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Abstract

Understanding the representational power of Re-
stricted Boltzmann Machines (RBMs) with mul-
tiple layers is an ill-understood problem and
is an area of active research. Motivated from
the approach of Inherent Structure formalism
(Stillinger & Weber, 1982), extensively used in
analysing Spin Glasses, we propose a novel mea-
sure called Inherent Structure Capacity (ISC),
which characterizes the representation capacity
of a fixed architecture RBM by the expected
number of modes of distributions emanating
from the RBM with parameters drawn from a
prior distribution. Though ISC is intractable,
we show that for a single layer RBM architec-
ture ISC approaches a finite constant as number
of hidden units are increased and to further im-
prove the ISC, one needs to add a second layer.
Furthermore, we introduce Lean RBMs, which
are multi-layer RBMs where each layer can have
at-most O(n) units with the number of visible
units being n. We show that for every single
layer RBM with Ω(n2+r), r ≥ 0, hidden units
there exists a two-layered lean RBM with Θ(n2)
parameters with the same ISC, establishing that
2 layer RBMs can achieve the same representa-
tional power as single-layer RBMs but using far
fewer number of parameters. To the best of our
knowledge, this is the first result which quantita-
tively establishes the need for layering.
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1. Introduction
Deep Boltzmann Machines (DBMs1) are largely tuned us-
ing empirical methods based on trial and error. Despite
much effort, there is still very little theoretical understand-
ing about why a particular neural network architecture
works better than another for any given application. Fur-
thermore there is no well defined metric to compare differ-
ent network architectures.

It is known that given any input distribution on the set of bi-
nary vectors of length n, there exists an RBM with α2n−1
(α < 1) hidden units that can approximate that distribution
to an arbitrary precision (Montúfar & Rauh, 2017). How-
ever with these many hidden units the number of parame-
ters increase exponentially. We call a network lean if for
each layer, the number of hidden units m = O(n) where
n is the number of visible units. The deep narrow Boltz-
mann Machines whose universal approximation properties
were studied in (Montúfar, 2014) are a special case of lean
networks. In this paper we study lean 2-layer deep RBMs.

We ask the questions, is there a measure that can relate
DBM architectures to their representational power? Once
we have such a measure then can we gain insights into the
capabilities of different DBM architectures?

For example, given a wide single layer RBM, an RBM with
many hidden nodes, can we find a lean multilayer RBM
with equivalent representational power but with far lesser
parameters? Despite much effort these questions are not
satisfactorily answered and may provide important insights
to the area of Deep Learning.

Our main contributions are as follows:

1. We study the Inherent structures formalism, first in-
troduced in Statistical Mechanics(Stillinger & We-
ber, 1982), to understand the configuration space of
RBMs. We introduce a capacity measure Inherent
Structure Capacity (ISC) (Definition 5) and discuss its
relation with the expected number of perfectly recon-
structible vectors (Montúfar & Morton, 2015), one-
flip stable states and the modes of the input distribu-

1We shall use the terms RBM and DBM interchangebly
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tion. We use this as a measure of representation power
of an RBM.

2. Existing methods for computing expected number of
inherent structures are rooted in Statistical Mechan-
ics. They use the replica approach (Bray & Moore,
1980) which does not extend well to DBMs since it is
not straightforward to incorporate the bipartite nature
and layering in the calculations. We use a first prin-
ciples approach to devise a method that yields upper
and lower bounds for single layered and two-layered
DBMs (Theorems 1,2). We show that the bounds be-
come tight as we increase the number of hidden units.

3. Previous results have shown that a sufficiently large
single layer RBM can represent any distribution on
the 2n input visible vectors. However we show that
if we continue adding units to hidden layer then the
ISC tapers to 0.585 as opposed to the maximum limit
of 1.0 (Corollary 2). This implies that although an
RBM is a universal approximator, if the input distri-
bution contains large number of modes multi-layering
should be considered. We have empirically verified
that when the number of units in a single hidden layer
RBM, m ≥ 20n, the ISC saturates (Figure 3).

