B.2. Scenario 1: No Publishable Subset

Algorithm 1 requires specifying the synthetic data points z1, . . . , zM in advance, before seeing the private data. If no part
of the private data has already been published (which could then be used for the synthetic data points), one can construct
the synthetic data points by sampling them randomly from a suitable probability distribution q. For the consistency result
of Theorem 2 to apply, the support of q must include all possible private data points. In our case the private data takes
values in RD, and so this requirement is satisfied by any distribution on RD with full support. We used a spherical Gaussian
distribution q = N (0, σqID) with σq = 500 for sampling the synthetic data points.

The implementation of Algorithm 2 used J = 10, 000 random features for accurate approximation of the kernel, and an
iterative gradient-based optimisation procedure to solve the reduced set problem (Equation (5) in Algorithm 2).

Figure 2 shows how the RKHS distance ∆ changes with the number of synthetic data points M , for different requested
privacy level ε for Algorithm 1 (solid lines) and Algorithm 2 (dashed lines), on datasets with dimensionality D = 2 (left
subfigure) and D = 5 (right subfigure). We observe that the additional ability of Algorithm 2 to optimise the locations of the
synthetic data points (rather than just the weights, as is the case for Algorithm 1) is more helpful in the higher-dimensional
case D = 5, where the randomly sampled synthetic data points are less likely to land close to private data points.

B.3. Scenario 2: Publishable Subset

Here we explored the interesting scenario where one can exploit the fact that a small part of the private database is actually
public, and use the public rows as the fixed synthetic data points in Algorithm 1. Specifically, we assume (without loss of
generality) that the first M rows of the private database (where M � N ) are public, and we take the synthetic data points to
be z1 ← x1, . . . , zM ← xM .

Observe that in this case µ̂baseline := 1
M

∑M
m=1 k(zm, ·), i.e., uniform weighting of the synthetic data points, is already

expected to be a strong baseline since µ̂baseline is itself a consistent estimator of µX , (although based on a much smaller
sample size M � N ). The purpose of Algorithm 1 is to find (generally non-uniform) w1, . . . , wM that reweight the public
data points using the information in the large private dataset, but respecting differential privacy. Figure 1 shows how the
RKHS distance ∆ changes with the number of public data points M , for different privacy levels ε.

For comparison, the figures also show the RKHS distances ∆ achieved by the baseline that simply weights the public points
uniformly. We can see that in both cases D = 2 and D = 5, if the ratio of public to private points is low enough, Algorithm 1
provides a substantial benefit over this baseline (note the logarithmic scaling). Since usually obtaining permission to publish
a larger subset of the private data unchanged will come at an increased cost, the ability to instead reweight a smaller public
dataset using Algorithm 1 in a differentially private manner is useful.