4. By analyzing the ISC for two layer RBM we obtain
an interesting result that for any such RBM with m =
Ω(n2) hidden units (number of parameters Ω(n3)) one
can construct a two layered DBM with 1.6n units in
hidden layer 1 and 0.6n units in layer 2 (Corollary 4)
and with number of parameters Θ(n2), resulting in an
order of magnitude saving in parameters. To the best
of our knowledge this is the first such result which es-
tablishes the superiority of 2 layer DBMs over wide
single layer RBMs in terms of representational effi-
ciency. We conduct extensive experiments on syn-
thetic datasets to verify our claim.

2. Model Definition and Notations
An RBM with n visible and m hidden units, denoted by
RBMn,m(θ), is a probability distribution on {0, 1}n of the
form

P (v,h|θ) =
e−E(v,h|θ)

Z(θ)
(1)

E(v,h|θ) = −aT v− bTh− vTWh (2)

where v ∈ {0, 1}n denotes the visible vector, hidden vector
is denoted by h ∈ {0, 1}m, the parameter θ = {a,b,W}
denotes the set of biases a ∈ Rn,b ∈ Rm and coupling
matrix W ∈ Rn×m and Z(θ) =

∑
v,h e

−E(v,h) is the nor-
malization constant. The log-likelihood of a given visible

vector v for an RBMn,m(θ) is given by

L(v|θ) = lnP (v|θ) = ln
∑

h

e−E(v,h) − lnZ(θ) (3)

In the sequel RBMn,m will denote the family of distribu-
tions parameterized by RBMn,m(θ).

Definition 1 (Modes). Given a distribution p on vectors
{0, 1}n, a vector v is said to be a mode of that distribution
if for all v′ such that dH(v, v′) = 1, p(v) > p(v′). Here
dH(v, v′) =

∑N
i=1[1−δ(vi, v′i)] is the Hamming distance2.

Definition 2 (Perfectly Reconstructible Vectors). For an
RBMn,m(θ) we define the function up : {0, 1}n →
{0, 1}m that takes a visible vector v as input and outputs
the most likely hidden units vector h conditioned on v,
i.e., up(v) , arg maxh P (h|v, θ). Similarly down(h) ,
arg maxv P (v|h, θ). A visible units vector v is said to be
perfectly reconstructible (PR) if down(up(v)) = v.

For any set C the cardinality will be denoted by |C|. For
an RBMn,m(θ) we define

prv(n,m, θ) , |{v : v is PR for RBMn,m(θ)}|

3. Problem Statement
We consider fitting an RBMn,m(θ) to a distribution p(v) =
1
k

∑k
i=1 δ(v − vi) where δ denotes the Dirac Delta func-

tion and where for each pair of vectors {vi, vj} in {vr}kr=1,
dH(vi, vj) ≥ 2. We need to find the smallest m∗ ∈
N such that the set RBMn,m∗ contains an RBMn,m∗(θ)
that represents p. We also study the case of a DBM
with 2 hiddden layers. We denote a DBM with n visi-
ble units, L hidden layers with mk hidden units in layer
k by RBMn,m1,...,mL(θ). We denote the respective set of
DBMs by RBMn,m1,...,mL . We would like to ask the fol-
lowing question. Are there lean two layer architectures,
RBMn,m1,m2

which can model distributions with the same
number of modes as that of distributions generated by a one
layer architecture RBMn,m where m� m1,m2.

3.1. Related Work

The representational power of Restricted Boltzmann Ma-
chines (RBMs) is an ongoing area of study (Le Roux &
Bengio, 2008; Montúfar et al., 2011; van der Maaten, 2011;
Martens et al., 2013; Cueto et al., 2010).It is well known
that an RBM with one hidden layer is a universal approxi-
mator (Le Roux & Bengio, 2008; Montufar & Ay, 2011;
Montúfar & Rauh, 2017). (Le Roux & Bengio, 2008)
showed that the set RBMn,m can approximate any input

2We shall use dH to denote Hamming distance between two
vectors. δ(x, y) is the kronecker distance and is defined as
δ(x, y) = 1 whenever x = y, and 0 otherwise.
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Figure 1. Number of modes attained for different choices of hid-
den units for n = 15. Can be seen that the current known re-
sult for the number of hidden units required (red graph) is a large
over-estimate. The green and purple graphs are estimates given by
Theorem 1. These are closer to the actual number of enumerated
modes, given by the blue graph.

distribution with support set size k arbitrarily well if fol-
lowing inequality is satisfied.

m ≥ k + 1 (4)

If we know the number of modes of our input distribution,
then we could design our RBM as per Eqn (4). Unfortu-
nately the number of modes could be large resulting in a
large RBM.

To test the bound in Eqn (4), we conducted sim-
ulation experiments. We kept n = 15, m ∈
{10, 25, 50, 75, 100, 125} and generated random coupling
weight matrix whose entries were i.i.d. N (0, 1) and enu-
merated all the modes of the generated distribution. We
averaged our readings over 100 different weight matrices.
The results are shown in Figure 1. The results show that
the bound gives a highly conservative estimate for k. For
example on average the set RBM15,50 has the capability to
represent distributions with 170 modes, instead of only 49
modes. Thus although the number of modes is an important
design criteria, a more practical metric is desirable.

4. Inherent structures of RBM
To understand the complex structure in Spin glasses the no-
tion of Inherent Structures(IS) was introduced in (Stillinger
& Weber, 1982). The IS approach consists of partitioning
the configuration space into valleys, where each valley con-
sists of configurations in the vicinity of a local minimum.
The number of such valleys can thus be indicative of Com-
plexity of the system.

In this section we recall the IS approach in a general setting

to motivate a suitable capacity measure. Consider a system
governed by the probability model

P (s|W ) =
e−

1
T E(s|W )

Z(W )
, Z(W ) =

∑
s

e−
1
T E(s) (5)

where E : {0, 1}N → R is an energy function defined
over N dimensional binary vectors with parameter W .

Definition 3 (One-flip Stable States). (Stein & Newman,
2013) For an Energy function E a configuration, s∗ is
called a local minimum, also called One flip stable state,
if ∀s ∈ {s : dH(s, s∗) = 1}, E(s) − E(s∗) > 0 (equiva-
lently P (s) < P (s∗)).

For every one-flip stable state s∗ we define the set
OF (s∗) = {s| dH(s, s∗) ≤ 1}. Let {P1, . . . ,PK} form
a partition of the configuration space where each Pa =
OF (sa) corresponds to the local minimum sa andK is the
total number of valleys 3. The logarithm of the partition
function

logZ(W ) = log
∑

s

e−
1
T E(s) = log

K∑
a=1

Za(W )

where Za(W ) =
∑

s∈Pa e
− 1
T E(s). Now, for any p

in a K dimensional probability simplex, using the non-
negativity of KL divergence, it is straightforward to show
that

H(p) +

K∑
a=1

pa logZa(W ) ≤ logZ(W ) (6)

where H(p) = −
∑K
a=1 pa log pa is the entropy of p.

Equality holds whenever p∗a = Za
Z ,∀a ∈ {1, . . . ,K}. One

could construct logZ from logZa if one had access to p∗,
and knew K∗ which is defined as H(p∗) = logK∗.

logK∗ +

K∑
a=1

p∗a logZa(W ) = logZ(W ) (7)

From the properties of entropy function one could write

1 ≤ K∗ ≤ K ≤ 2N (8)

where the lower bound on K∗ is attained at H(p∗) =
0 and is realized when the Energy surface has only one lo-
cal minimum, a very un-interesting case. The upper bound
on K∗ is attained at p∗ = 1

K , which happens only when
all valleys are considered similar. Since Number of states
can be at most 2N , the last upper bound holds and Thus
1
N log2K, can be viewed as a measure of Complexity, of

3Here we assume that temperature parameter T is small so that
all states with Hamming distance > 1 from a one-flip stable state
will have negligible contribution to partition function.
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the energy surface. One could put a suitable prior distri-
bution over the parameters W and evaluate the complexity
averaged over the prior, motivating the following defini-
tion.

Definition 4. (Complexity) The Complexity of the model
described in Eqn (5) is given by

1

N
EW log2K, W ∼ P,

where K is the number of One-Flip stable states for En-
ergy function defined with parameter W and P is a prior
distribution over W .

For Ising models, Complexity has been estimated in the
large N limit (Bray & Moore, 1980; Tanaka & Edwards,
1980) by methods such as Replica technique. However, ex-
tending their methods to RBMs for a finite size N is not
straightforward.

It has been shown (see e.g. (Parisi & Potters, 1995)) that
IS decomposition gives a very accurate picture of energy
landscape of Ising models at Temperature, T = 0. But,
for T > 0, one needs to take into account both the Val-
ley structure and the energy landscape of the free energy
(Biroli & Monasson, 2000). Obtaining accurate estimates
of Complexity is an active area of study, for a recent review
see (Auffinger et al., 2013).

Our goal is to apply the aforementioned IS decomposition
to RBMs. We now show the equivalence between these
perfectly reconstructible vectors and one-flip stable states
for an RBM. The IS decomposition then allows us to de-
fine the measure of capacity in terms of the modes of input
distribution.

Lemma 1. A vector v is perfectly reconstructible for an
RBMn,m(θ) ⇐⇒ the state {v,up(v)} is one-flip stable.

Proof. See Supplementary material.

Thus we see that there is a one-one equivalence between
perfectly reconstructible vectors and the one-flip stable
states for a single layer RBMn,m(θ).

Relationship between the modes of p(v) and p(v,h) In
this section we discuss the relationship between the modes
of the marginal distribution, p(v) and the joint distributuon
p(v,h). We make a mild assumption on one-flip stable
state.

A1 For a single layer RBM, given a visible vector v, vec-
tor h∗ = up(v) is unique.

If the weights are given small random perturbation, then
Assumption 1 holds with probability one. However it does
not hold true for an L ≥ 2 layer RBMn,m1,...,mL(θ). We

denote {hl ∈ {0, 1}ml}Ll=1 to be hidden vectors, v ∈
{0, 1}n to be visible vector and define the set

H(v) , {{hl}Ll=1|(v, {hl}Ll=1) is one-flip stable state}

It can be seen that |H(v)| can be more than one. For input
distributions considered in Section 3, the modes of joint
distribution p(v,h1, . . . ,hL) with distinct v are atleast as
many as modes of marginal distribution p(v). A formal
statement with proof is given in supplementary material.

As discussed, for L ≥ 1, the modes of the marginal dis-
tribution could be smaller than modes of the joint distribu-
tion. However, (Montúfar & Morton, 2015) [Theorem 1.6]
gave precise conditions under which the number of modes
for marginal and joint distributions are same for a single
layer network. We suspect that a similar argument holds
for L > 1. For the rest of the paper we will assume that the
modes of joint distribution are same as those of p(v).

Armed with these observations we are now ready to define
a measure which relates the architecture of a DBM and the
expected number of such modes under a prior distribution
on the model parameters. More formally,
Definition 5 (Inherent Structure Capacity). For an
L layered DBM with m1, . . . ,mL hidden units and n vis-
ible units we define the Inherent Structure Capacity (ISC),
denoted by C(n,m1, . . . ,mL), to be the logarithm (di-
vided by n) of the expected number of modes of all pos-
sible distributions generated over the visible units by the
DBM.

C(n,m1, . . . ,mL) =
1

n
log2Eθ [|{v : |H(v)|≥ 1}|]

We note that for the single layer case this definition reduces
to 1

n log2Eθ [prv(n,m, θ)]. ISC as a measure would be
useful in identifying DBM architectures which can model
modes of an input distribution defined over the visible
units.

This measure serves as a recipe for fitting DBMs. Suppose
we know that the input distribution has k modes then one
could find a suitable DBM architecture, i.e. m1, . . . ,mL

by the following criterion

1

n
log2 k ≤ C(n,m1, . . . ,mL) (9)

Once the architecture has been identified one can then use
a standard learning algorithm to learn parameters to fit a
given distribution.

In the following sections we investigate the computation
of ISC and their applications to single and two layer net-
works, i.e. L = 1 and L = 2. To keep the exposition
simple we assume the bias parameters to be zero 4. We

4Analysis can be extended to non-zero biases in straightfor-
ward manner.
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also assume that the coupling weights are distributed as per
mean zero Gaussian, i.e., ∀i, j, wij ∼ N (0, σ2).

5. Computing capacity of RBMn,m and need
for more layers

In this section we discuss the computation of ISC for a sin-
gle layer RBM. In absence of a definitive proof we conjec-
ture that ISC is intractable just like the Complexity mea-
sure in Spin glasses. The problem of computing Complex-
ity has been addressed in the Statistical Mechanics com-
munity using the Replica method (Roberts, 1981; De Do-
minicis et al., 1980) which yields reasonable estimates.
However the applicability of Replica trick to Multi-layer
DBMs is not clear. In this section we develop an alterna-
tive method for estimating ISC.

5.1. Computing ISC of RBMn,m

For any arbitrary vector v ∈ {0, 1}n we compute
E
[
1[v is PR.]

]
where 1 is the indicator random variable and

expectation is over the model parameters θ with prior as
stated in Section 4. We then sum this over all 2n vectors,
i.e.,

∑
vE
[
1[v is PR.]

]
. Before stating our main theorem we

state a few Lemmas.

Lemma 2. For the set RBMn,m, if a given vector v has
r(≥ 1) ones, h = up(v) has l ones and l � 1,then 5 for
r > 1,

E
[
1[v is PR.]

]
≤

[
1

2
− 1

2
erf

(
−
√

l

πr − 2

)]r (
1

2

)n−r
.

For r = 1, the expression E
[
1[v is PR.]

]
equates to

(
1
2

)n−1
.

where erf(x) = 1√
π

∫ x
−x e

−t2dt

Proof. See Supplementary Material.

For r(> 1) ones in v and l ones in h = up(v) the problem
of computing {P [[down(h)]i = 1]}ri=1 can be reformu-
lated in terms of matrix row and column sums, viz, given
W ∈ Rr×l where all entries wij ∼ N (0, σ2) are i.i.d. and
given that all the column sums {Cj =

∑r
i=1 wij > 0}l

j=1
,

to compute the probability that all the row sums are posi-

tive, i.e.,
{
Ri =

∑l
j=1 wij > 0

}r
i=1

. Conditioned on the

fact {Cj > 0}lj=1 the random variables {Ri}ri=1 are nega-
tively correlated. This gives us an upper bound mentioned
in Lemma 2. We now get a lower bound for the estimate.

5Here l� 1 means l is atleast 50 hidden units, which accord-
ing to us is a reasonable assumption.

Lemma 3. For the set RBMn,m, if v has r(> 1) ones,
h = up(v) has l ones, then ∃µc, µ̃c, σc, σ̃c ∈ R+ such
that conditioned on {Rt > 0}i−1t=1, Cj > 0, the moments of
posterior distribution of wij is given by

E
[
wij |{Rt > 0}i−1t=1, Cj > 0

]
= (µ̃c − µc)

σ2

σ2
c

Var
[
wij |{Rt > 0}i−1t=1, Cj > 0

]
= σ̃2

c

(
σ2

σ2
c

)2

+ σ2β

where β =
(

1− σ2

σ2
c

)
Proof. See Supplementary Material.

Lemma 2 gives an upper bound U(n,m) on expected num-
ber of PR vectors while Lemma 3 gives us a posterior dis-
tribution on wij after taking into account the conditional
correlation between {Ri}ri=1. This eventually results in a
lower bound L(n,m). Thus even though a closed-form ex-
pression for ISC is difficult, we obtain bounds on it as the
following theorem states.

Theorem 1. (ISC of RBMn,m) There exist non-trivial
functions L(n,m), U(n,m) : Z×Z→ R+ such that ISC
of the set RBMn,m obeys the following inequality.

1

n
log2(L(n,m)) ≤ C(n,m) ≤ 1

n
log2(U(n,m))

Proof. See Supplementary material.

5.2. Need for more hidden layers

Theorem 1 establishes the lower and upper bounds for ISC.
A direct corollary of the theorem establishes that C(n,m)
approaches a limit as m increases.

Corollary 1. (Large m limit) For the set RBMn,m,
limm→∞ C(n,m) = log2 1.5 = 0.585 where C(n,m) is
defined in Theorem 1.

Proof. In the Supplementary material we show that
limm→∞

1
n log2 L(n,m) = limm→∞

1
n log2 U(n,m) =

log2 1.5. Then claim follows from squeeze theorem6.

Empirically we observe that this saturation limit is achieved
when m > 20n (see Figure 3). Here we discuss the impli-
cations of the results derived in the previous subsection.

1. We plotted the actual expected modes attained and the
ISC estimates derived from Theorem 1 for n = 15
and varying number of hidden units (Figure 1). We

6http://mathonline.wikidot.com/
the-squeeze-theorem-for-convergent-sequences

http://mathonline.wikidot.com/the-squeeze-theorem-for-convergent-sequences
http://mathonline.wikidot.com/the-squeeze-theorem-for-convergent-sequences
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can see that even a small number of hidden units ad-
mits a large ISC and the current known bound given
in Equation 4 is not necessary. This shows that for a
large class of distributions we give a more practical
estimate of number of hidden units required than the
current state of the art.

2. The upper bound on the ISC estimated above seems
surprising at first sight since it seems to contradict the
well established fact that RBMs are universal approx-
imators (Freund & Haussler, 1992; Le Roux & Ben-
gio, 2008). However, one should note that the bound
is in expected sense which means that in the family
RBMn,(m→∞) many RBMs shall have modes close
to or less than (1.5)n. For the class of input distribu-
tions for which number of modes k � (1.5)n training
an RBMn,m(θ) to represent these might be difficult.
The need for multi-layering arises in such conditions.

3. Corollary 1 shows for a large enough m the bounds
become tight and the expression is exact. We also
show this through simulations in Section 7.

Remark. When n,m → ∞ we can approximate U(n,m)
by the following relatively simple expression that we can
use to conduct further analysis.

U(n,m) ≈
[
1− 1

2
erf

(
−
√

m

πn− 4

)]n
(10)

6. ISC of two-layer RBM architecture
To study the effect of adding layers, we consider the family
RBMn,m1,m2

. As stated in Section 4, adapting analysis for
single layer RBMs to multi-layer RBMs is not straightfor-
ward. In this section we discuss the computation of ISC
and study its application to design RBMs.

6.1. Computing the capacity of 2 layer RBM

We observe that an RBMn,m1,m2
shares the same bipartite

structure as a single layer RBMn+m2,m1
(Figure 2). This

enables us to extend our single layer result to two layers.
We introduce a threshold quantity γ = 0.05. This value
was obtained by simulating the asymtotics of f(x) = 1 −
0.5 erf(−

√
x
π ).

Theorem 2. (ISC of RBMn,m1,m2
) For an RBMn,m1,m2

(n,m1 > 0 and m2 ≥ 0), if we denote u = max(m1, n +
m2), l = min(m1, n+m2), then

C(n,m1,m2) ≤ 1

n
log2 S

whenever S < γ2n, S =
[
1− 1

2 erf
(
−
√

u
πl−4

)]l
Proof. See Supplementary material.
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Figure 2. Two Layer RBMn,m1,m2 shares same bipartite graph
structure as single layer RBMn+m2,m1

Theorem 2 gives a general formula from which different
regimes can be derived by varying m1,m2. We will use
this theorem to understand the design of multi-layer RBMs.

In the previous section we saw that in a single layer RBM,
irrespective of number of hidden units, ISC, achieves a lim-
iting value of 0.585. The theorem will be useful to quantita-
tively show that ISC can indeed be improved if we consider
layering. For an RBMn,m1,m2 (n,m1 > 0 and m2 ≥ 0),
we denote α1 = m1

n , α2 = m2

n . We say that a layer with m
hidden units is narrow if m < γ and it is wide if m > 1

γ .

Corollary 2. (Layer 1 Wide, Layer 2 Narrow) For an
RBMn,m1,m2

(n,m1 > 0 and m2 ≥ 0), if α1 = m1

n > 1
γ

and α2 = m2

n < γ then

C(n,m1,m2) ≤ (1 + α2) log2(1.5)

Proof. See Supplementary material.

The Corollary shows that for a RBM with a wide first layer
and a narrow second layer, the upper bound on ISC in-
creases linearly with the number of units in second layer.

6.2. RBMn,m1,m2 design under budget on parameters

We extend the result obtained in previous section to con-
sider a real scenario wherein we have a budget on the max-
imum number of parameters that we can use and we have
to design a two-layered DBM given this constraint. For
a given input distribution with k modes, the DBM should
have C(n,m1,m2) > 1

n log2 k.

Corollary 3. (Fixed budget on parameters) For an
RBMn,m1,m2

(n,m1 > 0 and m2 ≥ 0), if there
is a budget of cn2 on the total number of parameters,
i.e, α1(1 + α2) = c then the maximum possible ISC,
maxα1,α2

C(n, α1, α2) ≤ Ũ(n, α∗1, α
∗
2) where

Ũ(n, α∗1, α
∗
2) =

{
min(1,

√
c log2(1.29)) if c ≥ 1

c log2

[
1− 1

2 erf
(
−
√

1
πc

)]
if c < 1
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Table 1. ISC Values for different α1 = m1
n
, α2 = m2

n
. γ = 0.05 (obtained by simulating the asymtotics of f(x) = 1−0.5 erf(−

√
x
π
)).

Regime ISC Implications

α1 >
1
γ , α2 < γ (1 + α2) log2(1.5) ISC determined only by α2. For a single layer RBM (α2 = 0), further

increase in hidden units not effective, multi-layering recommended.
α1(1 + α2) = c,
where c ≥ 1

min[1,
√
c log2(1.29)]

(α∗1 =
√
c).

Given a budget of cn2 parameters, this is the maximum ISC achiev-
able with optimal choice of α1.

α1(1 + α2) = c,
where c < 1

c log2

[
1− 1

2 erf
(
−
√

1
πc

)]
(α∗1 = c).

If total number of parameters< n2, then multi-layering does not help.

Proof. See Supplementary material.

Corollary 3 can be used to determine the optimal allocation
of hidden units to the two layers if there is a budget on
the number of parameters to be used due to computational
power or time constraints. It says that if c ≥ 1, then for
optimality α1 = 1 + α2 and if c < 1, then α2 = 0 which
means that all hidden units should be added to layer 1. The
following corollary highlights the existence of a two layer
architecture RBMn,m1,m2 that has ISC equal to 0.585, the
saturation limit for single layer RBMs.

Corollary 4. There exists a two layer architecture
RBMn,m1,m2 with Θ(n2) parameters such that

Ũ(n, α1, α2) = log2 1.5

where m1 = α1n,m2 = α2n, α1 = 1.6 and α2 = 0.6

Proof. In Corollary 3 if we put Ũ(n, α∗1, α
∗
2) = log2(1.5),

we get α∗1 =
√
c = log2(1.5)

log2(1.29)
= 1.6, α∗2 = α∗1 − 1 = 0.6.

Number of parameters for such an RBM is α1(1+α2)n2 =
Θ(n2).

The number of parameters for any single layer RBM is nm
where m is number of hidden units. The above corollary
gives an important insight: one can construct a two layer
RBM with Θ(n2) parameters that has the same ISC as a
single layer RBM with infinitely many hidden units. Of-
course this is true only if the upper-bound Ũ is close to
C. This suggests that lean 2 layer networks with order of
magnitude less number of parameters can achieve the same
ISC as that of a single layer RBM.

Table 1 summarises the ISC values for different regimes
and their respective implications for the two-hidden layered
DBN. For example if α1 >

1
γ then the capacity is dictated

only by the number of hidden units in the second layer and
increasing α1 has no effect. Multi-layering should be con-
sidered to handle distributions with multiple modes. Also,
considering a practical scenario where there is a computa-
tional and memory constraint that translates into a budget

Table 2. Actual ISC for RBMn,m for m = 500, obtained by av-
eraging brute-force enumeration from 2000 independent instanti-
ations of weight matrix, i.e., C(n,m) = 1

n
log2

(
1

2000

∑2000
i=1 ki

)
where ki is the number of modes enumerated in ith instantiation.

n = 10 n = 11 n = 12

C(n,m) 0.585 0.585 0.588

on the number of parameters, i.e. α1(1 + α2) = c, we get
the optimal distribution of hidden units in the two layers
that maximizes the capacity. In particular if c < 1 then it
is recommended to allocate all hidden units to layer 1 itself
instead of adding more layers.

7. Experimental Results
Our main goals are to experimentally verify Theorems 1, 2
and Corollaries 3 4. All experiments were run on CPU with
2 Xeon Quad-Core processors (2.60GHz 12MB L2 Cache)
and 16GB memory running Ubuntu 16.02 7.

7.1. Validating estimate of Number of modes

To verify our theoretical claims of Theorems 1 and 2 a
number of simulation experiments for varied number of
visible and hidden units were conducted. To enable exe-
cution of exhaustive tests in reasonable time, the values
of n had to be kept small. The entries {wij} of the weight
matrix were drawn from an i.i.d. mean zero normal distri-
bution. Each of the 2n − 1 vectors (leaving out the trivial
all zero vector) was then tested for being perfectly recon-
structible. A comparison of the theoretical predictions and
experimental results is shown in Figures 3 and 5 for sin-
gle layer and two layer RBMs respectively. It can be seen
that the theoretical predictions follow similar trend as the
experimental results.

7The source code and instructions to run is available at http:
//mllab.csa.iisc.ernet.in/publications.

http://mllab.csa.iisc.ernet.in/publications
http://mllab.csa.iisc.ernet.in/publications
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Figure 3. Comparison chart of the upper and lower estimates
with the actual simulation value of expected number of modes
(2nC(n,m)) for n = 12.

Discussion. Figure 3 shows that the predicted bounds on
the modes are close to the actual modes enumerated. Ta-
ble 2 validates the claim that for an RBMn,m as m → ∞,
ISC → 0.585 (Corollary 1). To enable bruteforce enu-
meration in reasonable time the values for n had to be kept
small. Figure 5 in the supplementary section shows the the-
oretical upper bound and actual simulated ISC values for a
DBM with 2 hidden layers if we fix the total number of
hidden units (m1 + m2 = 10) and vary the ratio β = m2

m1
.

It can be seen that both theoretical prediction of ISC and
actual simulation results are closely aligned.

7.2. DBM design under budget on parameters

To validate the claim made in Corollary 3 we considered
training a DBM with two hidden layers on the MNIST
dataset. For this dataset, the standard architecture for a
two hidden layer DBM uses m1 = 500,m2 = 1000 hid-
den units (784x500x1000) (Salakhutdinov & Hinton, 2009;
Salakhutdinov & Larochelle, 2010; Hinton & Salakhutdi-
nov, 2012). In this case α1 = 0.64, α2 = 1.27 and the
number of parameters = 784×500+500×1000+(784+
500+1000) = 894284. Under a budget of fixed number of
parameters Corollary 3 suggests a better split of the num-
ber of hidden units. Accordingly we trained a DBM, with
architecture of 784x945x161(Recommended), with 894915
parameters. We note that the number of parameters are sim-
ilar to the standard architecture of 784x500x1000 (Classi-
cal), with 894284 parameters.

We used the standard metric average log-likelihood of
test data (Salakhutdinov & Hinton, 2009; Salakhutdinov &
Larochelle, 2010) as the measure to compare. To estimate
the models partition function we used 20,000 βk spaced
uniformly from 0 to 1.0.

Discussion. The classical tuned architecture for training a
DBM with 2 hidden layers for the original MNIST dataset
gives a log-likelihood of -84.62. Using our recommended
architecture, we were able to get a matched log-likelihood
of -84.29 without significant tuning.

7.3. Wide single layer RBM vs lean two-layered DBM

To verify our claim in Corollary 4 we chose single layer
RBMs with n = 20 and n = 30 and varying α =
m
n ∈ {3, 7, 10, 15}. We initialized weights and biases of
each RBM architecture randomly and then performed gibbs
sampling for 5000 steps to generate a synthetic dataset of
60,000 points. The same dataset was then used for training
and evaluating corresponding multilayer DBM architecture
suggested by our formula. The resulting test-set log likeli-
hood are depicted in Figure 4.
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Figure 4. Comparison of test set log-likelihood attained for single
layer RBM and two-layer DBM for n = 20 and n = 30. It can
be seen that the DBM with much less parameters gives atleast as
good log-likelihood as RBM.

Discussion. We can see that optimal DBM architecture
gives same or improved log-likelihood despite the fact that
it has less number of parameters than the respective single
layer RBM, thus justifying our claim.

8. Conclusion
We studied the IS formalism, first introduced to study Spin
glasses, to understand the energy landscape of one and
two layer DBMs and proposed ISC, a measure of repre-
sentation power of RBMs. ISC makes practical sugges-
tions such as whenever number of hidden units m > 20n,
the ISC saturates and multilayering should be considered.
Also, ISC suggests alternative two layer architectures to
single layer RBMs which have equal or more representa-
tional power with far fewer number of parameters.
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